Abstract

We demonstrate a single-polarization all-solid hybrid microstructured optical fiber with a UV-induced Bragg grating. A strong (∼20 dB) UV-induced Bragg grating was inscribed within the 30 nm-wide single-polarization window of the fiber, producing polarized Bragg reflection. The sharp band-edge cutoff allows a large polarization-extinction ratio of the Bragg reflection. The hybrid structure of the fiber enabled minimal UV exposure to the high-index regions and the location of the single-polarization window was maintained after the grating was inscribed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Simpson, R. Stolen, F. Sears, W. Pleibel, J. MacChesney, and R. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1, 370–374 (1983).
    [CrossRef]
  2. R. Goto, S. D. Jackson, and K. Takenaga, “Single-polarization operation in birefringent all-solid hybrid microstructured fiber with additional stress applying parts,” Opt. Lett. 34, 3119–3121 (2009).
    [CrossRef] [PubMed]
  3. A. Cerqueira. S., D. G. Lona, I. de Oliveira, H. E. Hernandez-Figueroa, and H. L. Fragnito, “Broadband single-polarization guidance in hybrid photonic crystal fibers,” Opt. Lett. 36, 133–135 (2011).
    [CrossRef] [PubMed]
  4. R. Goto, R. J. Williams, N. Jovanovic, G. D. Marshall, M. J. Withford, and S. D. Jackson, “Linearly polarized fiber laser using a point-by-point Bragg grating in a single-polarization photonic bandgap fiber,” Opt. Lett. 36, 1872–1874 (2011).
    [CrossRef] [PubMed]
  5. M. L. Åslund, N. Jovanovic, N. Groothoff, J. Canning, G. D. Marshall, S. D. Jackson, A. Fuerbach, and M. J. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings,” Opt. Express 16, 14248–14254 (2008).
    [CrossRef] [PubMed]
  6. L. Jin, Z. Wang, Q. Fang, Y. Liu, B. Liu, G. Kai, and X. Dong, “Spectral characteristics and bend response of Bragg gratings inscribed in all-solid bandgap fibers,” Opt. Express 15, 15555–15565 (2007).
    [CrossRef] [PubMed]
  7. L. Bigot, G. Bouwmans, Y. Quiquempois, A. L. Rouge, V. Pureur, O. Vanvincq, and M. Douay, “Efficient fiber Bragg gratings in 2D all-solid photonic bandgap fiber,” Opt. Express 17, 10105–10112 (2009).
    [CrossRef] [PubMed]
  8. S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
    [CrossRef] [PubMed]
  9. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592–1594 (2002).
    [CrossRef]
  10. T. T. Alkeskjold, “Large-mode-area ytterbium-doped fiber amplifier with distributed narrow spectral filtering and reduced bend sensitivity,” Opt. Express 17, 16394–16405 (2009).
    [CrossRef] [PubMed]

2011 (2)

2009 (3)

2008 (1)

2007 (1)

2002 (1)

2001 (1)

1983 (1)

J. Simpson, R. Stolen, F. Sears, W. Pleibel, J. MacChesney, and R. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1, 370–374 (1983).
[CrossRef]

Abeeluck, A. K.

Alkeskjold, T. T.

Åslund, M. L.

Bigot, L.

Bouwmans, G.

Canning, J.

Cerqueira. S., A.

de Oliveira, I.

Dong, X.

Douay, M.

Eggleton, B. J.

Fang, Q.

Fragnito, H. L.

Fuerbach, A.

Goto, R.

Groothoff, N.

Headley, C.

Hernandez-Figueroa, H. E.

Howard, R.

J. Simpson, R. Stolen, F. Sears, W. Pleibel, J. MacChesney, and R. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1, 370–374 (1983).
[CrossRef]

Jackson, S. D.

Jin, L.

Joannopoulos, J.

Johnson, S.

Jovanovic, N.

Kai, G.

Litchinitser, N. M.

Liu, B.

Liu, Y.

Lona, D. G.

MacChesney, J.

J. Simpson, R. Stolen, F. Sears, W. Pleibel, J. MacChesney, and R. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1, 370–374 (1983).
[CrossRef]

Marshall, G. D.

Pleibel, W.

J. Simpson, R. Stolen, F. Sears, W. Pleibel, J. MacChesney, and R. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1, 370–374 (1983).
[CrossRef]

Pureur, V.

Quiquempois, Y.

Rouge, A. L.

Sears, F.

J. Simpson, R. Stolen, F. Sears, W. Pleibel, J. MacChesney, and R. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1, 370–374 (1983).
[CrossRef]

Simpson, J.

J. Simpson, R. Stolen, F. Sears, W. Pleibel, J. MacChesney, and R. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1, 370–374 (1983).
[CrossRef]

Stolen, R.

J. Simpson, R. Stolen, F. Sears, W. Pleibel, J. MacChesney, and R. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1, 370–374 (1983).
[CrossRef]

Takenaga, K.

Vanvincq, O.

Wang, Z.

Williams, R. J.

Withford, M. J.

J. Lightwave Technol. (1)

J. Simpson, R. Stolen, F. Sears, W. Pleibel, J. MacChesney, and R. Howard, “A single-polarization fiber,” J. Lightwave Technol. 1, 370–374 (1983).
[CrossRef]

Opt. Express (5)

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Cross section of the fiber.

Fig. 2
Fig. 2

Calculated photonic band diagram of the fiber, showing (a) the photonic band and core modes, and (b) the calculated power distribution of the fundamental and higher-order modes at the points indicated in (a). We did not include material dispersion and the refractive index of pure silica was set to 1.45 in the calculation.

Fig. 3
Fig. 3

Polarization-dependent cutoff and SP window of the fiber. The peak at 1064 nm is due to the residual pump of the supercontinuum source used for the measurement.

Fig. 4
Fig. 4

Measured near-field power distribution of the fiber at 1095 nm for the (a) slow and (b) fast axes.

Fig. 5
Fig. 5

Lloyd interferometer used for Bragg grating inscription, and orientation of the high-index regions.

Fig. 6
Fig. 6

Transmission spectrum of the fiber before and after the grating inscription, showing (a) the first and second PBGs and (b) around the Bragg wavelength. The polarization was aligned to the slow axis within the SP window. The two separate Bragg resonances in (b) may be due to a low signal-to-noise ratio.

Fig. 7
Fig. 7

Polarization-dependent transmission spectrum of the fiber with a Bragg grating.

Tables (1)

Tables Icon

Table 1 Refractive index and size of microstructures in the cladding

Metrics