Abstract

We demonstrated a laser ranging system with single photon detection at 1550 nm. The single-photon detector was a 1-GHz sine-wave gated InGaAs/InP avalanche photodiode. In daylight, 8-cm depth resolution was achieved directly by using a time-of-flight approach based on time-correlated single photon counting measurement. This system presented a potential for low energy level and eye-safe laser ranging system in long-range measurement.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Degnan, “Satellite laser ranging: current status and future prospects,” IEEE Trans. Geosci. Rem. Sens. GE-23(4), 398–413 (1985).
    [CrossRef]
  2. W. C. Priedhorsky, R. C. Smith, and C. Ho, “Laser ranging and mapping with a photon-counting detector,” Appl. Opt. 35(3), 441–452 (1996).
    [CrossRef] [PubMed]
  3. J. S. Massa, A. M. Wallace, G. S. Buller, S. J. Fancey, and A. C. Walker, “Laser depth measurement based on time-correlated single-photon counting,” Opt. Lett. 22(8), 543–545 (1997).
    [CrossRef] [PubMed]
  4. J. S. Massa, G. S. Buller, A. C. Walker, S. Cova, M. Umasuthan, and A. M. Wallace, “Time-of-flight optical ranging system based on time-correlated single-photon counting,” Appl. Opt. 37(31), 7298–7304 (1998).
    [CrossRef] [PubMed]
  5. M. C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
    [CrossRef]
  6. J. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34(3–4), 503–549 (2002).
    [CrossRef]
  7. R. E. Warburton, A. McCarthy, A. M. Wallace, S. Hernandez-Marin, R. H. Hadfield, S. W. Nam, and G. S. Buller, “Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength,” Opt. Lett. 32(15), 2266–2268 (2007).
    [CrossRef] [PubMed]
  8. P. A. Hiskett, C. S. Parry, A. McCarthy, and G. S. Buller, “A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates,” Opt. Express 16(18), 13685–13698 (2008).
    [CrossRef] [PubMed]
  9. A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009).
    [CrossRef] [PubMed]
  10. J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
    [CrossRef]
  11. C. Ho, K. L. Albright, A. W. Bird, J. Bradley, D. E. Casperson, M. Hindman, W. C. Priedhorsky, W. R. Scarlett, R. C. Smith, J. Theiler, and S. K. Wilson, “Demonstration of literal three-dimensional imaging,” Appl. Opt. 38(9), 1833–1840 (1999).
    [CrossRef] [PubMed]
  12. M. A. Albota, R. M. Heinrichs, D. G. Kocher, D. G. Fouche, B. E. Player, M. E. O’Brien, B. F. Aull, J. J. Zayhowski, J. Mooney, B. C. Willard, and R. R. Carlson, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41(36), 7671–7678 (2002).
    [CrossRef] [PubMed]
  13. R. M. Marino and W. R. Davis, “Jigsaw: a foliage-penetrating 3D imaging laser radar system,” Lincoln Lab. J. 15, 23–36 (2005).
  14. N. J. Krichel, A. McCarthy, and G. S. Buller, “Resolving range ambiguity in a photon counting depth imager operating at kilometer distances,” Opt. Express 18(9), 9192–9206 (2010).
    [CrossRef] [PubMed]
  15. C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett. 84(19), 3762–3764 (2004).
    [CrossRef]
  16. Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92(20), 201104 (2008).
    [CrossRef]
  17. J. Chen, G. Wu, L. Xu, X. Gu, E. Wu, and H. Zeng, “Stable quantum key distribution with active polarization control based on time-division multiplexing,” N. J. Phys. 11(6), 065004 (2009).
    [CrossRef]
  18. M. Ren, G. Wu, E. Wu, and H. Zeng, “Experimental demonstration of counterfactual quantum key distribution,” Laser Phys. 21(4), 755–760 (2011).
    [CrossRef]
  19. N. Namekata, S. Sasamori, and S. Inoue, “800 MHz single-photon detection at 1550-nm using an InGaAs/InP avalanche photodiode operated with a sine wave gating,” Opt. Express 14(21), 10043–10049 (2006).
    [CrossRef] [PubMed]
  20. Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91(4), 041114 (2007).
    [CrossRef]
  21. N. Namekata, S. Adachi, and S. Inoue, “1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode,” Opt. Express 17(8), 6275–6282 (2009).
    [CrossRef] [PubMed]
  22. L. Xu, E. Wu, X. Gu, Y. Jian, G. Wu, and H. Zeng, “High-speed InGaAs/InP-based single-photon detector with high efficiency,” Appl. Phys. Lett. 94(16), 161106 (2009).
    [CrossRef]
  23. N. Namekata, S. Adachi, and S. Inoue, “Ultra-low-noise sinusoidally gated avalanche photodiode for high-speed single-photon detection at telecommunication wavelengths,” IEEE Photon. Technol. Lett. 22(8), 529–531 (2010).
    [CrossRef]
  24. Z. L. Yuan, A. W. Sharpe, J. F. Dynes, A. R. Dixon, and A. J. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 96(7), 071101 (2010).
    [CrossRef]
  25. X. Chen, E. Wu, G. Wu, and H. Zeng, “Low-noise high-speed InGaAs/InP-based single-photon detector,” Opt. Express 18(7), 7010–7018 (2010).
    [CrossRef] [PubMed]
  26. Y. Jian, E. Wu, G. Wu, and H. Zeng, “Optically self-balanced InGaAs-InP Avalanche photodiode for Infrared single-photon detection,” IEEE Photon. Technol. Lett. 22(3), 173–175 (2010).
    [CrossRef]
  27. Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Evolution of locally excited avalanches in semiconductors,” Appl. Phys. Lett. 96(19), 191107 (2010).
    [CrossRef]
  28. J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. 95(9), 091103 (2009).
    [CrossRef]
  29. J. Zhang, P. Eraerds, N. Walenta, C. Barreiro, R. Thew, and H. Zbinden, “2.23 GHz gating InGaAs/InP single-photon avalanche diode for quantum key distribution,” arXiv: 1002.3240v1 [quant-ph]. (2010).
  30. M. Liu, C. Hu, J. C. Campbell, Z. Pan, and M. M. Tashima, “Reduce afterpulsing of single photon avalanche diodes using passive quenching with active reset,” IEEE J. Quantum Electron. 44(5), 430–434 (2008).
    [CrossRef]
  31. C. Hu, M. Liu, X. Zheng, and J. C. Campbell, “Dynamic range of passive quenching active reset circuit for single photon avalanche diodes,” IEEE J. Quantum Electron. 46(1), 35–39 (2010).
    [CrossRef]
  32. J. Zhang, R. Thew, J.-D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAs–InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum Electron. 45(7), 792–799 (2009).
    [CrossRef]

2011

M. Ren, G. Wu, E. Wu, and H. Zeng, “Experimental demonstration of counterfactual quantum key distribution,” Laser Phys. 21(4), 755–760 (2011).
[CrossRef]

2010

N. Namekata, S. Adachi, and S. Inoue, “Ultra-low-noise sinusoidally gated avalanche photodiode for high-speed single-photon detection at telecommunication wavelengths,” IEEE Photon. Technol. Lett. 22(8), 529–531 (2010).
[CrossRef]

Z. L. Yuan, A. W. Sharpe, J. F. Dynes, A. R. Dixon, and A. J. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 96(7), 071101 (2010).
[CrossRef]

X. Chen, E. Wu, G. Wu, and H. Zeng, “Low-noise high-speed InGaAs/InP-based single-photon detector,” Opt. Express 18(7), 7010–7018 (2010).
[CrossRef] [PubMed]

Y. Jian, E. Wu, G. Wu, and H. Zeng, “Optically self-balanced InGaAs-InP Avalanche photodiode for Infrared single-photon detection,” IEEE Photon. Technol. Lett. 22(3), 173–175 (2010).
[CrossRef]

Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Evolution of locally excited avalanches in semiconductors,” Appl. Phys. Lett. 96(19), 191107 (2010).
[CrossRef]

C. Hu, M. Liu, X. Zheng, and J. C. Campbell, “Dynamic range of passive quenching active reset circuit for single photon avalanche diodes,” IEEE J. Quantum Electron. 46(1), 35–39 (2010).
[CrossRef]

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

N. J. Krichel, A. McCarthy, and G. S. Buller, “Resolving range ambiguity in a photon counting depth imager operating at kilometer distances,” Opt. Express 18(9), 9192–9206 (2010).
[CrossRef] [PubMed]

2009

A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009).
[CrossRef] [PubMed]

J. Zhang, R. Thew, J.-D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAs–InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum Electron. 45(7), 792–799 (2009).
[CrossRef]

N. Namekata, S. Adachi, and S. Inoue, “1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode,” Opt. Express 17(8), 6275–6282 (2009).
[CrossRef] [PubMed]

L. Xu, E. Wu, X. Gu, Y. Jian, G. Wu, and H. Zeng, “High-speed InGaAs/InP-based single-photon detector with high efficiency,” Appl. Phys. Lett. 94(16), 161106 (2009).
[CrossRef]

J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. 95(9), 091103 (2009).
[CrossRef]

J. Chen, G. Wu, L. Xu, X. Gu, E. Wu, and H. Zeng, “Stable quantum key distribution with active polarization control based on time-division multiplexing,” N. J. Phys. 11(6), 065004 (2009).
[CrossRef]

2008

M. Liu, C. Hu, J. C. Campbell, Z. Pan, and M. M. Tashima, “Reduce afterpulsing of single photon avalanche diodes using passive quenching with active reset,” IEEE J. Quantum Electron. 44(5), 430–434 (2008).
[CrossRef]

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92(20), 201104 (2008).
[CrossRef]

P. A. Hiskett, C. S. Parry, A. McCarthy, and G. S. Buller, “A photon-counting time-of-flight ranging technique developed for the avoidance of range ambiguity at gigahertz clock rates,” Opt. Express 16(18), 13685–13698 (2008).
[CrossRef] [PubMed]

2007

2006

2005

R. M. Marino and W. R. Davis, “Jigsaw: a foliage-penetrating 3D imaging laser radar system,” Lincoln Lab. J. 15, 23–36 (2005).

2004

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett. 84(19), 3762–3764 (2004).
[CrossRef]

2002

2001

M. C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[CrossRef]

1999

1998

1997

1996

1985

J. J. Degnan, “Satellite laser ranging: current status and future prospects,” IEEE Trans. Geosci. Rem. Sens. GE-23(4), 398–413 (1985).
[CrossRef]

Adachi, S.

N. Namekata, S. Adachi, and S. Inoue, “Ultra-low-noise sinusoidally gated avalanche photodiode for high-speed single-photon detection at telecommunication wavelengths,” IEEE Photon. Technol. Lett. 22(8), 529–531 (2010).
[CrossRef]

N. Namekata, S. Adachi, and S. Inoue, “1.5 GHz single-photon detection at telecommunication wavelengths using sinusoidally gated InGaAs/InP avalanche photodiode,” Opt. Express 17(8), 6275–6282 (2009).
[CrossRef] [PubMed]

Albota, M. A.

Albright, K. L.

Amann, M. C.

M. C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[CrossRef]

Aull, B. F.

Barreiro, C.

J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. 95(9), 091103 (2009).
[CrossRef]

Bird, A. W.

Bosch, T.

M. C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[CrossRef]

Bradley, J.

Buller, G. S.

Campbell, J. C.

C. Hu, M. Liu, X. Zheng, and J. C. Campbell, “Dynamic range of passive quenching active reset circuit for single photon avalanche diodes,” IEEE J. Quantum Electron. 46(1), 35–39 (2010).
[CrossRef]

M. Liu, C. Hu, J. C. Campbell, Z. Pan, and M. M. Tashima, “Reduce afterpulsing of single photon avalanche diodes using passive quenching with active reset,” IEEE J. Quantum Electron. 44(5), 430–434 (2008).
[CrossRef]

Carlson, R. R.

Casperson, D. E.

Chen, J.

J. Chen, G. Wu, L. Xu, X. Gu, E. Wu, and H. Zeng, “Stable quantum key distribution with active polarization control based on time-division multiplexing,” N. J. Phys. 11(6), 065004 (2009).
[CrossRef]

Chen, X.

Collins, R. J.

Cova, S.

Davis, W. R.

R. M. Marino and W. R. Davis, “Jigsaw: a foliage-penetrating 3D imaging laser radar system,” Lincoln Lab. J. 15, 23–36 (2005).

Degnan, J. J.

J. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34(3–4), 503–549 (2002).
[CrossRef]

J. J. Degnan, “Satellite laser ranging: current status and future prospects,” IEEE Trans. Geosci. Rem. Sens. GE-23(4), 398–413 (1985).
[CrossRef]

Dixon, A. R.

Z. L. Yuan, A. W. Sharpe, J. F. Dynes, A. R. Dixon, and A. J. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 96(7), 071101 (2010).
[CrossRef]

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92(20), 201104 (2008).
[CrossRef]

Dynes, J. F.

Z. L. Yuan, A. W. Sharpe, J. F. Dynes, A. R. Dixon, and A. J. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 96(7), 071101 (2010).
[CrossRef]

Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Evolution of locally excited avalanches in semiconductors,” Appl. Phys. Lett. 96(19), 191107 (2010).
[CrossRef]

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92(20), 201104 (2008).
[CrossRef]

Fancey, S. J.

Fernández, V.

Fouche, D. G.

Gautier, J.-D.

J. Zhang, R. Thew, J.-D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAs–InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum Electron. 45(7), 792–799 (2009).
[CrossRef]

Gisin, N.

J. Zhang, R. Thew, J.-D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAs–InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum Electron. 45(7), 792–799 (2009).
[CrossRef]

Gobby, C.

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett. 84(19), 3762–3764 (2004).
[CrossRef]

Gu, X.

L. Xu, E. Wu, X. Gu, Y. Jian, G. Wu, and H. Zeng, “High-speed InGaAs/InP-based single-photon detector with high efficiency,” Appl. Phys. Lett. 94(16), 161106 (2009).
[CrossRef]

J. Chen, G. Wu, L. Xu, X. Gu, E. Wu, and H. Zeng, “Stable quantum key distribution with active polarization control based on time-division multiplexing,” N. J. Phys. 11(6), 065004 (2009).
[CrossRef]

Hadfield, R. H.

Heinrichs, R. M.

Hernandez-Marin, S.

Hindman, M.

Hiskett, P. A.

Ho, C.

Hu, C.

C. Hu, M. Liu, X. Zheng, and J. C. Campbell, “Dynamic range of passive quenching active reset circuit for single photon avalanche diodes,” IEEE J. Quantum Electron. 46(1), 35–39 (2010).
[CrossRef]

M. Liu, C. Hu, J. C. Campbell, Z. Pan, and M. M. Tashima, “Reduce afterpulsing of single photon avalanche diodes using passive quenching with active reset,” IEEE J. Quantum Electron. 44(5), 430–434 (2008).
[CrossRef]

Inoue, S.

Jian, Y.

Y. Jian, E. Wu, G. Wu, and H. Zeng, “Optically self-balanced InGaAs-InP Avalanche photodiode for Infrared single-photon detection,” IEEE Photon. Technol. Lett. 22(3), 173–175 (2010).
[CrossRef]

L. Xu, E. Wu, X. Gu, Y. Jian, G. Wu, and H. Zeng, “High-speed InGaAs/InP-based single-photon detector with high efficiency,” Appl. Phys. Lett. 94(16), 161106 (2009).
[CrossRef]

Kardynal, B. E.

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91(4), 041114 (2007).
[CrossRef]

Kim, S. W.

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

Kim, Y. J.

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

Kocher, D. G.

Krichel, N. J.

Lee, J.

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

Lee, K.

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

Lee, S.

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

Lescure, M.

M. C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[CrossRef]

Liu, M.

C. Hu, M. Liu, X. Zheng, and J. C. Campbell, “Dynamic range of passive quenching active reset circuit for single photon avalanche diodes,” IEEE J. Quantum Electron. 46(1), 35–39 (2010).
[CrossRef]

M. Liu, C. Hu, J. C. Campbell, Z. Pan, and M. M. Tashima, “Reduce afterpulsing of single photon avalanche diodes using passive quenching with active reset,” IEEE J. Quantum Electron. 44(5), 430–434 (2008).
[CrossRef]

Marino, R. M.

R. M. Marino and W. R. Davis, “Jigsaw: a foliage-penetrating 3D imaging laser radar system,” Lincoln Lab. J. 15, 23–36 (2005).

Massa, J. S.

McCarthy, A.

Mooney, J.

Myllylä, R.

M. C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[CrossRef]

Nam, S. W.

Namekata, N.

O’Brien, M. E.

Pan, Z.

M. Liu, C. Hu, J. C. Campbell, Z. Pan, and M. M. Tashima, “Reduce afterpulsing of single photon avalanche diodes using passive quenching with active reset,” IEEE J. Quantum Electron. 44(5), 430–434 (2008).
[CrossRef]

Parry, C. S.

Player, B. E.

Priedhorsky, W. C.

Ren, M.

M. Ren, G. Wu, E. Wu, and H. Zeng, “Experimental demonstration of counterfactual quantum key distribution,” Laser Phys. 21(4), 755–760 (2011).
[CrossRef]

Rioux, M.

M. C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[CrossRef]

Sasamori, S.

Scarlett, W. R.

Sharpe, A. W.

Z. L. Yuan, A. W. Sharpe, J. F. Dynes, A. R. Dixon, and A. J. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 96(7), 071101 (2010).
[CrossRef]

Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Evolution of locally excited avalanches in semiconductors,” Appl. Phys. Lett. 96(19), 191107 (2010).
[CrossRef]

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92(20), 201104 (2008).
[CrossRef]

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91(4), 041114 (2007).
[CrossRef]

Shields, A. J.

Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Evolution of locally excited avalanches in semiconductors,” Appl. Phys. Lett. 96(19), 191107 (2010).
[CrossRef]

Z. L. Yuan, A. W. Sharpe, J. F. Dynes, A. R. Dixon, and A. J. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 96(7), 071101 (2010).
[CrossRef]

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92(20), 201104 (2008).
[CrossRef]

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91(4), 041114 (2007).
[CrossRef]

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett. 84(19), 3762–3764 (2004).
[CrossRef]

Smith, R. C.

Tashima, M. M.

M. Liu, C. Hu, J. C. Campbell, Z. Pan, and M. M. Tashima, “Reduce afterpulsing of single photon avalanche diodes using passive quenching with active reset,” IEEE J. Quantum Electron. 44(5), 430–434 (2008).
[CrossRef]

Theiler, J.

Thew, R.

J. Zhang, R. Thew, J.-D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAs–InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum Electron. 45(7), 792–799 (2009).
[CrossRef]

J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. 95(9), 091103 (2009).
[CrossRef]

Umasuthan, M.

Walker, A. C.

Wallace, A. M.

Warburton, R. E.

Willard, B. C.

Wilson, S. K.

Wu, E.

M. Ren, G. Wu, E. Wu, and H. Zeng, “Experimental demonstration of counterfactual quantum key distribution,” Laser Phys. 21(4), 755–760 (2011).
[CrossRef]

X. Chen, E. Wu, G. Wu, and H. Zeng, “Low-noise high-speed InGaAs/InP-based single-photon detector,” Opt. Express 18(7), 7010–7018 (2010).
[CrossRef] [PubMed]

Y. Jian, E. Wu, G. Wu, and H. Zeng, “Optically self-balanced InGaAs-InP Avalanche photodiode for Infrared single-photon detection,” IEEE Photon. Technol. Lett. 22(3), 173–175 (2010).
[CrossRef]

L. Xu, E. Wu, X. Gu, Y. Jian, G. Wu, and H. Zeng, “High-speed InGaAs/InP-based single-photon detector with high efficiency,” Appl. Phys. Lett. 94(16), 161106 (2009).
[CrossRef]

J. Chen, G. Wu, L. Xu, X. Gu, E. Wu, and H. Zeng, “Stable quantum key distribution with active polarization control based on time-division multiplexing,” N. J. Phys. 11(6), 065004 (2009).
[CrossRef]

Wu, G.

M. Ren, G. Wu, E. Wu, and H. Zeng, “Experimental demonstration of counterfactual quantum key distribution,” Laser Phys. 21(4), 755–760 (2011).
[CrossRef]

X. Chen, E. Wu, G. Wu, and H. Zeng, “Low-noise high-speed InGaAs/InP-based single-photon detector,” Opt. Express 18(7), 7010–7018 (2010).
[CrossRef] [PubMed]

Y. Jian, E. Wu, G. Wu, and H. Zeng, “Optically self-balanced InGaAs-InP Avalanche photodiode for Infrared single-photon detection,” IEEE Photon. Technol. Lett. 22(3), 173–175 (2010).
[CrossRef]

L. Xu, E. Wu, X. Gu, Y. Jian, G. Wu, and H. Zeng, “High-speed InGaAs/InP-based single-photon detector with high efficiency,” Appl. Phys. Lett. 94(16), 161106 (2009).
[CrossRef]

J. Chen, G. Wu, L. Xu, X. Gu, E. Wu, and H. Zeng, “Stable quantum key distribution with active polarization control based on time-division multiplexing,” N. J. Phys. 11(6), 065004 (2009).
[CrossRef]

Xu, L.

J. Chen, G. Wu, L. Xu, X. Gu, E. Wu, and H. Zeng, “Stable quantum key distribution with active polarization control based on time-division multiplexing,” N. J. Phys. 11(6), 065004 (2009).
[CrossRef]

L. Xu, E. Wu, X. Gu, Y. Jian, G. Wu, and H. Zeng, “High-speed InGaAs/InP-based single-photon detector with high efficiency,” Appl. Phys. Lett. 94(16), 161106 (2009).
[CrossRef]

Yuan, Z. L.

Z. L. Yuan, A. W. Sharpe, J. F. Dynes, A. R. Dixon, and A. J. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 96(7), 071101 (2010).
[CrossRef]

Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Evolution of locally excited avalanches in semiconductors,” Appl. Phys. Lett. 96(19), 191107 (2010).
[CrossRef]

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92(20), 201104 (2008).
[CrossRef]

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91(4), 041114 (2007).
[CrossRef]

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett. 84(19), 3762–3764 (2004).
[CrossRef]

Zayhowski, J. J.

Zbinden, H.

J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. 95(9), 091103 (2009).
[CrossRef]

J. Zhang, R. Thew, J.-D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAs–InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum Electron. 45(7), 792–799 (2009).
[CrossRef]

Zeng, H.

M. Ren, G. Wu, E. Wu, and H. Zeng, “Experimental demonstration of counterfactual quantum key distribution,” Laser Phys. 21(4), 755–760 (2011).
[CrossRef]

X. Chen, E. Wu, G. Wu, and H. Zeng, “Low-noise high-speed InGaAs/InP-based single-photon detector,” Opt. Express 18(7), 7010–7018 (2010).
[CrossRef] [PubMed]

Y. Jian, E. Wu, G. Wu, and H. Zeng, “Optically self-balanced InGaAs-InP Avalanche photodiode for Infrared single-photon detection,” IEEE Photon. Technol. Lett. 22(3), 173–175 (2010).
[CrossRef]

L. Xu, E. Wu, X. Gu, Y. Jian, G. Wu, and H. Zeng, “High-speed InGaAs/InP-based single-photon detector with high efficiency,” Appl. Phys. Lett. 94(16), 161106 (2009).
[CrossRef]

J. Chen, G. Wu, L. Xu, X. Gu, E. Wu, and H. Zeng, “Stable quantum key distribution with active polarization control based on time-division multiplexing,” N. J. Phys. 11(6), 065004 (2009).
[CrossRef]

Zhang, J.

J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. 95(9), 091103 (2009).
[CrossRef]

J. Zhang, R. Thew, J.-D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAs–InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum Electron. 45(7), 792–799 (2009).
[CrossRef]

Zheng, X.

C. Hu, M. Liu, X. Zheng, and J. C. Campbell, “Dynamic range of passive quenching active reset circuit for single photon avalanche diodes,” IEEE J. Quantum Electron. 46(1), 35–39 (2010).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122 km of standard telecom fiber,” Appl. Phys. Lett. 84(19), 3762–3764 (2004).
[CrossRef]

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92(20), 201104 (2008).
[CrossRef]

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91(4), 041114 (2007).
[CrossRef]

L. Xu, E. Wu, X. Gu, Y. Jian, G. Wu, and H. Zeng, “High-speed InGaAs/InP-based single-photon detector with high efficiency,” Appl. Phys. Lett. 94(16), 161106 (2009).
[CrossRef]

Z. L. Yuan, A. W. Sharpe, J. F. Dynes, A. R. Dixon, and A. J. Shields, “Multi-gigahertz operation of photon counting InGaAs avalanche photodiodes,” Appl. Phys. Lett. 96(7), 071101 (2010).
[CrossRef]

Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Evolution of locally excited avalanches in semiconductors,” Appl. Phys. Lett. 96(19), 191107 (2010).
[CrossRef]

J. Zhang, R. Thew, C. Barreiro, and H. Zbinden, “Practical fast gate rate InGaAs/InP single-photon avalanche photodiodes,” Appl. Phys. Lett. 95(9), 091103 (2009).
[CrossRef]

IEEE J. Quantum Electron.

M. Liu, C. Hu, J. C. Campbell, Z. Pan, and M. M. Tashima, “Reduce afterpulsing of single photon avalanche diodes using passive quenching with active reset,” IEEE J. Quantum Electron. 44(5), 430–434 (2008).
[CrossRef]

C. Hu, M. Liu, X. Zheng, and J. C. Campbell, “Dynamic range of passive quenching active reset circuit for single photon avalanche diodes,” IEEE J. Quantum Electron. 46(1), 35–39 (2010).
[CrossRef]

J. Zhang, R. Thew, J.-D. Gautier, N. Gisin, and H. Zbinden, “Comprehensive characterization of InGaAs–InP avalanche photodiodes at 1550 nm with an active quenching ASIC,” IEEE J. Quantum Electron. 45(7), 792–799 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Jian, E. Wu, G. Wu, and H. Zeng, “Optically self-balanced InGaAs-InP Avalanche photodiode for Infrared single-photon detection,” IEEE Photon. Technol. Lett. 22(3), 173–175 (2010).
[CrossRef]

N. Namekata, S. Adachi, and S. Inoue, “Ultra-low-noise sinusoidally gated avalanche photodiode for high-speed single-photon detection at telecommunication wavelengths,” IEEE Photon. Technol. Lett. 22(8), 529–531 (2010).
[CrossRef]

IEEE Trans. Geosci. Rem. Sens.

J. J. Degnan, “Satellite laser ranging: current status and future prospects,” IEEE Trans. Geosci. Rem. Sens. GE-23(4), 398–413 (1985).
[CrossRef]

J. Geodyn.

J. J. Degnan, “Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements,” J. Geodyn. 34(3–4), 503–549 (2002).
[CrossRef]

Laser Phys.

M. Ren, G. Wu, E. Wu, and H. Zeng, “Experimental demonstration of counterfactual quantum key distribution,” Laser Phys. 21(4), 755–760 (2011).
[CrossRef]

Lincoln Lab. J.

R. M. Marino and W. R. Davis, “Jigsaw: a foliage-penetrating 3D imaging laser radar system,” Lincoln Lab. J. 15, 23–36 (2005).

N. J. Phys.

J. Chen, G. Wu, L. Xu, X. Gu, E. Wu, and H. Zeng, “Stable quantum key distribution with active polarization control based on time-division multiplexing,” N. J. Phys. 11(6), 065004 (2009).
[CrossRef]

Nat. Photonics

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[CrossRef]

Opt. Eng.

M. C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40(1), 10–19 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Other

J. Zhang, P. Eraerds, N. Walenta, C. Barreiro, R. Thew, and H. Zbinden, “2.23 GHz gating InGaAs/InP single-photon avalanche diode for quantum key distribution,” arXiv: 1002.3240v1 [quant-ph]. (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup of the laser ranging system based on single-photon detection at 1550 nm. SPD: single-photon detector based on InGaAs/InP APD; OBPF: optical bandpass filter (center wavelength: 1550.10 nm, FWHM: 6.47 nm); M1, M2: high-reflection mirrors; MMF: multimode fiber; TCSPC: time-correlated single-photon counting system (PicoHarp300, PicoQuant GmbH, Germany).

Fig. 2
Fig. 2

(color online) (a) Schematic of the InGaAs/InP APD SPD. LPF: low-pass filter; HV: bias voltage; Amp: RF amplifier (gain: 13 dB, bandwidth: 3 GHz). (b) Avalanche trace of the APD output. Timing jitter of the single-photon with (c) and without (d) synchronization to the laser pulse.

Fig. 3
Fig. 3

Time correlation results from the targets of different surface separations.

Fig. 4
Fig. 4

The theoretical curve of output optical energy vs. largest measure distance.

Metrics