Abstract

The accuracy, precision and limitations of the imaging technique named Structured Laser Illumination Planar Imaging (SLIPI) have been investigated. SLIPI, which allows multiply scattered light to be diminished, has previously demonstrated improvements in image quality and contrast for spray imaging. In the current study the method is applied to a controlled confined environment consisting of a mixture of water and monodisperse polystyrene microspheres. Elastic scattering and fluorescence are studied and the results obtained when probing different particle concentrations and diameters conclusively show the advantages of SLIPI for imaging within moderately turbid media. Although the technique presents both good repeatability and agreement with the Beer-Lambert law, discrepancies in its performance were, however, discovered. Photons undergoing scattering without changing their incident trajectory cannot be discriminated and, owing to differences in scattering phase functions, probing larger particles reduces the suppression of multiply scattered light. However, in terms of visibility such behavior is beneficial as it allows denser media to be probed. It is further demonstrated that the suppression of diffuse light performs equally well regardless of whether photons propagate along the incident direction or towards the camera. In addition, this filtering process acts independently on the spatial distribution of the multiply scattered light but is limited by the finite dynamic range and unavoidable signal noise of the camera.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. A. Neil, R. Juškaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22, 1905–1907 (1997).
    [CrossRef]
  2. L. Krzewina and M. Kim, “Single exposure optical sectioning by color structured illumination microscopy,” Opt. Lett. 31, 477–479 (2006).
    [CrossRef] [PubMed]
  3. M. A. A. Neil, R. Juškaitis, and T. Wilson, “Real time 3D fluorescence microscopy by two beam interference illumination,” Opt. Commun. 153, 1–4 (1998).
    [CrossRef]
  4. M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc. 203, 246–257 (2000).
    [CrossRef]
  5. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
    [CrossRef] [PubMed]
  6. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102, 13081–13086 (2005).
    [CrossRef] [PubMed]
  7. E. Cortizo, A. M. Yeras, J. Lepore, and M. Garavaglia, “Application of the structured illumination method to study the topography of the sole of the foot during a walk,” Opt. Laser Eng. 40, 117–132 (2003).
    [CrossRef]
  8. E. Kristensson, M. Richter, S.-G. Pettersson, M. Aldén, and S. Andersson-Engels, “Spatially resolved, singleended two-dimensional visualization of gas flow phenomena using structured illumination,” Appl. Opt. 47, 3927–3931 (2007).
    [CrossRef]
  9. T. Breuninger, K. Greger, and E. H. K. Stelzer, “Lateral modulation boosts image quality in single plane illumination fluorescence microscopy,” Opt. Lett. 32, 1938–1940 (2007).
    [CrossRef] [PubMed]
  10. E. Berrocal, E. Kristensson, M. Richter, M. Linne, and M. Aldén, “Application of structured illumination for multiple scattering suppression in planar laser imaging of dense sprays,” Opt. Express 16, 17870–17881 (2008).
    [CrossRef] [PubMed]
  11. E. Kristensson, E. Berrocal, M. Richter, S. Pettersson, and M. Aldén, “High-speed structured planar laser illumination for contrast improvement of two-phase flow images,” Opt. Lett. 33, 2752–2754 (2008).
    [CrossRef] [PubMed]
  12. M. Jermy and D. Greenhalgh, “Planar dropsizing by elastic and fluorescence scattering in sprays too dense for phase doppler measurement,” Appl. Phys. B 71, 703–710 (2000).
    [CrossRef]
  13. E. Kristensson, E. Berrocal, M. Richter, and M. Aldén, “Nanosecond structured laser illumination planar imaging for single-shot imaging of dense sprays,” Atomization Spray 20, 337–343 (2010).
    [CrossRef]
  14. P. L. Gal, N. Farrugia, and D. A. Greenhalg, “Laser sheet dropsizing of dense sprays,” Opt. Laser Technol. 31, 75–83 (1999).
    [CrossRef]
  15. D. G. Talley, J. F. Verdieck, S. W. Lee, V. G. McDonell, and G. S. Samuelsen, “Accounting for laser sheet extinction in applying PLLIF to sprays,” paper AIAA-96-0469, presented at the Thirty-Fourth Aerospace Sciences Meeting, Reno, Nev., 15–18 Jan. 1996 (American Institute of Aeronautics and Astronautics, New York, 1996).
    [PubMed]
  16. M. Linne, M. Paciaroni, E. Berrocal, and D. Sedarsky, “Ballistic imaging of liquid breakup processes in dense sprays,” in Proceedings of the Combustion Institute , (2009), pp. 2147–2161.
    [CrossRef]
  17. J. V. Pastor, R. Payri, L. Araneo, and J. Manin, “Correction method for droplet sizing by laser-induced fluorescence in a controlled test situation,” Opt. Eng. 48, 1–11 (2009).
    [CrossRef]
  18. L. Callegaro, F. Pennecchi, and P. G. Spazzini, “Comparison of calibration curves using the Lp norm,” Accred. Qual. Assur. 14, 587–592 (2009).
    [CrossRef]

2010

E. Kristensson, E. Berrocal, M. Richter, and M. Aldén, “Nanosecond structured laser illumination planar imaging for single-shot imaging of dense sprays,” Atomization Spray 20, 337–343 (2010).
[CrossRef]

2009

J. V. Pastor, R. Payri, L. Araneo, and J. Manin, “Correction method for droplet sizing by laser-induced fluorescence in a controlled test situation,” Opt. Eng. 48, 1–11 (2009).
[CrossRef]

L. Callegaro, F. Pennecchi, and P. G. Spazzini, “Comparison of calibration curves using the Lp norm,” Accred. Qual. Assur. 14, 587–592 (2009).
[CrossRef]

2008

2007

2006

2005

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102, 13081–13086 (2005).
[CrossRef] [PubMed]

2003

E. Cortizo, A. M. Yeras, J. Lepore, and M. Garavaglia, “Application of the structured illumination method to study the topography of the sole of the foot during a walk,” Opt. Laser Eng. 40, 117–132 (2003).
[CrossRef]

2000

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc. 203, 246–257 (2000).
[CrossRef]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[CrossRef] [PubMed]

M. Jermy and D. Greenhalgh, “Planar dropsizing by elastic and fluorescence scattering in sprays too dense for phase doppler measurement,” Appl. Phys. B 71, 703–710 (2000).
[CrossRef]

1999

P. L. Gal, N. Farrugia, and D. A. Greenhalg, “Laser sheet dropsizing of dense sprays,” Opt. Laser Technol. 31, 75–83 (1999).
[CrossRef]

1998

M. A. A. Neil, R. Juškaitis, and T. Wilson, “Real time 3D fluorescence microscopy by two beam interference illumination,” Opt. Commun. 153, 1–4 (1998).
[CrossRef]

1997

Aldén, M.

Andersson-Engels, S.

Araneo, L.

J. V. Pastor, R. Payri, L. Araneo, and J. Manin, “Correction method for droplet sizing by laser-induced fluorescence in a controlled test situation,” Opt. Eng. 48, 1–11 (2009).
[CrossRef]

Berrocal, E.

Breuninger, T.

Callegaro, L.

L. Callegaro, F. Pennecchi, and P. G. Spazzini, “Comparison of calibration curves using the Lp norm,” Accred. Qual. Assur. 14, 587–592 (2009).
[CrossRef]

Cole, M. J.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc. 203, 246–257 (2000).
[CrossRef]

Cortizo, E.

E. Cortizo, A. M. Yeras, J. Lepore, and M. Garavaglia, “Application of the structured illumination method to study the topography of the sole of the foot during a walk,” Opt. Laser Eng. 40, 117–132 (2003).
[CrossRef]

Dayel, M. J.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc. 203, 246–257 (2000).
[CrossRef]

Dowling, K.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc. 203, 246–257 (2000).
[CrossRef]

Farrugia, N.

P. L. Gal, N. Farrugia, and D. A. Greenhalg, “Laser sheet dropsizing of dense sprays,” Opt. Laser Technol. 31, 75–83 (1999).
[CrossRef]

French, P. M. W.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc. 203, 246–257 (2000).
[CrossRef]

Gal, P. L.

P. L. Gal, N. Farrugia, and D. A. Greenhalg, “Laser sheet dropsizing of dense sprays,” Opt. Laser Technol. 31, 75–83 (1999).
[CrossRef]

Garavaglia, M.

E. Cortizo, A. M. Yeras, J. Lepore, and M. Garavaglia, “Application of the structured illumination method to study the topography of the sole of the foot during a walk,” Opt. Laser Eng. 40, 117–132 (2003).
[CrossRef]

Greenhalg, D. A.

P. L. Gal, N. Farrugia, and D. A. Greenhalg, “Laser sheet dropsizing of dense sprays,” Opt. Laser Technol. 31, 75–83 (1999).
[CrossRef]

Greenhalgh, D.

M. Jermy and D. Greenhalgh, “Planar dropsizing by elastic and fluorescence scattering in sprays too dense for phase doppler measurement,” Appl. Phys. B 71, 703–710 (2000).
[CrossRef]

Greger, K.

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102, 13081–13086 (2005).
[CrossRef] [PubMed]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[CrossRef] [PubMed]

Jermy, M.

M. Jermy and D. Greenhalgh, “Planar dropsizing by elastic and fluorescence scattering in sprays too dense for phase doppler measurement,” Appl. Phys. B 71, 703–710 (2000).
[CrossRef]

Jones, R.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc. 203, 246–257 (2000).
[CrossRef]

Juškaitis, R.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc. 203, 246–257 (2000).
[CrossRef]

M. A. A. Neil, R. Juškaitis, and T. Wilson, “Real time 3D fluorescence microscopy by two beam interference illumination,” Opt. Commun. 153, 1–4 (1998).
[CrossRef]

M. A. A. Neil, R. Juškaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22, 1905–1907 (1997).
[CrossRef]

Kim, M.

Kristensson, E.

Krzewina, L.

Lee, S. W.

D. G. Talley, J. F. Verdieck, S. W. Lee, V. G. McDonell, and G. S. Samuelsen, “Accounting for laser sheet extinction in applying PLLIF to sprays,” paper AIAA-96-0469, presented at the Thirty-Fourth Aerospace Sciences Meeting, Reno, Nev., 15–18 Jan. 1996 (American Institute of Aeronautics and Astronautics, New York, 1996).
[PubMed]

Lepore, J.

E. Cortizo, A. M. Yeras, J. Lepore, and M. Garavaglia, “Application of the structured illumination method to study the topography of the sole of the foot during a walk,” Opt. Laser Eng. 40, 117–132 (2003).
[CrossRef]

Lever, M. J.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc. 203, 246–257 (2000).
[CrossRef]

Linne, M.

Manin, J.

J. V. Pastor, R. Payri, L. Araneo, and J. Manin, “Correction method for droplet sizing by laser-induced fluorescence in a controlled test situation,” Opt. Eng. 48, 1–11 (2009).
[CrossRef]

McDonell, V. G.

D. G. Talley, J. F. Verdieck, S. W. Lee, V. G. McDonell, and G. S. Samuelsen, “Accounting for laser sheet extinction in applying PLLIF to sprays,” paper AIAA-96-0469, presented at the Thirty-Fourth Aerospace Sciences Meeting, Reno, Nev., 15–18 Jan. 1996 (American Institute of Aeronautics and Astronautics, New York, 1996).
[PubMed]

Neil, M. A. A.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc. 203, 246–257 (2000).
[CrossRef]

M. A. A. Neil, R. Juškaitis, and T. Wilson, “Real time 3D fluorescence microscopy by two beam interference illumination,” Opt. Commun. 153, 1–4 (1998).
[CrossRef]

M. A. A. Neil, R. Juškaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22, 1905–1907 (1997).
[CrossRef]

Parsons-Karavassilis, D.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc. 203, 246–257 (2000).
[CrossRef]

Pastor, J. V.

J. V. Pastor, R. Payri, L. Araneo, and J. Manin, “Correction method for droplet sizing by laser-induced fluorescence in a controlled test situation,” Opt. Eng. 48, 1–11 (2009).
[CrossRef]

Payri, R.

J. V. Pastor, R. Payri, L. Araneo, and J. Manin, “Correction method for droplet sizing by laser-induced fluorescence in a controlled test situation,” Opt. Eng. 48, 1–11 (2009).
[CrossRef]

Pennecchi, F.

L. Callegaro, F. Pennecchi, and P. G. Spazzini, “Comparison of calibration curves using the Lp norm,” Accred. Qual. Assur. 14, 587–592 (2009).
[CrossRef]

Pettersson, S.

Pettersson, S.-G.

Richter, M.

Samuelsen, G. S.

D. G. Talley, J. F. Verdieck, S. W. Lee, V. G. McDonell, and G. S. Samuelsen, “Accounting for laser sheet extinction in applying PLLIF to sprays,” paper AIAA-96-0469, presented at the Thirty-Fourth Aerospace Sciences Meeting, Reno, Nev., 15–18 Jan. 1996 (American Institute of Aeronautics and Astronautics, New York, 1996).
[PubMed]

Siegel, J.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc. 203, 246–257 (2000).
[CrossRef]

Spazzini, P. G.

L. Callegaro, F. Pennecchi, and P. G. Spazzini, “Comparison of calibration curves using the Lp norm,” Accred. Qual. Assur. 14, 587–592 (2009).
[CrossRef]

Stelzer, E. H. K.

Sucharov, L. O. D.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc. 203, 246–257 (2000).
[CrossRef]

Talley, D. G.

D. G. Talley, J. F. Verdieck, S. W. Lee, V. G. McDonell, and G. S. Samuelsen, “Accounting for laser sheet extinction in applying PLLIF to sprays,” paper AIAA-96-0469, presented at the Thirty-Fourth Aerospace Sciences Meeting, Reno, Nev., 15–18 Jan. 1996 (American Institute of Aeronautics and Astronautics, New York, 1996).
[PubMed]

Verdieck, J. F.

D. G. Talley, J. F. Verdieck, S. W. Lee, V. G. McDonell, and G. S. Samuelsen, “Accounting for laser sheet extinction in applying PLLIF to sprays,” paper AIAA-96-0469, presented at the Thirty-Fourth Aerospace Sciences Meeting, Reno, Nev., 15–18 Jan. 1996 (American Institute of Aeronautics and Astronautics, New York, 1996).
[PubMed]

Webb, S. E. D.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc. 203, 246–257 (2000).
[CrossRef]

Wilson, T.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc. 203, 246–257 (2000).
[CrossRef]

M. A. A. Neil, R. Juškaitis, and T. Wilson, “Real time 3D fluorescence microscopy by two beam interference illumination,” Opt. Commun. 153, 1–4 (1998).
[CrossRef]

M. A. A. Neil, R. Juškaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22, 1905–1907 (1997).
[CrossRef]

Yeras, A. M.

E. Cortizo, A. M. Yeras, J. Lepore, and M. Garavaglia, “Application of the structured illumination method to study the topography of the sole of the foot during a walk,” Opt. Laser Eng. 40, 117–132 (2003).
[CrossRef]

Accred. Qual. Assur.

L. Callegaro, F. Pennecchi, and P. G. Spazzini, “Comparison of calibration curves using the Lp norm,” Accred. Qual. Assur. 14, 587–592 (2009).
[CrossRef]

Appl. Opt.

Appl. Phys. B

M. Jermy and D. Greenhalgh, “Planar dropsizing by elastic and fluorescence scattering in sprays too dense for phase doppler measurement,” Appl. Phys. B 71, 703–710 (2000).
[CrossRef]

Atomization Spray

E. Kristensson, E. Berrocal, M. Richter, and M. Aldén, “Nanosecond structured laser illumination planar imaging for single-shot imaging of dense sprays,” Atomization Spray 20, 337–343 (2010).
[CrossRef]

J. Microsc.

M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juškaitis, and T. Wilson, “Time-domain whole-field fluorescence lifetime imaging with optical sectioning,” J. Microsc. 203, 246–257 (2000).
[CrossRef]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[CrossRef] [PubMed]

Opt. Commun.

M. A. A. Neil, R. Juškaitis, and T. Wilson, “Real time 3D fluorescence microscopy by two beam interference illumination,” Opt. Commun. 153, 1–4 (1998).
[CrossRef]

Opt. Eng.

J. V. Pastor, R. Payri, L. Araneo, and J. Manin, “Correction method for droplet sizing by laser-induced fluorescence in a controlled test situation,” Opt. Eng. 48, 1–11 (2009).
[CrossRef]

Opt. Express

Opt. Laser Eng.

E. Cortizo, A. M. Yeras, J. Lepore, and M. Garavaglia, “Application of the structured illumination method to study the topography of the sole of the foot during a walk,” Opt. Laser Eng. 40, 117–132 (2003).
[CrossRef]

Opt. Laser Technol.

P. L. Gal, N. Farrugia, and D. A. Greenhalg, “Laser sheet dropsizing of dense sprays,” Opt. Laser Technol. 31, 75–83 (1999).
[CrossRef]

Opt. Lett.

Proc. Natl. Acad. Sci. U.S.A.

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102, 13081–13086 (2005).
[CrossRef] [PubMed]

Other

D. G. Talley, J. F. Verdieck, S. W. Lee, V. G. McDonell, and G. S. Samuelsen, “Accounting for laser sheet extinction in applying PLLIF to sprays,” paper AIAA-96-0469, presented at the Thirty-Fourth Aerospace Sciences Meeting, Reno, Nev., 15–18 Jan. 1996 (American Institute of Aeronautics and Astronautics, New York, 1996).
[PubMed]

M. Linne, M. Paciaroni, E. Berrocal, and D. Sedarsky, “Ballistic imaging of liquid breakup processes in dense sprays,” in Proceedings of the Combustion Institute , (2009), pp. 2147–2161.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Graphical example of Eqs. (1)(3). (a) The recorded signal with an unknown intensity offset. (b) A modulated illumination scheme is applied. (c) The local amplitude of the modulation. (d) Equation (2) is applied, converting the envelope in (c) into intensity. As the unwanted offset is identical in all three recordings it is removed through Eq. (2).

Fig. 2
Fig. 2

Schematic of the optical arrangement for the SLIPI setup together with an example of a recorded image. Also provided is an illustration of the four different sections within the measurement volume. NSL = Negative Spherical Lens, Aper. = Aperture, PSL = Positive Spherical Lens, PCL = Positive Cylindrical Lens and freq. cut = Frequency Cutter. Note that the imaging part of the setup is the only difference between that of an ordinary laser sheet arrangement and SLIPI.

Fig. 3
Fig. 3

(Left): Conventional planar laser imaging. (Right): SLIPI. The images were recorded at S 12.

Fig. 4
Fig. 4

Vertical summation of the result obtained using conventional planar imaging for both Mie scattering and fluorescence. All results are normalized with respect to the highest detected value at x = 0 mm for the corresponding scattering process.

Fig. 5
Fig. 5

Vertical summations of the results obtained using SLIPI for both Mie scattering and laser induced fluorescence. All results are normalized to unity to illustrate the precision of the technique. The normalization factor (detected intensity at x = 0 mm) is reported in the legend. The dashed line shows the Beer-Lambert decay.

Fig. 6
Fig. 6

Deviations in the performance of SLIPI when probing different particle sizes. (Upper graphs:) The response when light is traveling along the incident direction of the illumination (at section S 2). (Lower graphs:) The reduction of intensity for light propagating towards the camera. Note the natural logarithmic scale on the y-axis and the three different x-axes (one for each optical depth).

Fig. 7
Fig. 7

Examples of Mie scattering from a structured laser sheet for the three different sizes at OD 6. Notice how the modulated light remains visible further into the sample when larger particles are probed. Consequently, the amplitude, which is given below each image at two x locations, is less reduced with distance for 31 μm.

Fig. 8
Fig. 8

Relative multiple scattering suppression (εsupp ), based on Eq. (8). The small graphs indicate, when needed, a magnified part of the results. The gray area indicates when the suppression becomes constant, at εsupp ∼ 0.997.

Tables (4)

Tables Icon

Table 1 Summary of the Different Measurements Performed*

Tables Icon

Table 2 Calculations of the P Term*

Tables Icon

Table 3 Estimations of the Accuracy for Both SLIPI and Conventional Imaging*

Tables Icon

Table 4 Estimated Accuracy for Both SLIPI and Conventional Imaging for the Reduction of Light Intensity as Photons Propagate towards the Camera*

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = I C ( x , y ) + I S ( x , y ) cos ( 2 π ν y + ϕ ) ,
SLIPI = I S = 2 3 ( I 1 I 2 ) 2 + ( I 1 I 3 ) 2 + ( I 2 I 3 ) 2
Conv = I C = 1 3 i = 1 3 I i
i = 1 3 I i = 3 I C + I S ( cos ( 2 π ν y + 0 ) + cos ( 2 π ν y + 120 ) + cos ( 2 π ν y + 240 ) ) = 0
I ( x , y ) = I 0 ( y ) e N σ e x = I 0 ( y ) e μ e x
L p = ( 1 44 0 44 | I ref ( x ) I ( x ) | p dx ) 1 / p
P = 100 * ( 1 L p )
ɛ supp = I C I S I C

Metrics