Abstract

This study proposes holographic diversity interferometry (HDI), a system that combines information from spatially dispersed plural image sensors to reconstruct complex amplitude distributions of light signals. HDI can be used to generate four holographic interference fringes having different phases, thus enabling optical phase detection in a single measurement. Unlike conventional phase-shifting digital holography, this system does not require piezoelectric elements and phase shift arrays. In order to confirm the effectiveness of HDI, we generated optical signals having multilevel phases and amplitudes by using two SLMs and performed an experiment for detection and demodulation with HDI.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and K. Watanabe, “Improved performance in coaxial holographic data recording,” Opt. Express 15(24), 16196–16209 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-24-16196 .
    [CrossRef] [PubMed]
  2. A. Hoskins, B. Ihas, K. Anderson, and K. Curtis, “Monocular architecture,” Jpn. J. Appl. Phys. 47(7), 5912–5914 (2008).
    [CrossRef]
  3. B. Das, J. Joseph, and K. Singh, “Phase modulated gray-scale data pages for digital holographic data storage,” Opt. Commun. 282(11), 2147–2154 (2009).
    [CrossRef]
  4. B. Das, J. Joseph, and K. Singh, “Phase-image-based sparse-gray-level data pages for holographic data storage,” Appl. Opt. 48(28), 5240–5250 (2009).
    [CrossRef] [PubMed]
  5. H. Kato, H. Horimai, P. B. Lim, K. Watanabe, M. Inoue, R. Arai, N. Morishita, and J. Ikeda, “Multi-level phase recording by collinear phase-lock holography,” in Proceedings of International Workshop on Holographic Memories & Display (University of Tokyo, Japan, 2009), pp. 79–80.
  6. J. Joseph and D. A. Waldman, “Homogenized Fourier transform holographic data storage using phase spatial light modulators and methods for recovery of data from the phase image,” Appl. Opt. 45(25), 6374–6380 (2006).
    [CrossRef] [PubMed]
  7. P. Koppa, “Phase-to-amplitude data page conversion for holographic storage and optical encryption,” Appl. Opt. 46(17), 3561–3571 (2007).
    [CrossRef] [PubMed]
  8. M. Takabayashi, A. Okamoto, and K. Sato, “Time-domain differential detection of phase-modulated signals for phase-only holographic data storage,” Jpn. J. Appl. Phys. 48(3), 03A032 (2009).
    [CrossRef]
  9. A. Okamoto, M. Takabayashi, and K. Kunori, “Spatial quadrature amplitude modulation method by dual-stage holographic memory,” in Proceedings of International Workshop on Holographic Memories & Display (University of Tokyo, Japan, 2010), pp. 49–50.
  10. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997).
    [CrossRef] [PubMed]
  11. T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23(15), 1221–1223 (1998).
    [CrossRef] [PubMed]
  12. I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40(34), 6177–6186 (2001).
    [CrossRef] [PubMed]
  13. Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase shifting digital holography,” Appl. Phys. Lett. 85(6), 1069–1071 (2004).
    [CrossRef]
  14. Y. Awatsuji, A. Fujii, T. Kubota, and O. Matoba, “Parallel three-step phase-shifting digital holography,” Appl. Opt. 45(13), 2995–3002 (2006).
    [CrossRef] [PubMed]
  15. P. Yeh, Optical Waves in Layered Media (John Wiley & Sons, 1988), Chap 5.
  16. P. Hariharan, Optical Holography (Cambridge U. Press, 1996), Chap 17.
  17. L. L. Hanzo, S. Xin Ng, T. Keller, and W. Webb, Quadrature Amplitude Modulation: From Basics to Adaptive Trellis-Coded, Turbo-Equalised and Space-Time Coded OFDM, CDMA and MC-CDMA Systems (Wiley-IEEE Press, 2004), Chap 1.

2009

B. Das, J. Joseph, and K. Singh, “Phase modulated gray-scale data pages for digital holographic data storage,” Opt. Commun. 282(11), 2147–2154 (2009).
[CrossRef]

B. Das, J. Joseph, and K. Singh, “Phase-image-based sparse-gray-level data pages for holographic data storage,” Appl. Opt. 48(28), 5240–5250 (2009).
[CrossRef] [PubMed]

M. Takabayashi, A. Okamoto, and K. Sato, “Time-domain differential detection of phase-modulated signals for phase-only holographic data storage,” Jpn. J. Appl. Phys. 48(3), 03A032 (2009).
[CrossRef]

2008

A. Hoskins, B. Ihas, K. Anderson, and K. Curtis, “Monocular architecture,” Jpn. J. Appl. Phys. 47(7), 5912–5914 (2008).
[CrossRef]

2007

2006

2004

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase shifting digital holography,” Appl. Phys. Lett. 85(6), 1069–1071 (2004).
[CrossRef]

2001

1998

1997

Anderson, K.

A. Hoskins, B. Ihas, K. Anderson, and K. Curtis, “Monocular architecture,” Jpn. J. Appl. Phys. 47(7), 5912–5914 (2008).
[CrossRef]

Awatsuji, Y.

Y. Awatsuji, A. Fujii, T. Kubota, and O. Matoba, “Parallel three-step phase-shifting digital holography,” Appl. Opt. 45(13), 2995–3002 (2006).
[CrossRef] [PubMed]

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase shifting digital holography,” Appl. Phys. Lett. 85(6), 1069–1071 (2004).
[CrossRef]

Curtis, K.

A. Hoskins, B. Ihas, K. Anderson, and K. Curtis, “Monocular architecture,” Jpn. J. Appl. Phys. 47(7), 5912–5914 (2008).
[CrossRef]

Das, B.

B. Das, J. Joseph, and K. Singh, “Phase modulated gray-scale data pages for digital holographic data storage,” Opt. Commun. 282(11), 2147–2154 (2009).
[CrossRef]

B. Das, J. Joseph, and K. Singh, “Phase-image-based sparse-gray-level data pages for holographic data storage,” Appl. Opt. 48(28), 5240–5250 (2009).
[CrossRef] [PubMed]

Fujii, A.

Fukumoto, A.

Hara, M.

Hirooka, K.

Hoskins, A.

A. Hoskins, B. Ihas, K. Anderson, and K. Curtis, “Monocular architecture,” Jpn. J. Appl. Phys. 47(7), 5912–5914 (2008).
[CrossRef]

Ihas, B.

A. Hoskins, B. Ihas, K. Anderson, and K. Curtis, “Monocular architecture,” Jpn. J. Appl. Phys. 47(7), 5912–5914 (2008).
[CrossRef]

Ishioka, K.

Joseph, J.

Kato, J.

Koppa, P.

Kubota, T.

Y. Awatsuji, A. Fujii, T. Kubota, and O. Matoba, “Parallel three-step phase-shifting digital holography,” Appl. Opt. 45(13), 2995–3002 (2006).
[CrossRef] [PubMed]

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase shifting digital holography,” Appl. Phys. Lett. 85(6), 1069–1071 (2004).
[CrossRef]

Matoba, O.

Mizuno, J.

Ohta, S.

Okamoto, A.

M. Takabayashi, A. Okamoto, and K. Sato, “Time-domain differential detection of phase-modulated signals for phase-only holographic data storage,” Jpn. J. Appl. Phys. 48(3), 03A032 (2009).
[CrossRef]

Sasada, M.

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase shifting digital holography,” Appl. Phys. Lett. 85(6), 1069–1071 (2004).
[CrossRef]

Sato, K.

M. Takabayashi, A. Okamoto, and K. Sato, “Time-domain differential detection of phase-modulated signals for phase-only holographic data storage,” Jpn. J. Appl. Phys. 48(3), 03A032 (2009).
[CrossRef]

Singh, K.

B. Das, J. Joseph, and K. Singh, “Phase-image-based sparse-gray-level data pages for holographic data storage,” Appl. Opt. 48(28), 5240–5250 (2009).
[CrossRef] [PubMed]

B. Das, J. Joseph, and K. Singh, “Phase modulated gray-scale data pages for digital holographic data storage,” Opt. Commun. 282(11), 2147–2154 (2009).
[CrossRef]

Takabayashi, M.

M. Takabayashi, A. Okamoto, and K. Sato, “Time-domain differential detection of phase-modulated signals for phase-only holographic data storage,” Jpn. J. Appl. Phys. 48(3), 03A032 (2009).
[CrossRef]

Tanaka, K.

Tokuyama, K.

Waldman, D. A.

Watanabe, K.

Yamaguchi, I.

Zhang, T.

Appl. Opt.

Appl. Phys. Lett.

Y. Awatsuji, M. Sasada, and T. Kubota, “Parallel quasi-phase shifting digital holography,” Appl. Phys. Lett. 85(6), 1069–1071 (2004).
[CrossRef]

Jpn. J. Appl. Phys.

M. Takabayashi, A. Okamoto, and K. Sato, “Time-domain differential detection of phase-modulated signals for phase-only holographic data storage,” Jpn. J. Appl. Phys. 48(3), 03A032 (2009).
[CrossRef]

A. Hoskins, B. Ihas, K. Anderson, and K. Curtis, “Monocular architecture,” Jpn. J. Appl. Phys. 47(7), 5912–5914 (2008).
[CrossRef]

Opt. Commun.

B. Das, J. Joseph, and K. Singh, “Phase modulated gray-scale data pages for digital holographic data storage,” Opt. Commun. 282(11), 2147–2154 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Other

P. Yeh, Optical Waves in Layered Media (John Wiley & Sons, 1988), Chap 5.

P. Hariharan, Optical Holography (Cambridge U. Press, 1996), Chap 17.

L. L. Hanzo, S. Xin Ng, T. Keller, and W. Webb, Quadrature Amplitude Modulation: From Basics to Adaptive Trellis-Coded, Turbo-Equalised and Space-Time Coded OFDM, CDMA and MC-CDMA Systems (Wiley-IEEE Press, 2004), Chap 1.

H. Kato, H. Horimai, P. B. Lim, K. Watanabe, M. Inoue, R. Arai, N. Morishita, and J. Ikeda, “Multi-level phase recording by collinear phase-lock holography,” in Proceedings of International Workshop on Holographic Memories & Display (University of Tokyo, Japan, 2009), pp. 79–80.

A. Okamoto, M. Takabayashi, and K. Kunori, “Spatial quadrature amplitude modulation method by dual-stage holographic memory,” in Proceedings of International Workshop on Holographic Memories & Display (University of Tokyo, Japan, 2010), pp. 49–50.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Conceptual diagram of holographic diversity interferometry.

Fig. 2
Fig. 2

HDI with two CCD imagers.

Fig. 3
Fig. 3

Constellation diagram of SQAM signal and page data with 6 × 6 symbols.

Fig. 4
Fig. 4

Experimental arrangements.

Fig. 5
Fig. 5

Holographic interference patterns captured by CCDs in HDI.

Fig. 6
Fig. 6

Result of data extraction.

Fig. 7
Fig. 7

Result of restoring the original symbols.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

t * t ' + r * r = 1 , t * r ' + r * t = 0
t = t '
I C C D 1 ( x , y ) = | r A exp ( i φ ) + t ' R 0 | 2 = | r | 2 A 2 + | t | 2 R 0 2 + 2 A R 0 | r t * | cos ( φ + γ )
I C C D 2 ( x , y ) = | t A exp ( i φ ) + r ' R 0 | 2 = | t | 2 A 2 + | r ' | 2 R 0 2 2 A R 0 | r t * | cos ( γ + φ ) = | t | 2 A 2 + | r ' | 2 R 0 2 + 2 A R 0 | r t * | cos ( γ + φ π )
I C C D 3 ( x , y ) = | r A exp ( i φ ) + t ' R 0 exp ( i π 2 ) | 2 = | r | 2 A 2 + | t | 2 R 0 2 + 2 A R 0 | r t * | cos ( φ + γ π 2 )
I C C D 4 ( x , y ) = | t A exp ( i φ ) + r ' R 0 exp ( i π 2 ) | 2 = | t | 2 A 2 + | r ' | 2 R 0 2 + 2 A R 0 | r t * | cos ( φ + γ 3 π 2 )
φ ( x , y ) = tan 1 n V n sin α n V n cos α
A ( x , y ) ( n V n sin α ) 2 + ( n V n cos α ) 2
I = A ( x , y ) cos φ ( x , y ) Q = A ( x , y ) sin φ ( x , y )

Metrics