Abstract

Here, we report on the design, fabrication and characterization of single-channel (SC-) and dual-channel (DC-) side-coupled integrated spaced sequences of optical resonators (SCISSOR) with a finite number (eight) of microring resonators using submicron silicon photonic wires on a silicon-on-insulator (SOI) wafer. We present results on the observation of multiple resonances in the through and the drop port signals of DC-SCISSOR. These result from the coupled resonator induced transparency (CRIT) which appears when the resonator band (RB) and the Bragg band (BB) are nearly coincident. We also observe the formation of high-Q (> 23000) quasi-localized modes in the RB of the drop transmission which appear when the RB and BB are well separated from each other. These multiple resonances and quasi-localized modes are induced by nanometer-scale structural disorders in the dimension of one or more rings. Finally, we demonstrate the tunability of RB (and BB) and localized modes in the DC-SCISSOR by thermo-optical or free-carrier refraction.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Dumon, W. Bogaerts, R. Baets, J-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45(12), 581–582 (2009).
    [CrossRef]
  2. M. Lipson, “Guiding, modulating, and emitting light on silicon-challenges and opportunities,” J. Lightwave Technol. 25(12), 4222–4238 (2005).
    [CrossRef]
  3. S. Selvaraja, P. Jaenen, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193nm optical lithography,” J. Lightwave Technol. 27(18), 4076–4083 (2009).
    [CrossRef]
  4. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
    [CrossRef]
  5. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express , 15(19), 11934–11941 (2007).
    [CrossRef] [PubMed]
  6. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometer-scale silicon electroptic modulator,” Nature , 435(7040), 325–327 (2007).
    [CrossRef]
  7. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(2), 242–246 (2008).
    [CrossRef]
  8. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2006).
    [CrossRef]
  9. W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1394–1401 (2006).
  10. Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E 62(5), 7389–7404 (2000).
    [CrossRef]
  11. J. E. Heebner, P. Chak, S. Pereira, J. E. Sipe, and R. W. Boyd, “Distributed and localized feedback in microresonator sequence for linear and nonlinear optics,” J. Opt. Soc. Am. B 21(10), 1818–1832 (2004).
    [CrossRef]
  12. S. Y. Cho and R. Soref, “Apodized SCISSOR for filtering and switching,” Opt. Express 16(23), 19078–19090 (2008).
    [CrossRef]
  13. Y. M. Landobasa and M. K. Chin, “Defect modes in micro-ringd resonator arrays,” Opt. Express 13(20) 7800–7815 (2005).
    [CrossRef] [PubMed]
  14. Q. Xu, J. Shakya, and M. Lipson, “Direct measurement of tunable optical delays on chip analogue to electromagnetically induced transparency,” Opt. Express 14(14), 6463–6468 (2006).
    [CrossRef] [PubMed]
  15. M. Tomita, K. Totsuka, R. Hanamura, and T. Matsumoto, “Tunable Fano resonance effect in coupled microsphere resonator-induced transparency,” J. Opt. Soc. Am. B 26(4), 813–818 (2009).
    [CrossRef]
  16. X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17) 173902 (2009).
    [CrossRef] [PubMed]
  17. Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, and G. C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75(6), 063833 (2007).
    [CrossRef]
  18. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
    [CrossRef]
  19. M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94(7), 071101 (2009).
    [CrossRef]
  20. S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002).
    [CrossRef]
  21. X. Yang, C. Husko, C. W. Wong, M. Yu, and D.-L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/Vm silicon photonic crystal nanocavities,” Appl. Phy. Lett. 91(5), 051113 (2007).
    [CrossRef]
  22. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica (Amsterdam) 34(1), 149–154 (1967).
    [CrossRef]

2009 (5)

P. Dumon, W. Bogaerts, R. Baets, J-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45(12), 581–582 (2009).
[CrossRef]

S. Selvaraja, P. Jaenen, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193nm optical lithography,” J. Lightwave Technol. 27(18), 4076–4083 (2009).
[CrossRef]

M. Tomita, K. Totsuka, R. Hanamura, and T. Matsumoto, “Tunable Fano resonance effect in coupled microsphere resonator-induced transparency,” J. Opt. Soc. Am. B 26(4), 813–818 (2009).
[CrossRef]

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17) 173902 (2009).
[CrossRef] [PubMed]

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94(7), 071101 (2009).
[CrossRef]

2008 (2)

S. Y. Cho and R. Soref, “Apodized SCISSOR for filtering and switching,” Opt. Express 16(23), 19078–19090 (2008).
[CrossRef]

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(2), 242–246 (2008).
[CrossRef]

2007 (4)

F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express , 15(19), 11934–11941 (2007).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometer-scale silicon electroptic modulator,” Nature , 435(7040), 325–327 (2007).
[CrossRef]

Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, and G. C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75(6), 063833 (2007).
[CrossRef]

X. Yang, C. Husko, C. W. Wong, M. Yu, and D.-L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/Vm silicon photonic crystal nanocavities,” Appl. Phy. Lett. 91(5), 051113 (2007).
[CrossRef]

2006 (3)

Q. Xu, J. Shakya, and M. Lipson, “Direct measurement of tunable optical delays on chip analogue to electromagnetically induced transparency,” Opt. Express 14(14), 6463–6468 (2006).
[CrossRef] [PubMed]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2006).
[CrossRef]

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1394–1401 (2006).

2005 (3)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

M. Lipson, “Guiding, modulating, and emitting light on silicon-challenges and opportunities,” J. Lightwave Technol. 25(12), 4222–4238 (2005).
[CrossRef]

Y. M. Landobasa and M. K. Chin, “Defect modes in micro-ringd resonator arrays,” Opt. Express 13(20) 7800–7815 (2005).
[CrossRef] [PubMed]

2004 (1)

2002 (1)

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002).
[CrossRef]

2000 (1)

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E 62(5), 7389–7404 (2000).
[CrossRef]

1967 (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica (Amsterdam) 34(1), 149–154 (1967).
[CrossRef]

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[CrossRef]

Andreani, L. C.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94(7), 071101 (2009).
[CrossRef]

Baets, R.

P. Dumon, W. Bogaerts, R. Baets, J-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45(12), 581–582 (2009).
[CrossRef]

S. Selvaraja, P. Jaenen, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193nm optical lithography,” J. Lightwave Technol. 27(18), 4076–4083 (2009).
[CrossRef]

Baets, R. G.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1394–1401 (2006).

Beckx, S.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1394–1401 (2006).

Belotti, M.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94(7), 071101 (2009).
[CrossRef]

Bogaerts, W.

P. Dumon, W. Bogaerts, R. Baets, J-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45(12), 581–582 (2009).
[CrossRef]

S. Selvaraja, P. Jaenen, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193nm optical lithography,” J. Lightwave Technol. 27(18), 4076–4083 (2009).
[CrossRef]

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1394–1401 (2006).

Boyd, R. W.

Chak, P.

Chen, Y. L.

Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, and G. C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75(6), 063833 (2007).
[CrossRef]

Chin, M. K.

Cho, S. Y.

Dumon, P.

P. Dumon, W. Bogaerts, R. Baets, J-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45(12), 581–582 (2009).
[CrossRef]

S. Selvaraja, P. Jaenen, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193nm optical lithography,” J. Lightwave Technol. 27(18), 4076–4083 (2009).
[CrossRef]

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1394–1401 (2006).

Fan, S.

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002).
[CrossRef]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[CrossRef]

Fedeli, J-M.

P. Dumon, W. Bogaerts, R. Baets, J-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45(12), 581–582 (2009).
[CrossRef]

Fukuda, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

Fulbert, L.

P. Dumon, W. Bogaerts, R. Baets, J-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45(12), 581–582 (2009).
[CrossRef]

Galli, M.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94(7), 071101 (2009).
[CrossRef]

Green, W. M. J.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(2), 242–246 (2008).
[CrossRef]

Guo, G. C.

Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, and G. C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75(6), 063833 (2007).
[CrossRef]

Hanamura, R.

Heebner, J. E.

Husko, C.

X. Yang, C. Husko, C. W. Wong, M. Yu, and D.-L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/Vm silicon photonic crystal nanocavities,” Appl. Phy. Lett. 91(5), 051113 (2007).
[CrossRef]

Itabashi, S.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

Jaenen, P.

S. Selvaraja, P. Jaenen, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193nm optical lithography,” J. Lightwave Technol. 27(18), 4076–4083 (2009).
[CrossRef]

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1394–1401 (2006).

Jiang, W.

Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, and G. C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75(6), 063833 (2007).
[CrossRef]

Krauss, T. F.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94(7), 071101 (2009).
[CrossRef]

Kwong, D. L.

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17) 173902 (2009).
[CrossRef] [PubMed]

Kwong, D.-L.

X. Yang, C. Husko, C. W. Wong, M. Yu, and D.-L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/Vm silicon photonic crystal nanocavities,” Appl. Phy. Lett. 91(5), 051113 (2007).
[CrossRef]

Landobasa, Y. M.

Lee, R. K.

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E 62(5), 7389–7404 (2000).
[CrossRef]

Li, Y.

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E 62(5), 7389–7404 (2000).
[CrossRef]

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometer-scale silicon electroptic modulator,” Nature , 435(7040), 325–327 (2007).
[CrossRef]

Q. Xu, J. Shakya, and M. Lipson, “Direct measurement of tunable optical delays on chip analogue to electromagnetically induced transparency,” Opt. Express 14(14), 6463–6468 (2006).
[CrossRef] [PubMed]

M. Lipson, “Guiding, modulating, and emitting light on silicon-challenges and opportunities,” J. Lightwave Technol. 25(12), 4222–4238 (2005).
[CrossRef]

Matsumoto, T.

Morita, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

O’Faolain, L.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94(7), 071101 (2009).
[CrossRef]

Pereira, S.

Portalupi, S. L.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94(7), 071101 (2009).
[CrossRef]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometer-scale silicon electroptic modulator,” Nature , 435(7040), 325–327 (2007).
[CrossRef]

Rooks, M.

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometer-scale silicon electroptic modulator,” Nature , 435(7040), 325–327 (2007).
[CrossRef]

Sekaric, L.

Selvaraja, S.

Shakya, J.

Shoji, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

Sipe, J. E.

Soref, R.

Taillaert, D.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1394–1401 (2006).

Takahashi, J.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

Takahashi, M.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

Tamechika, E.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

Thourhout, D. V.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1394–1401 (2006).

Tomita, M.

Totsuka, K.

Tsuchizawa, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

Van Thourhout, D.

Varshni, Y. P.

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica (Amsterdam) 34(1), 149–154 (1967).
[CrossRef]

Vlasov, Y.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(2), 242–246 (2008).
[CrossRef]

F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express , 15(19), 11934–11941 (2007).
[CrossRef] [PubMed]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2006).
[CrossRef]

Watanabe, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

Wiaux, V.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1394–1401 (2006).

Wong, C. W.

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17) 173902 (2009).
[CrossRef] [PubMed]

X. Yang, C. Husko, C. W. Wong, M. Yu, and D.-L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/Vm silicon photonic crystal nanocavities,” Appl. Phy. Lett. 91(5), 051113 (2007).
[CrossRef]

Wouters, J.

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1394–1401 (2006).

Xia, F.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(2), 242–246 (2008).
[CrossRef]

F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express , 15(19), 11934–11941 (2007).
[CrossRef] [PubMed]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2006).
[CrossRef]

Xiao, Y. F.

Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, and G. C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75(6), 063833 (2007).
[CrossRef]

Xu, Q.

Xu, Y.

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E 62(5), 7389–7404 (2000).
[CrossRef]

Yamada, K.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

Yang, X.

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17) 173902 (2009).
[CrossRef] [PubMed]

X. Yang, C. Husko, C. W. Wong, M. Yu, and D.-L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/Vm silicon photonic crystal nanocavities,” Appl. Phy. Lett. 91(5), 051113 (2007).
[CrossRef]

Yariv, A.

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E 62(5), 7389–7404 (2000).
[CrossRef]

Yu, M.

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17) 173902 (2009).
[CrossRef] [PubMed]

X. Yang, C. Husko, C. W. Wong, M. Yu, and D.-L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/Vm silicon photonic crystal nanocavities,” Appl. Phy. Lett. 91(5), 051113 (2007).
[CrossRef]

Zou, X. B.

Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, and G. C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75(6), 063833 (2007).
[CrossRef]

Appl. Phy. Lett. (1)

X. Yang, C. Husko, C. W. Wong, M. Yu, and D.-L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/Vm silicon photonic crystal nanocavities,” Appl. Phy. Lett. 91(5), 051113 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94(7), 071101 (2009).
[CrossRef]

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002).
[CrossRef]

Electron. Lett. (1)

P. Dumon, W. Bogaerts, R. Baets, J-M. Fedeli, and L. Fulbert, “Towards foundry approach for silicon photonics: silicon photonics platform ePIXfab,” Electron. Lett. 45(12), 581–582 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

W. Bogaerts, P. Dumon, D. V. Thourhout, D. Taillaert, P. Jaenen, J. Wouters, S. Beckx, V. Wiaux, and R. G. Baets, “Compact wavelength-selective functions in silicon-on-insulator photonic wires,” IEEE J. Sel. Top. Quantum Electron. 15(6), 1394–1401 (2006).

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (2)

Nat. Photonics (2)

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(2), 242–246 (2008).
[CrossRef]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2006).
[CrossRef]

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometer-scale silicon electroptic modulator,” Nature , 435(7040), 325–327 (2007).
[CrossRef]

Opt. Express (4)

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[CrossRef]

Phys. Rev. A (1)

Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, and G. C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75(6), 063833 (2007).
[CrossRef]

Phys. Rev. E (1)

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E 62(5), 7389–7404 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17) 173902 (2009).
[CrossRef] [PubMed]

Physica (Amsterdam) (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica (Amsterdam) 34(1), 149–154 (1967).
[CrossRef]

Supplementary Material (1)

» Media 1: MOV (3791 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the experimental set-up. The labels refer to the tunable laser (TL), the single-mode fiber (SMF), the tapered fiber (TF), the polarizer (P), the analyzer (A), the Germanium detector (Ge) and the infrared camera (IR). The actual designs of SCISSOR devices are reported on the bottom. The laser beam is coupled into the input (I) port divided by an MMI splitter(1X2) to a reference (Ref) channel and to the SCISSOR input port. Two output ports are used to measure the transmission signals for the through(T) and the drop(D) channels.

Fig. 2
Fig. 2

Measured optical response of SCISSOR structure with eight microrings. (a) Transmission spectra in the through(T) port of the SC-SCISSOR (blue curve) and the DC-SCISSOR (black curve) compared with the simulations (red dashed-line) for DC-SCISSOR. (b) Transmission in the drop(D) port (black line) and simulation result (red dashed-line). Note that intensities in through(T) and drop(D) ports were normalized to the intensity in the reference(Ref) port.

Fig. 3
Fig. 3

Fine resolution spectra of bands ‘A’, ‘B’, ‘C’, ‘D’ and ‘E’ (for labels refer to Fig.3a). Panels in columns 1, 2, and 3 represent transmission signals in through (T), drop (D) ports and out-of-plane scattering (V, spatially integrated), respectively. Black (solid) and red (dashed) curves are experimental and simulation results, respectively. The vertical scattering spectra are normalized to the maximum value while the simulation data are obtained by using the relation (1 – |T| − |D|). Hence their comparison is only qualitative.

Fig. 4
Fig. 4

Snapshots obtained from an IR camera placed over the top of the sample and shown for three distinct spectral peaks at 1557.86nm, 1558.65nm, and 1560.11nm for images (a), (b), (c), respectively, in the response of drop(red)/out-of-plane scattered light(blue line) for band labelled ‘D’(Media 1). For the sake of clarity, the images are outlined (in white line) with microrings and waveguides of the SCISSOR. Note that the normalization used for the drop signal is with respect to the reference signal whereas the out-of-plane scattering is normalized to the maximum value in the relevant spectral range.

Fig. 5
Fig. 5

Transmission in the drop port for band labeled ‘B’(refer to Fig. 2a) for two different temperatures. Red (blue) curve is the results measured at temperature 22°C (42°C) and compared with simulation shown with dashed line.

Fig. 6
Fig. 6

Optical tuning of quasi-localized mode for band ‘D’ observed in the drop signal for different pump powers that are focused on the 3rd ring in the DC-SCISSOR structure. (a) Experimental results: Drop transmission when the pump power is turned on(off) shown with blue(red) line. Inset: Enlarged view for different pump powers going from 0 to maximum(30mW). (b) Simulation results: The transmission in the drop(through) port is shown with solid(dashed) lines and for two different values of the ring radius 6.756 μm (red line) and 6.754 μm (blue line). Inset: Enlarged view of the drop transmission for a gradual change in the ring radius with ΔR decreasing by steps of 0.4nm.

Fig. 7
Fig. 7

Description of input/output electric fields for each ring in DC-SCISSOR system.

Tables (2)

Tables Icon

Table 1 Optical parameters used in the TMM simulation.

Tables Icon

Table 2 Ring radius used in the simulation. R i = R + δ R i is the radius of ith microring determined by the radius R and variation in the radius, δ R i , for the corresponding microring. The value R=6.75μm is used in the simulations. The actual values here reported are suited to reproduce the experimental spectra and are not fitting values.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

( A N B N ) = ( ( α R t 2 e j ϕ N ) t ( α R e j ϕ N ) κ 2 α 4 R e j ϕ N / 2 t ( α R e j ϕ N ) κ 2 α 4 R e j ϕ N / 2 t ( α R e j ϕ N ) ( 1 t 2 α R e j ϕ N t ( 1 α R e j ϕ N ) ) ( α L e j β L s 0 0 e j β L s α L ) ( A N 1 B N 1 ) = T N L ( A N 1 B N 1 ) ,
( A N B N ) = T N L T N - 1 L T 1 ( A 1 B 1 ) = M ( A 1 B 1 )
T = | A N A 1 | 2 = | Det [ M ] M 22 | 2 , D = | B 1 A 1 | 2 = | M 21 M 22 | 2

Metrics