Abstract

A theoretical model is evaluated to investigate the characteristics of InAs/InP quantum dash (Qdash) lasers as a function of the stack number. The model is based on multimode carrier-photon rate equations and accounts for both inhomogeneous and homogeneous broadenings of the optical gain. The numerical results show a non monotonic increase in the threshold current density and a red shift in the lasing wavelength on increasing the stack number, which agrees well with reported experimental results. This observation may partly be attributed to an increase of inhomogeneity in the active region.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. Provost, and F. Poingt, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
    [CrossRef]
  2. J. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
    [CrossRef]
  3. C. Tan, H. Djie, Y. Wang, C. Dimas, V. Hongpinyo, Y. Ding, and B. Ooi, “Wavelength tuning and emission width widening of ultrabroad quantum dash interband laser,” Appl. Phys. Lett. 93(11), 111101 (2008).
    [CrossRef]
  4. D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low threshold current density of InAs quantum dash laser on InP (100) through optimizing double cap technique,” Appl. Phys. Lett. 94(8), 081107 (2009).
    [CrossRef]
  5. D. Zhou, R. Piron, M. Dontabactouny, E. Homeyer, O. Dehaese, T. Batte, M. Gicquel, F. Grillot, K. Tavernier, J. Even, and S. Loualiche, “Effect of stack number on the threshold current density and emission wavelength in quantum dash/dot lasers,” Phys. Status Solidi 6(10), 2217–2221 (2009) (c).
    [CrossRef]
  6. D. Zhou, R. Piron, F. Grillot, O. Dehaese, E. Homeyer, M. Dontabactouny, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Study of the characteristics of 1.55 m quantum dash/dot semiconductor lasers on InP substrate,” Appl. Phys. Lett. 93(16), 161104 (2008).
    [CrossRef]
  7. C. Tan, H. Djie, Y. Wang, C. Dimas, V. Hongpinyo, Y. Ding, and B. Ooi, “The influence of nonequilibrium distribution on room-temperature lasing spectra in quantum-dash lasers,” IEEE Photon. Technol. Lett. 21(1), 30–32 (2009).
    [CrossRef]
  8. M. Gioannini, “Numerical modeling of the emission characteristics of semiconductor quantum dash materials for lasers and optical amplifiers,” IEEE J. Quantum Electron. 40(4), 364–373 (2004).
    [CrossRef]
  9. Z. Mi and P. Bhattacharya, “DC and dynamic characteristics of P-doped and tunnel injection 1.65- m InAs quantum-dash lasers grown on InP (001),” IEEE J. Quantum Electron. 42(11–12), 1224–1232 (2006).
    [CrossRef]
  10. H. Dery and G. Eisenstein, “Self-consistent rate equations of self-assembly quantum wire lasers,” IEEE J. Quantum Electron. 40(10), 1398–1409 (2004).
    [CrossRef]
  11. M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled In_ {x} Ga_ {1-x} As/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000).
    [CrossRef]
  12. K. Veselinov, F. Grillot, C. Cornet, J. Even, A. Bekiarski, M. Gioannini, and S. Loualiche, “Analysis of the double laser emission occurring in 1.55- µm InAs–InP (113) B quantum-dot Lasers,” IEEE J. Quantum Electron. 43(9), 810–816 (2007).
    [CrossRef]
  13. F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55 µm InAs–InP (113) B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. 45(7), 872–878 (2009).
    [CrossRef]
  14. D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1015–1026 (2005).
    [CrossRef]
  15. R. Schwertberger, D. Gold, J. Reithmaier, and A. Forchel, “Long-wavelength InP-based quantum-dash lasers,” IEEE Photon. Technol. Lett. 14(6), 735–737 (2002).
    [CrossRef]
  16. T. Amano, S. Aoki, T. Sugaya, K. Komori, and Y. Okada, “Laser characteristics of 1.3-µm quantum dots laser with high-density quantum dots,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1273–1278 (2007).
    [CrossRef]
  17. N. Nuntawong, Y. Xin, S. Birudavolu, P. Wong, S. Huang, C. Hains, and D. Huffaker, “Quantum dot lasers based on a stacked and strain-compensated active region grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 86(19), 193115 (2005).
    [CrossRef]
  18. L. Asryan and R. Suris, “Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser,” Semicond. Sci. Technol. 11(4), 554–567 (1996).
    [CrossRef]

2009 (4)

D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low threshold current density of InAs quantum dash laser on InP (100) through optimizing double cap technique,” Appl. Phys. Lett. 94(8), 081107 (2009).
[CrossRef]

D. Zhou, R. Piron, M. Dontabactouny, E. Homeyer, O. Dehaese, T. Batte, M. Gicquel, F. Grillot, K. Tavernier, J. Even, and S. Loualiche, “Effect of stack number on the threshold current density and emission wavelength in quantum dash/dot lasers,” Phys. Status Solidi 6(10), 2217–2221 (2009) (c).
[CrossRef]

C. Tan, H. Djie, Y. Wang, C. Dimas, V. Hongpinyo, Y. Ding, and B. Ooi, “The influence of nonequilibrium distribution on room-temperature lasing spectra in quantum-dash lasers,” IEEE Photon. Technol. Lett. 21(1), 30–32 (2009).
[CrossRef]

F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55 µm InAs–InP (113) B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. 45(7), 872–878 (2009).
[CrossRef]

2008 (2)

C. Tan, H. Djie, Y. Wang, C. Dimas, V. Hongpinyo, Y. Ding, and B. Ooi, “Wavelength tuning and emission width widening of ultrabroad quantum dash interband laser,” Appl. Phys. Lett. 93(11), 111101 (2008).
[CrossRef]

D. Zhou, R. Piron, F. Grillot, O. Dehaese, E. Homeyer, M. Dontabactouny, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Study of the characteristics of 1.55 m quantum dash/dot semiconductor lasers on InP substrate,” Appl. Phys. Lett. 93(16), 161104 (2008).
[CrossRef]

2007 (3)

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. Provost, and F. Poingt, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

K. Veselinov, F. Grillot, C. Cornet, J. Even, A. Bekiarski, M. Gioannini, and S. Loualiche, “Analysis of the double laser emission occurring in 1.55- µm InAs–InP (113) B quantum-dot Lasers,” IEEE J. Quantum Electron. 43(9), 810–816 (2007).
[CrossRef]

T. Amano, S. Aoki, T. Sugaya, K. Komori, and Y. Okada, “Laser characteristics of 1.3-µm quantum dots laser with high-density quantum dots,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1273–1278 (2007).
[CrossRef]

2006 (1)

Z. Mi and P. Bhattacharya, “DC and dynamic characteristics of P-doped and tunnel injection 1.65- m InAs quantum-dash lasers grown on InP (001),” IEEE J. Quantum Electron. 42(11–12), 1224–1232 (2006).
[CrossRef]

2005 (3)

J. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[CrossRef]

N. Nuntawong, Y. Xin, S. Birudavolu, P. Wong, S. Huang, C. Hains, and D. Huffaker, “Quantum dot lasers based on a stacked and strain-compensated active region grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 86(19), 193115 (2005).
[CrossRef]

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1015–1026 (2005).
[CrossRef]

2004 (2)

H. Dery and G. Eisenstein, “Self-consistent rate equations of self-assembly quantum wire lasers,” IEEE J. Quantum Electron. 40(10), 1398–1409 (2004).
[CrossRef]

M. Gioannini, “Numerical modeling of the emission characteristics of semiconductor quantum dash materials for lasers and optical amplifiers,” IEEE J. Quantum Electron. 40(4), 364–373 (2004).
[CrossRef]

2002 (1)

R. Schwertberger, D. Gold, J. Reithmaier, and A. Forchel, “Long-wavelength InP-based quantum-dash lasers,” IEEE Photon. Technol. Lett. 14(6), 735–737 (2002).
[CrossRef]

2000 (1)

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled In_ {x} Ga_ {1-x} As/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000).
[CrossRef]

1996 (1)

L. Asryan and R. Suris, “Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser,” Semicond. Sci. Technol. 11(4), 554–567 (1996).
[CrossRef]

Accard, A.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. Provost, and F. Poingt, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Alizon, R.

J. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[CrossRef]

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1015–1026 (2005).
[CrossRef]

Amano, T.

T. Amano, S. Aoki, T. Sugaya, K. Komori, and Y. Okada, “Laser characteristics of 1.3-µm quantum dots laser with high-density quantum dots,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1273–1278 (2007).
[CrossRef]

Aoki, S.

T. Amano, S. Aoki, T. Sugaya, K. Komori, and Y. Okada, “Laser characteristics of 1.3-µm quantum dots laser with high-density quantum dots,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1273–1278 (2007).
[CrossRef]

Asryan, L.

L. Asryan and R. Suris, “Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser,” Semicond. Sci. Technol. 11(4), 554–567 (1996).
[CrossRef]

Bansropun, S.

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1015–1026 (2005).
[CrossRef]

J. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[CrossRef]

Batte, T.

D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low threshold current density of InAs quantum dash laser on InP (100) through optimizing double cap technique,” Appl. Phys. Lett. 94(8), 081107 (2009).
[CrossRef]

D. Zhou, R. Piron, M. Dontabactouny, E. Homeyer, O. Dehaese, T. Batte, M. Gicquel, F. Grillot, K. Tavernier, J. Even, and S. Loualiche, “Effect of stack number on the threshold current density and emission wavelength in quantum dash/dot lasers,” Phys. Status Solidi 6(10), 2217–2221 (2009) (c).
[CrossRef]

D. Zhou, R. Piron, F. Grillot, O. Dehaese, E. Homeyer, M. Dontabactouny, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Study of the characteristics of 1.55 m quantum dash/dot semiconductor lasers on InP substrate,” Appl. Phys. Lett. 93(16), 161104 (2008).
[CrossRef]

Bekiarski, A.

K. Veselinov, F. Grillot, C. Cornet, J. Even, A. Bekiarski, M. Gioannini, and S. Loualiche, “Analysis of the double laser emission occurring in 1.55- µm InAs–InP (113) B quantum-dot Lasers,” IEEE J. Quantum Electron. 43(9), 810–816 (2007).
[CrossRef]

Berg, T. W.

J. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[CrossRef]

Bhattacharya, P.

Z. Mi and P. Bhattacharya, “DC and dynamic characteristics of P-doped and tunnel injection 1.65- m InAs quantum-dash lasers grown on InP (001),” IEEE J. Quantum Electron. 42(11–12), 1224–1232 (2006).
[CrossRef]

Bilenca, A.

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1015–1026 (2005).
[CrossRef]

J. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[CrossRef]

Birudavolu, S.

N. Nuntawong, Y. Xin, S. Birudavolu, P. Wong, S. Huang, C. Hains, and D. Huffaker, “Quantum dot lasers based on a stacked and strain-compensated active region grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 86(19), 193115 (2005).
[CrossRef]

Brenot, R.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. Provost, and F. Poingt, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Calligaro, M.

J. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[CrossRef]

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1015–1026 (2005).
[CrossRef]

Cornet, C.

K. Veselinov, F. Grillot, C. Cornet, J. Even, A. Bekiarski, M. Gioannini, and S. Loualiche, “Analysis of the double laser emission occurring in 1.55- µm InAs–InP (113) B quantum-dot Lasers,” IEEE J. Quantum Electron. 43(9), 810–816 (2007).
[CrossRef]

Dagens, B.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. Provost, and F. Poingt, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Dehaese, O.

D. Zhou, R. Piron, M. Dontabactouny, E. Homeyer, O. Dehaese, T. Batte, M. Gicquel, F. Grillot, K. Tavernier, J. Even, and S. Loualiche, “Effect of stack number on the threshold current density and emission wavelength in quantum dash/dot lasers,” Phys. Status Solidi 6(10), 2217–2221 (2009) (c).
[CrossRef]

D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low threshold current density of InAs quantum dash laser on InP (100) through optimizing double cap technique,” Appl. Phys. Lett. 94(8), 081107 (2009).
[CrossRef]

D. Zhou, R. Piron, F. Grillot, O. Dehaese, E. Homeyer, M. Dontabactouny, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Study of the characteristics of 1.55 m quantum dash/dot semiconductor lasers on InP substrate,” Appl. Phys. Lett. 93(16), 161104 (2008).
[CrossRef]

Dery, H.

J. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[CrossRef]

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1015–1026 (2005).
[CrossRef]

H. Dery and G. Eisenstein, “Self-consistent rate equations of self-assembly quantum wire lasers,” IEEE J. Quantum Electron. 40(10), 1398–1409 (2004).
[CrossRef]

Deubert, S.

J. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[CrossRef]

Dimas, C.

C. Tan, H. Djie, Y. Wang, C. Dimas, V. Hongpinyo, Y. Ding, and B. Ooi, “The influence of nonequilibrium distribution on room-temperature lasing spectra in quantum-dash lasers,” IEEE Photon. Technol. Lett. 21(1), 30–32 (2009).
[CrossRef]

C. Tan, H. Djie, Y. Wang, C. Dimas, V. Hongpinyo, Y. Ding, and B. Ooi, “Wavelength tuning and emission width widening of ultrabroad quantum dash interband laser,” Appl. Phys. Lett. 93(11), 111101 (2008).
[CrossRef]

Ding, Y.

C. Tan, H. Djie, Y. Wang, C. Dimas, V. Hongpinyo, Y. Ding, and B. Ooi, “The influence of nonequilibrium distribution on room-temperature lasing spectra in quantum-dash lasers,” IEEE Photon. Technol. Lett. 21(1), 30–32 (2009).
[CrossRef]

C. Tan, H. Djie, Y. Wang, C. Dimas, V. Hongpinyo, Y. Ding, and B. Ooi, “Wavelength tuning and emission width widening of ultrabroad quantum dash interband laser,” Appl. Phys. Lett. 93(11), 111101 (2008).
[CrossRef]

Djie, H.

C. Tan, H. Djie, Y. Wang, C. Dimas, V. Hongpinyo, Y. Ding, and B. Ooi, “The influence of nonequilibrium distribution on room-temperature lasing spectra in quantum-dash lasers,” IEEE Photon. Technol. Lett. 21(1), 30–32 (2009).
[CrossRef]

C. Tan, H. Djie, Y. Wang, C. Dimas, V. Hongpinyo, Y. Ding, and B. Ooi, “Wavelength tuning and emission width widening of ultrabroad quantum dash interband laser,” Appl. Phys. Lett. 93(11), 111101 (2008).
[CrossRef]

Dontabactouny, M.

D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low threshold current density of InAs quantum dash laser on InP (100) through optimizing double cap technique,” Appl. Phys. Lett. 94(8), 081107 (2009).
[CrossRef]

D. Zhou, R. Piron, M. Dontabactouny, E. Homeyer, O. Dehaese, T. Batte, M. Gicquel, F. Grillot, K. Tavernier, J. Even, and S. Loualiche, “Effect of stack number on the threshold current density and emission wavelength in quantum dash/dot lasers,” Phys. Status Solidi 6(10), 2217–2221 (2009) (c).
[CrossRef]

D. Zhou, R. Piron, F. Grillot, O. Dehaese, E. Homeyer, M. Dontabactouny, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Study of the characteristics of 1.55 m quantum dash/dot semiconductor lasers on InP substrate,” Appl. Phys. Lett. 93(16), 161104 (2008).
[CrossRef]

Eisenstein, G.

J. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[CrossRef]

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1015–1026 (2005).
[CrossRef]

H. Dery and G. Eisenstein, “Self-consistent rate equations of self-assembly quantum wire lasers,” IEEE J. Quantum Electron. 40(10), 1398–1409 (2004).
[CrossRef]

Even, J.

F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55 µm InAs–InP (113) B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. 45(7), 872–878 (2009).
[CrossRef]

D. Zhou, R. Piron, M. Dontabactouny, E. Homeyer, O. Dehaese, T. Batte, M. Gicquel, F. Grillot, K. Tavernier, J. Even, and S. Loualiche, “Effect of stack number on the threshold current density and emission wavelength in quantum dash/dot lasers,” Phys. Status Solidi 6(10), 2217–2221 (2009) (c).
[CrossRef]

D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low threshold current density of InAs quantum dash laser on InP (100) through optimizing double cap technique,” Appl. Phys. Lett. 94(8), 081107 (2009).
[CrossRef]

D. Zhou, R. Piron, F. Grillot, O. Dehaese, E. Homeyer, M. Dontabactouny, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Study of the characteristics of 1.55 m quantum dash/dot semiconductor lasers on InP substrate,” Appl. Phys. Lett. 93(16), 161104 (2008).
[CrossRef]

K. Veselinov, F. Grillot, C. Cornet, J. Even, A. Bekiarski, M. Gioannini, and S. Loualiche, “Analysis of the double laser emission occurring in 1.55- µm InAs–InP (113) B quantum-dot Lasers,” IEEE J. Quantum Electron. 43(9), 810–816 (2007).
[CrossRef]

Forchel, A.

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1015–1026 (2005).
[CrossRef]

J. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[CrossRef]

R. Schwertberger, D. Gold, J. Reithmaier, and A. Forchel, “Long-wavelength InP-based quantum-dash lasers,” IEEE Photon. Technol. Lett. 14(6), 735–737 (2002).
[CrossRef]

Gicquel, M.

D. Zhou, R. Piron, M. Dontabactouny, E. Homeyer, O. Dehaese, T. Batte, M. Gicquel, F. Grillot, K. Tavernier, J. Even, and S. Loualiche, “Effect of stack number on the threshold current density and emission wavelength in quantum dash/dot lasers,” Phys. Status Solidi 6(10), 2217–2221 (2009) (c).
[CrossRef]

Gioannini, M.

F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55 µm InAs–InP (113) B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. 45(7), 872–878 (2009).
[CrossRef]

K. Veselinov, F. Grillot, C. Cornet, J. Even, A. Bekiarski, M. Gioannini, and S. Loualiche, “Analysis of the double laser emission occurring in 1.55- µm InAs–InP (113) B quantum-dot Lasers,” IEEE J. Quantum Electron. 43(9), 810–816 (2007).
[CrossRef]

J. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[CrossRef]

M. Gioannini, “Numerical modeling of the emission characteristics of semiconductor quantum dash materials for lasers and optical amplifiers,” IEEE J. Quantum Electron. 40(4), 364–373 (2004).
[CrossRef]

Gold, D.

R. Schwertberger, D. Gold, J. Reithmaier, and A. Forchel, “Long-wavelength InP-based quantum-dash lasers,” IEEE Photon. Technol. Lett. 14(6), 735–737 (2002).
[CrossRef]

Grillot, F.

F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55 µm InAs–InP (113) B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. 45(7), 872–878 (2009).
[CrossRef]

D. Zhou, R. Piron, M. Dontabactouny, E. Homeyer, O. Dehaese, T. Batte, M. Gicquel, F. Grillot, K. Tavernier, J. Even, and S. Loualiche, “Effect of stack number on the threshold current density and emission wavelength in quantum dash/dot lasers,” Phys. Status Solidi 6(10), 2217–2221 (2009) (c).
[CrossRef]

D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low threshold current density of InAs quantum dash laser on InP (100) through optimizing double cap technique,” Appl. Phys. Lett. 94(8), 081107 (2009).
[CrossRef]

D. Zhou, R. Piron, F. Grillot, O. Dehaese, E. Homeyer, M. Dontabactouny, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Study of the characteristics of 1.55 m quantum dash/dot semiconductor lasers on InP substrate,” Appl. Phys. Lett. 93(16), 161104 (2008).
[CrossRef]

K. Veselinov, F. Grillot, C. Cornet, J. Even, A. Bekiarski, M. Gioannini, and S. Loualiche, “Analysis of the double laser emission occurring in 1.55- µm InAs–InP (113) B quantum-dot Lasers,” IEEE J. Quantum Electron. 43(9), 810–816 (2007).
[CrossRef]

Hadass, D.

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1015–1026 (2005).
[CrossRef]

J. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[CrossRef]

Hains, C.

N. Nuntawong, Y. Xin, S. Birudavolu, P. Wong, S. Huang, C. Hains, and D. Huffaker, “Quantum dot lasers based on a stacked and strain-compensated active region grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 86(19), 193115 (2005).
[CrossRef]

Homeyer, E.

F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55 µm InAs–InP (113) B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. 45(7), 872–878 (2009).
[CrossRef]

D. Zhou, R. Piron, M. Dontabactouny, E. Homeyer, O. Dehaese, T. Batte, M. Gicquel, F. Grillot, K. Tavernier, J. Even, and S. Loualiche, “Effect of stack number on the threshold current density and emission wavelength in quantum dash/dot lasers,” Phys. Status Solidi 6(10), 2217–2221 (2009) (c).
[CrossRef]

D. Zhou, R. Piron, F. Grillot, O. Dehaese, E. Homeyer, M. Dontabactouny, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Study of the characteristics of 1.55 m quantum dash/dot semiconductor lasers on InP substrate,” Appl. Phys. Lett. 93(16), 161104 (2008).
[CrossRef]

Hongpinyo, V.

C. Tan, H. Djie, Y. Wang, C. Dimas, V. Hongpinyo, Y. Ding, and B. Ooi, “The influence of nonequilibrium distribution on room-temperature lasing spectra in quantum-dash lasers,” IEEE Photon. Technol. Lett. 21(1), 30–32 (2009).
[CrossRef]

C. Tan, H. Djie, Y. Wang, C. Dimas, V. Hongpinyo, Y. Ding, and B. Ooi, “Wavelength tuning and emission width widening of ultrabroad quantum dash interband laser,” Appl. Phys. Lett. 93(11), 111101 (2008).
[CrossRef]

Huang, S.

N. Nuntawong, Y. Xin, S. Birudavolu, P. Wong, S. Huang, C. Hains, and D. Huffaker, “Quantum dot lasers based on a stacked and strain-compensated active region grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 86(19), 193115 (2005).
[CrossRef]

Huffaker, D.

N. Nuntawong, Y. Xin, S. Birudavolu, P. Wong, S. Huang, C. Hains, and D. Huffaker, “Quantum dot lasers based on a stacked and strain-compensated active region grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 86(19), 193115 (2005).
[CrossRef]

Ishikawa, H.

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled In_ {x} Ga_ {1-x} As/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000).
[CrossRef]

Kaiser, W.

J. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[CrossRef]

Komori, K.

T. Amano, S. Aoki, T. Sugaya, K. Komori, and Y. Okada, “Laser characteristics of 1.3-µm quantum dots laser with high-density quantum dots,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1273–1278 (2007).
[CrossRef]

Krakowski, M.

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1015–1026 (2005).
[CrossRef]

J. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[CrossRef]

Le Gouezigou, O.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. Provost, and F. Poingt, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Lelarge, F.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. Provost, and F. Poingt, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Loualiche, S.

D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low threshold current density of InAs quantum dash laser on InP (100) through optimizing double cap technique,” Appl. Phys. Lett. 94(8), 081107 (2009).
[CrossRef]

D. Zhou, R. Piron, M. Dontabactouny, E. Homeyer, O. Dehaese, T. Batte, M. Gicquel, F. Grillot, K. Tavernier, J. Even, and S. Loualiche, “Effect of stack number on the threshold current density and emission wavelength in quantum dash/dot lasers,” Phys. Status Solidi 6(10), 2217–2221 (2009) (c).
[CrossRef]

F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55 µm InAs–InP (113) B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. 45(7), 872–878 (2009).
[CrossRef]

D. Zhou, R. Piron, F. Grillot, O. Dehaese, E. Homeyer, M. Dontabactouny, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Study of the characteristics of 1.55 m quantum dash/dot semiconductor lasers on InP substrate,” Appl. Phys. Lett. 93(16), 161104 (2008).
[CrossRef]

K. Veselinov, F. Grillot, C. Cornet, J. Even, A. Bekiarski, M. Gioannini, and S. Loualiche, “Analysis of the double laser emission occurring in 1.55- µm InAs–InP (113) B quantum-dot Lasers,” IEEE J. Quantum Electron. 43(9), 810–816 (2007).
[CrossRef]

Make, D.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. Provost, and F. Poingt, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Mi, Z.

Z. Mi and P. Bhattacharya, “DC and dynamic characteristics of P-doped and tunnel injection 1.65- m InAs quantum-dash lasers grown on InP (001),” IEEE J. Quantum Electron. 42(11–12), 1224–1232 (2006).
[CrossRef]

Mikhelashvili, V.

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1015–1026 (2005).
[CrossRef]

J. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[CrossRef]

Montrosset, I.

F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55 µm InAs–InP (113) B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. 45(7), 872–878 (2009).
[CrossRef]

J. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[CrossRef]

Mørk, J.

J. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[CrossRef]

Mukai, K.

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled In_ {x} Ga_ {1-x} As/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000).
[CrossRef]

Nakata, Y.

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled In_ {x} Ga_ {1-x} As/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000).
[CrossRef]

Nuntawong, N.

N. Nuntawong, Y. Xin, S. Birudavolu, P. Wong, S. Huang, C. Hains, and D. Huffaker, “Quantum dot lasers based on a stacked and strain-compensated active region grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 86(19), 193115 (2005).
[CrossRef]

Okada, Y.

T. Amano, S. Aoki, T. Sugaya, K. Komori, and Y. Okada, “Laser characteristics of 1.3-µm quantum dots laser with high-density quantum dots,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1273–1278 (2007).
[CrossRef]

Ooi, B.

C. Tan, H. Djie, Y. Wang, C. Dimas, V. Hongpinyo, Y. Ding, and B. Ooi, “The influence of nonequilibrium distribution on room-temperature lasing spectra in quantum-dash lasers,” IEEE Photon. Technol. Lett. 21(1), 30–32 (2009).
[CrossRef]

C. Tan, H. Djie, Y. Wang, C. Dimas, V. Hongpinyo, Y. Ding, and B. Ooi, “Wavelength tuning and emission width widening of ultrabroad quantum dash interband laser,” Appl. Phys. Lett. 93(11), 111101 (2008).
[CrossRef]

Parillaud, O.

J. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[CrossRef]

Piron, R.

D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low threshold current density of InAs quantum dash laser on InP (100) through optimizing double cap technique,” Appl. Phys. Lett. 94(8), 081107 (2009).
[CrossRef]

D. Zhou, R. Piron, M. Dontabactouny, E. Homeyer, O. Dehaese, T. Batte, M. Gicquel, F. Grillot, K. Tavernier, J. Even, and S. Loualiche, “Effect of stack number on the threshold current density and emission wavelength in quantum dash/dot lasers,” Phys. Status Solidi 6(10), 2217–2221 (2009) (c).
[CrossRef]

F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55 µm InAs–InP (113) B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. 45(7), 872–878 (2009).
[CrossRef]

D. Zhou, R. Piron, F. Grillot, O. Dehaese, E. Homeyer, M. Dontabactouny, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Study of the characteristics of 1.55 m quantum dash/dot semiconductor lasers on InP substrate,” Appl. Phys. Lett. 93(16), 161104 (2008).
[CrossRef]

Poel, M.

J. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[CrossRef]

Poingt, F.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. Provost, and F. Poingt, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Provost, J.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. Provost, and F. Poingt, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Reithmaier, J.

J. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[CrossRef]

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1015–1026 (2005).
[CrossRef]

R. Schwertberger, D. Gold, J. Reithmaier, and A. Forchel, “Long-wavelength InP-based quantum-dash lasers,” IEEE Photon. Technol. Lett. 14(6), 735–737 (2002).
[CrossRef]

Renaudier, J.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. Provost, and F. Poingt, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Resneau, P.

J. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[CrossRef]

Sakamoto, A.

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled In_ {x} Ga_ {1-x} As/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000).
[CrossRef]

Schwertberger, R.

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1015–1026 (2005).
[CrossRef]

J. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[CrossRef]

R. Schwertberger, D. Gold, J. Reithmaier, and A. Forchel, “Long-wavelength InP-based quantum-dash lasers,” IEEE Photon. Technol. Lett. 14(6), 735–737 (2002).
[CrossRef]

Somers, A.

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1015–1026 (2005).
[CrossRef]

J. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[CrossRef]

Sugawara, M.

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled In_ {x} Ga_ {1-x} As/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000).
[CrossRef]

Sugaya, T.

T. Amano, S. Aoki, T. Sugaya, K. Komori, and Y. Okada, “Laser characteristics of 1.3-µm quantum dots laser with high-density quantum dots,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1273–1278 (2007).
[CrossRef]

Suris, R.

L. Asryan and R. Suris, “Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser,” Semicond. Sci. Technol. 11(4), 554–567 (1996).
[CrossRef]

Tan, C.

C. Tan, H. Djie, Y. Wang, C. Dimas, V. Hongpinyo, Y. Ding, and B. Ooi, “The influence of nonequilibrium distribution on room-temperature lasing spectra in quantum-dash lasers,” IEEE Photon. Technol. Lett. 21(1), 30–32 (2009).
[CrossRef]

C. Tan, H. Djie, Y. Wang, C. Dimas, V. Hongpinyo, Y. Ding, and B. Ooi, “Wavelength tuning and emission width widening of ultrabroad quantum dash interband laser,” Appl. Phys. Lett. 93(11), 111101 (2008).
[CrossRef]

Tavernier, K.

D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low threshold current density of InAs quantum dash laser on InP (100) through optimizing double cap technique,” Appl. Phys. Lett. 94(8), 081107 (2009).
[CrossRef]

D. Zhou, R. Piron, M. Dontabactouny, E. Homeyer, O. Dehaese, T. Batte, M. Gicquel, F. Grillot, K. Tavernier, J. Even, and S. Loualiche, “Effect of stack number on the threshold current density and emission wavelength in quantum dash/dot lasers,” Phys. Status Solidi 6(10), 2217–2221 (2009) (c).
[CrossRef]

D. Zhou, R. Piron, F. Grillot, O. Dehaese, E. Homeyer, M. Dontabactouny, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Study of the characteristics of 1.55 m quantum dash/dot semiconductor lasers on InP substrate,” Appl. Phys. Lett. 93(16), 161104 (2008).
[CrossRef]

Tromborg, B.

J. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[CrossRef]

van Dijk, F.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. Provost, and F. Poingt, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Veselinov, K.

F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55 µm InAs–InP (113) B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. 45(7), 872–878 (2009).
[CrossRef]

K. Veselinov, F. Grillot, C. Cornet, J. Even, A. Bekiarski, M. Gioannini, and S. Loualiche, “Analysis of the double laser emission occurring in 1.55- µm InAs–InP (113) B quantum-dot Lasers,” IEEE J. Quantum Electron. 43(9), 810–816 (2007).
[CrossRef]

Wang, Y.

C. Tan, H. Djie, Y. Wang, C. Dimas, V. Hongpinyo, Y. Ding, and B. Ooi, “The influence of nonequilibrium distribution on room-temperature lasing spectra in quantum-dash lasers,” IEEE Photon. Technol. Lett. 21(1), 30–32 (2009).
[CrossRef]

C. Tan, H. Djie, Y. Wang, C. Dimas, V. Hongpinyo, Y. Ding, and B. Ooi, “Wavelength tuning and emission width widening of ultrabroad quantum dash interband laser,” Appl. Phys. Lett. 93(11), 111101 (2008).
[CrossRef]

Wong, P.

N. Nuntawong, Y. Xin, S. Birudavolu, P. Wong, S. Huang, C. Hains, and D. Huffaker, “Quantum dot lasers based on a stacked and strain-compensated active region grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 86(19), 193115 (2005).
[CrossRef]

Xin, Y.

N. Nuntawong, Y. Xin, S. Birudavolu, P. Wong, S. Huang, C. Hains, and D. Huffaker, “Quantum dot lasers based on a stacked and strain-compensated active region grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 86(19), 193115 (2005).
[CrossRef]

Zhou, D.

D. Zhou, R. Piron, M. Dontabactouny, E. Homeyer, O. Dehaese, T. Batte, M. Gicquel, F. Grillot, K. Tavernier, J. Even, and S. Loualiche, “Effect of stack number on the threshold current density and emission wavelength in quantum dash/dot lasers,” Phys. Status Solidi 6(10), 2217–2221 (2009) (c).
[CrossRef]

D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low threshold current density of InAs quantum dash laser on InP (100) through optimizing double cap technique,” Appl. Phys. Lett. 94(8), 081107 (2009).
[CrossRef]

D. Zhou, R. Piron, F. Grillot, O. Dehaese, E. Homeyer, M. Dontabactouny, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Study of the characteristics of 1.55 m quantum dash/dot semiconductor lasers on InP substrate,” Appl. Phys. Lett. 93(16), 161104 (2008).
[CrossRef]

Appl. Phys. Lett. (4)

C. Tan, H. Djie, Y. Wang, C. Dimas, V. Hongpinyo, Y. Ding, and B. Ooi, “Wavelength tuning and emission width widening of ultrabroad quantum dash interband laser,” Appl. Phys. Lett. 93(11), 111101 (2008).
[CrossRef]

D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low threshold current density of InAs quantum dash laser on InP (100) through optimizing double cap technique,” Appl. Phys. Lett. 94(8), 081107 (2009).
[CrossRef]

D. Zhou, R. Piron, F. Grillot, O. Dehaese, E. Homeyer, M. Dontabactouny, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Study of the characteristics of 1.55 m quantum dash/dot semiconductor lasers on InP substrate,” Appl. Phys. Lett. 93(16), 161104 (2008).
[CrossRef]

N. Nuntawong, Y. Xin, S. Birudavolu, P. Wong, S. Huang, C. Hains, and D. Huffaker, “Quantum dot lasers based on a stacked and strain-compensated active region grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett. 86(19), 193115 (2005).
[CrossRef]

IEEE J. Quantum Electron. (5)

K. Veselinov, F. Grillot, C. Cornet, J. Even, A. Bekiarski, M. Gioannini, and S. Loualiche, “Analysis of the double laser emission occurring in 1.55- µm InAs–InP (113) B quantum-dot Lasers,” IEEE J. Quantum Electron. 43(9), 810–816 (2007).
[CrossRef]

F. Grillot, K. Veselinov, M. Gioannini, I. Montrosset, J. Even, R. Piron, E. Homeyer, and S. Loualiche, “Spectral analysis of 1.55 µm InAs–InP (113) B quantum-dot lasers based on a multipopulation rate equations model,” IEEE J. Quantum Electron. 45(7), 872–878 (2009).
[CrossRef]

M. Gioannini, “Numerical modeling of the emission characteristics of semiconductor quantum dash materials for lasers and optical amplifiers,” IEEE J. Quantum Electron. 40(4), 364–373 (2004).
[CrossRef]

Z. Mi and P. Bhattacharya, “DC and dynamic characteristics of P-doped and tunnel injection 1.65- m InAs quantum-dash lasers grown on InP (001),” IEEE J. Quantum Electron. 42(11–12), 1224–1232 (2006).
[CrossRef]

H. Dery and G. Eisenstein, “Self-consistent rate equations of self-assembly quantum wire lasers,” IEEE J. Quantum Electron. 40(10), 1398–1409 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. Le Gouezigou, J. Provost, and F. Poingt, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 m,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

D. Hadass, A. Bilenca, R. Alizon, H. Dery, V. Mikhelashvili, G. Eisenstein, R. Schwertberger, A. Somers, J. Reithmaier, A. Forchel, M. Calligaro, S. Bansropun, and M. Krakowski, “Gain and noise saturation of wide-band InAs-InP quantum dash optical amplifiers: model and experiments,” IEEE J. Sel. Top. Quantum Electron. 11(5), 1015–1026 (2005).
[CrossRef]

T. Amano, S. Aoki, T. Sugaya, K. Komori, and Y. Okada, “Laser characteristics of 1.3-µm quantum dots laser with high-density quantum dots,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1273–1278 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

R. Schwertberger, D. Gold, J. Reithmaier, and A. Forchel, “Long-wavelength InP-based quantum-dash lasers,” IEEE Photon. Technol. Lett. 14(6), 735–737 (2002).
[CrossRef]

C. Tan, H. Djie, Y. Wang, C. Dimas, V. Hongpinyo, Y. Ding, and B. Ooi, “The influence of nonequilibrium distribution on room-temperature lasing spectra in quantum-dash lasers,” IEEE Photon. Technol. Lett. 21(1), 30–32 (2009).
[CrossRef]

J. Phys. D Appl. Phys. (1)

J. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D. Hadass, A. Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. Poel, J. Mørk, and B. Tromborg, “InP based lasers and optical amplifiers with wire-/dot-like active regions,” J. Phys. D Appl. Phys. 38(13), 2088–2102 (2005).
[CrossRef]

Phys. Rev. B (1)

M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled In_ {x} Ga_ {1-x} As/GaAs quantum dot lasers,” Phys. Rev. B 61(11), 7595–7603 (2000).
[CrossRef]

Phys. Status Solidi (1)

D. Zhou, R. Piron, M. Dontabactouny, E. Homeyer, O. Dehaese, T. Batte, M. Gicquel, F. Grillot, K. Tavernier, J. Even, and S. Loualiche, “Effect of stack number on the threshold current density and emission wavelength in quantum dash/dot lasers,” Phys. Status Solidi 6(10), 2217–2221 (2009) (c).
[CrossRef]

Semicond. Sci. Technol. (1)

L. Asryan and R. Suris, “Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser,” Semicond. Sci. Technol. 11(4), 554–567 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Experimental [5,6] and (b) Calculated threshold current density versus the number of stacking layers for the Qdash lasers reported in [5] and [15], respectively. The three curves in (b) correspond to various inhomogeneous broadening values.

Fig. 2
Fig. 2

(a) Experimental [5] and (b) calculated lasing wavelength as a function of the stack number for the Qdash lasers reported in [5] and [15], respectively. The three curves in (b) correspond to various inhomogeneous broadening values calculated at low current injection ( 1.1 J t h ).

Fig. 3
Fig. 3

Calculated (a) threshold current density and (b) central lasing wavelength (at 1.1 J t h ) for different internal loss values for the Qdash laser reported in [15]. The inhomogeneous broadening is 45 meV.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

G j , k = 1 2 π ξ 0 exp ( ( E j , 0 E c v ) 2 2 ξ 0 2 ) d E j E j , k + 1 E j , 0 E j , k E j , 0 E j , N + 1 E j , 0 .
d N S d t = η i I e N S τ S W N S τ S + N W τ W S ,
d N W d t = N S τ S W + j k N j , k τ D W j , k N W τ W D ¯ N W τ W S N W τ W ,
d N j , k d t = N W G j , k τ W D j , k N j , k τ D W j , k N W τ D c Γ n a m g m j , k S m ,
d S m d t = β k j B ( E m E j , k ) N j , k τ S p + c Γ n a k j g m j , k S m S m τ p .
g m j , k = 2 π e 2 N D c n a ϵ 0 m 0 2 | M c v | 2 E c v ( 2 P j , k 1 ) G j , k B ( E m E j , k )

Metrics