Abstract

Photoacoustic microscopy usually uses high-frequency photoacoustic waves, which provide not only high spatial resolution but also limitation of the penetration depth. In this study, we developed two-photon absorption-induced photoacoustic microscopy (TP-PAM) to improve the depth resolution without use of high-frequency photoacoustic waves. The spatial resolution in TP-PAM is determined by two-photon absorption. TP-PAM with a 20X objective lens (numerical aperture: 0.4) provides an optically-determined depth resolution of 44.9 ± 2.0 μm, which is estimated by the full width at half maximum of the photoacoustic signal from an infinitely small target, using low-frequency bandpass filtering of photoacoustic waves. The combination of TP-PAM and frequency filtering provides high spatial resolution.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Diaspro, Confocal and Two-Photon Microscopy (Wiley-Liss, 2002).
  2. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
    [CrossRef] [PubMed]
  3. L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
    [CrossRef] [PubMed]
  4. G. Ku, K. Maslov, L. Li, and L. V. Wang, “Photoacoustic microscopy with 2-μm transverse resolution,” J. Biomed. Opt. 15(2), 021302 (2010).
    [CrossRef] [PubMed]
  5. Z. Xie, S. Jiao, H. F. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett. 34(12), 1771–1773 (2009).
    [CrossRef] [PubMed]
  6. R. Bitton, R. Zemp, J. Yen, L. V. Wang, and K. K. Shung, “A 3-D high-frequency array based 16 channel photoacoustic microscopy system for in vivo micro-vascular imaging,” IEEE Trans. Med. Imaging 28(8), 1190–1197 (2009).
    [CrossRef] [PubMed]
  7. S. Hu, K. Maslov, and L. V. Wang, “Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy,” Opt. Express 17(9), 7688–7693 (2009).
    [CrossRef] [PubMed]
  8. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
    [CrossRef]
  9. C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett. 35(19), 3195–3197 (2010).
    [CrossRef] [PubMed]
  10. C. Guittet, F. Ossant, L. Vaillant, and M. Berson, “In vivo high-frequency ultrasonic characterization of human dermis,” IEEE Trans. Biomed. Eng. 46(6), 740–746 (1999).
    [CrossRef] [PubMed]
  11. K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
    [CrossRef] [PubMed]
  12. L. V. Wang, ed., Photoacoustic Imaging and Spectroscopy (CRC press, Boca Raton, 2009).
  13. C. R. Hill, J. C. Bamber, and G. R. t. Haar, eds., Physical principles of medical ultrasonics (John Weily & Sons, Chichester, 2004).
  14. Y. Bae, J. J. Song, and Y. B. Kim, “Photoacoustic study of two-photon absorption in hexagonal ZnS,” J. Appl. Phys. 53(1), 615–619 (1982).
    [CrossRef]
  15. J. J. Barrett and M. J. Berry, “Photoacoustic Raman spectroscopy (PARS) using cw laser sources,” Appl. Phys. Lett. 34(2), 144–146 (1979).
    [CrossRef]
  16. P. Sathy, R. Philip, V. P. N. Nampoori, and C. P. G. Vallabhan, “Observation of two-photon absorption in rhodamine 6G using photoacoustic technique,” Opt. Commun. 74(5), 313–317 (1990).
    [CrossRef]
  17. W. H. Press, Numerical recipes in C: the art of scientific computing (Cambridge University Press, 2002).
  18. P. C. Li, C. W. Wei, and Y. L. Sheu, “Subband photoacoustic imaging for contrast improvement,” Opt. Express 16(25), 20215–20226 (2008).
    [CrossRef] [PubMed]
  19. Z. Guo, S. Hu, and L. V. Wang, “Calibration-free absolute quantification of optical absorption coefficients using acoustic spectra in 3D photoacoustic microscopy of biological tissue,” Opt. Lett. 35(12), 2067–2069 (2010).
    [CrossRef] [PubMed]
  20. J. P. Hermann and J. Ducuing, “Dispersion of the two-photon cross section in rhodamine dyes,” Opt. Commun. 6(2), 101–105 (1972).
    [CrossRef]
  21. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
    [CrossRef] [PubMed]
  22. P. Theer and W. Denk, “On the fundamental imaging-depth limit in two-photon microscopy,” J. Opt. Soc. Am. A 23(12), 3139–3149 (2006).
    [CrossRef] [PubMed]
  23. A. Yariv, Introduction to Optical Electronics (Holt, Rinehart and Winston, Inc., New York, 1985).
  24. H. Urey, “Spot size, depth-of-focus, and diffraction ring intensity formulas for truncated Gaussian beams,” Appl. Opt. 43(3), 620–625 (2004).
    [CrossRef] [PubMed]
  25. V. N. Mahajan, “Uniform versus Gaussian beams: a comparison of the effects of diffraction, obscuration, and aberrations,” J. Opt. Soc. Am. 3(4), 470–485 (1986).
    [CrossRef]
  26. J. M. Khosrofian and B. A. Garetz, “Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data,” Appl. Opt. 22(21), 3406–3410 (1983).
    [CrossRef] [PubMed]
  27. L. H. Wang, and H.-I. Wu, Biomedical Optics (John Wiley & Sons, Hoboken, 2007).
    [PubMed]
  28. R. A. McFarlane and L. D. Hess, “Photoacoustic measurements of ion-implanted and laser-annealed GaAs,” Appl. Phys. Lett. 36(2), 137–139 (1980).
    [CrossRef]
  29. National Astronomical Observatory, Rika Nenpyo (Chronological Scientific Tables 2008) (Maruzen Co., Ltd., 2008).
  30. S. Boonsang, “Photoacoustic generation mechanisms and measurement systems for biomedical applications,” Int. J. Appl. Biomed. Eng. 2(1), 17–23 (2009).
  31. H. Vargas and L. C. M. Miranda, “Photoacoustic and related photothermal techniques,” Phys. Rep. 161(2), 43–101 (1988).
    [CrossRef]
  32. C. Eggeling, A. Volkmer, and C. A. Seidel, "Molecular photobleaching kinetics of Rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy," Chemphyschem 6(5), 791-804 (2005).
    [CrossRef] [PubMed]

2010 (3)

2009 (5)

S. Boonsang, “Photoacoustic generation mechanisms and measurement systems for biomedical applications,” Int. J. Appl. Biomed. Eng. 2(1), 17–23 (2009).

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[CrossRef] [PubMed]

Z. Xie, S. Jiao, H. F. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett. 34(12), 1771–1773 (2009).
[CrossRef] [PubMed]

R. Bitton, R. Zemp, J. Yen, L. V. Wang, and K. K. Shung, “A 3-D high-frequency array based 16 channel photoacoustic microscopy system for in vivo micro-vascular imaging,” IEEE Trans. Med. Imaging 28(8), 1190–1197 (2009).
[CrossRef] [PubMed]

S. Hu, K. Maslov, and L. V. Wang, “Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy,” Opt. Express 17(9), 7688–7693 (2009).
[CrossRef] [PubMed]

2008 (2)

2006 (3)

P. Theer and W. Denk, “On the fundamental imaging-depth limit in two-photon microscopy,” J. Opt. Soc. Am. A 23(12), 3139–3149 (2006).
[CrossRef] [PubMed]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[CrossRef]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

2005 (1)

C. Eggeling, A. Volkmer, and C. A. Seidel, "Molecular photobleaching kinetics of Rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy," Chemphyschem 6(5), 791-804 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

1999 (1)

C. Guittet, F. Ossant, L. Vaillant, and M. Berson, “In vivo high-frequency ultrasonic characterization of human dermis,” IEEE Trans. Biomed. Eng. 46(6), 740–746 (1999).
[CrossRef] [PubMed]

1990 (1)

P. Sathy, R. Philip, V. P. N. Nampoori, and C. P. G. Vallabhan, “Observation of two-photon absorption in rhodamine 6G using photoacoustic technique,” Opt. Commun. 74(5), 313–317 (1990).
[CrossRef]

1988 (1)

H. Vargas and L. C. M. Miranda, “Photoacoustic and related photothermal techniques,” Phys. Rep. 161(2), 43–101 (1988).
[CrossRef]

1986 (1)

V. N. Mahajan, “Uniform versus Gaussian beams: a comparison of the effects of diffraction, obscuration, and aberrations,” J. Opt. Soc. Am. 3(4), 470–485 (1986).
[CrossRef]

1983 (1)

1982 (1)

Y. Bae, J. J. Song, and Y. B. Kim, “Photoacoustic study of two-photon absorption in hexagonal ZnS,” J. Appl. Phys. 53(1), 615–619 (1982).
[CrossRef]

1980 (1)

R. A. McFarlane and L. D. Hess, “Photoacoustic measurements of ion-implanted and laser-annealed GaAs,” Appl. Phys. Lett. 36(2), 137–139 (1980).
[CrossRef]

1979 (1)

J. J. Barrett and M. J. Berry, “Photoacoustic Raman spectroscopy (PARS) using cw laser sources,” Appl. Phys. Lett. 34(2), 144–146 (1979).
[CrossRef]

1972 (1)

J. P. Hermann and J. Ducuing, “Dispersion of the two-photon cross section in rhodamine dyes,” Opt. Commun. 6(2), 101–105 (1972).
[CrossRef]

Bae, Y.

Y. Bae, J. J. Song, and Y. B. Kim, “Photoacoustic study of two-photon absorption in hexagonal ZnS,” J. Appl. Phys. 53(1), 615–619 (1982).
[CrossRef]

Barrett, J. J.

J. J. Barrett and M. J. Berry, “Photoacoustic Raman spectroscopy (PARS) using cw laser sources,” Appl. Phys. Lett. 34(2), 144–146 (1979).
[CrossRef]

Berry, M. J.

J. J. Barrett and M. J. Berry, “Photoacoustic Raman spectroscopy (PARS) using cw laser sources,” Appl. Phys. Lett. 34(2), 144–146 (1979).
[CrossRef]

Berson, M.

C. Guittet, F. Ossant, L. Vaillant, and M. Berson, “In vivo high-frequency ultrasonic characterization of human dermis,” IEEE Trans. Biomed. Eng. 46(6), 740–746 (1999).
[CrossRef] [PubMed]

Bitton, R.

R. Bitton, R. Zemp, J. Yen, L. V. Wang, and K. K. Shung, “A 3-D high-frequency array based 16 channel photoacoustic microscopy system for in vivo micro-vascular imaging,” IEEE Trans. Med. Imaging 28(8), 1190–1197 (2009).
[CrossRef] [PubMed]

Boonsang, S.

S. Boonsang, “Photoacoustic generation mechanisms and measurement systems for biomedical applications,” Int. J. Appl. Biomed. Eng. 2(1), 17–23 (2009).

Denk, W.

Ducuing, J.

J. P. Hermann and J. Ducuing, “Dispersion of the two-photon cross section in rhodamine dyes,” Opt. Commun. 6(2), 101–105 (1972).
[CrossRef]

Eggeling, C.

C. Eggeling, A. Volkmer, and C. A. Seidel, "Molecular photobleaching kinetics of Rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy," Chemphyschem 6(5), 791-804 (2005).
[CrossRef] [PubMed]

Garetz, B. A.

Guittet, C.

C. Guittet, F. Ossant, L. Vaillant, and M. Berson, “In vivo high-frequency ultrasonic characterization of human dermis,” IEEE Trans. Biomed. Eng. 46(6), 740–746 (1999).
[CrossRef] [PubMed]

Guo, Z.

Hermann, J. P.

J. P. Hermann and J. Ducuing, “Dispersion of the two-photon cross section in rhodamine dyes,” Opt. Commun. 6(2), 101–105 (1972).
[CrossRef]

Hess, L. D.

R. A. McFarlane and L. D. Hess, “Photoacoustic measurements of ion-implanted and laser-annealed GaAs,” Appl. Phys. Lett. 36(2), 137–139 (1980).
[CrossRef]

Hu, S.

Jiao, S.

Khosrofian, J. M.

Kim, Y. B.

Y. Bae, J. J. Song, and Y. B. Kim, “Photoacoustic study of two-photon absorption in hexagonal ZnS,” J. Appl. Phys. 53(1), 615–619 (1982).
[CrossRef]

Ku, G.

G. Ku, K. Maslov, L. Li, and L. V. Wang, “Photoacoustic microscopy with 2-μm transverse resolution,” J. Biomed. Opt. 15(2), 021302 (2010).
[CrossRef] [PubMed]

Li, L.

G. Ku, K. Maslov, L. Li, and L. V. Wang, “Photoacoustic microscopy with 2-μm transverse resolution,” J. Biomed. Opt. 15(2), 021302 (2010).
[CrossRef] [PubMed]

Li, P. C.

Mahajan, V. N.

V. N. Mahajan, “Uniform versus Gaussian beams: a comparison of the effects of diffraction, obscuration, and aberrations,” J. Opt. Soc. Am. 3(4), 470–485 (1986).
[CrossRef]

Maslov, K.

McFarlane, R. A.

R. A. McFarlane and L. D. Hess, “Photoacoustic measurements of ion-implanted and laser-annealed GaAs,” Appl. Phys. Lett. 36(2), 137–139 (1980).
[CrossRef]

Miranda, L. C. M.

H. Vargas and L. C. M. Miranda, “Photoacoustic and related photothermal techniques,” Phys. Rep. 161(2), 43–101 (1988).
[CrossRef]

Nampoori, V. P. N.

P. Sathy, R. Philip, V. P. N. Nampoori, and C. P. G. Vallabhan, “Observation of two-photon absorption in rhodamine 6G using photoacoustic technique,” Opt. Commun. 74(5), 313–317 (1990).
[CrossRef]

Ossant, F.

C. Guittet, F. Ossant, L. Vaillant, and M. Berson, “In vivo high-frequency ultrasonic characterization of human dermis,” IEEE Trans. Biomed. Eng. 46(6), 740–746 (1999).
[CrossRef] [PubMed]

Philip, R.

P. Sathy, R. Philip, V. P. N. Nampoori, and C. P. G. Vallabhan, “Observation of two-photon absorption in rhodamine 6G using photoacoustic technique,” Opt. Commun. 74(5), 313–317 (1990).
[CrossRef]

Puliafito, C. A.

Sathy, P.

P. Sathy, R. Philip, V. P. N. Nampoori, and C. P. G. Vallabhan, “Observation of two-photon absorption in rhodamine 6G using photoacoustic technique,” Opt. Commun. 74(5), 313–317 (1990).
[CrossRef]

Seidel, C. A.

C. Eggeling, A. Volkmer, and C. A. Seidel, "Molecular photobleaching kinetics of Rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy," Chemphyschem 6(5), 791-804 (2005).
[CrossRef] [PubMed]

Sheu, Y. L.

Shung, K. K.

R. Bitton, R. Zemp, J. Yen, L. V. Wang, and K. K. Shung, “A 3-D high-frequency array based 16 channel photoacoustic microscopy system for in vivo micro-vascular imaging,” IEEE Trans. Med. Imaging 28(8), 1190–1197 (2009).
[CrossRef] [PubMed]

Song, J. J.

Y. Bae, J. J. Song, and Y. B. Kim, “Photoacoustic study of two-photon absorption in hexagonal ZnS,” J. Appl. Phys. 53(1), 615–619 (1982).
[CrossRef]

Stoica, G.

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Theer, P.

Urey, H.

Vaillant, L.

C. Guittet, F. Ossant, L. Vaillant, and M. Berson, “In vivo high-frequency ultrasonic characterization of human dermis,” IEEE Trans. Biomed. Eng. 46(6), 740–746 (1999).
[CrossRef] [PubMed]

Vallabhan, C. P. G.

P. Sathy, R. Philip, V. P. N. Nampoori, and C. P. G. Vallabhan, “Observation of two-photon absorption in rhodamine 6G using photoacoustic technique,” Opt. Commun. 74(5), 313–317 (1990).
[CrossRef]

Vargas, H.

H. Vargas and L. C. M. Miranda, “Photoacoustic and related photothermal techniques,” Phys. Rep. 161(2), 43–101 (1988).
[CrossRef]

Volkmer, A.

C. Eggeling, A. Volkmer, and C. A. Seidel, "Molecular photobleaching kinetics of Rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy," Chemphyschem 6(5), 791-804 (2005).
[CrossRef] [PubMed]

Wang, L. V.

Z. Guo, S. Hu, and L. V. Wang, “Calibration-free absolute quantification of optical absorption coefficients using acoustic spectra in 3D photoacoustic microscopy of biological tissue,” Opt. Lett. 35(12), 2067–2069 (2010).
[CrossRef] [PubMed]

C. Zhang, K. Maslov, and L. V. Wang, “Subwavelength-resolution label-free photoacoustic microscopy of optical absorption in vivo,” Opt. Lett. 35(19), 3195–3197 (2010).
[CrossRef] [PubMed]

G. Ku, K. Maslov, L. Li, and L. V. Wang, “Photoacoustic microscopy with 2-μm transverse resolution,” J. Biomed. Opt. 15(2), 021302 (2010).
[CrossRef] [PubMed]

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[CrossRef] [PubMed]

R. Bitton, R. Zemp, J. Yen, L. V. Wang, and K. K. Shung, “A 3-D high-frequency array based 16 channel photoacoustic microscopy system for in vivo micro-vascular imaging,” IEEE Trans. Med. Imaging 28(8), 1190–1197 (2009).
[CrossRef] [PubMed]

S. Hu, K. Maslov, and L. V. Wang, “Noninvasive label-free imaging of microhemodynamics by optical-resolution photoacoustic microscopy,” Opt. Express 17(9), 7688–7693 (2009).
[CrossRef] [PubMed]

K. Maslov, H. F. Zhang, S. Hu, and L. V. Wang, “Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries,” Opt. Lett. 33(9), 929–931 (2008).
[CrossRef] [PubMed]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[CrossRef]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Wei, C. W.

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Xie, Z.

Xu, M.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[CrossRef]

Yen, J.

R. Bitton, R. Zemp, J. Yen, L. V. Wang, and K. K. Shung, “A 3-D high-frequency array based 16 channel photoacoustic microscopy system for in vivo micro-vascular imaging,” IEEE Trans. Med. Imaging 28(8), 1190–1197 (2009).
[CrossRef] [PubMed]

Zemp, R.

R. Bitton, R. Zemp, J. Yen, L. V. Wang, and K. K. Shung, “A 3-D high-frequency array based 16 channel photoacoustic microscopy system for in vivo micro-vascular imaging,” IEEE Trans. Med. Imaging 28(8), 1190–1197 (2009).
[CrossRef] [PubMed]

Zhang, C.

Zhang, H. F.

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

R. A. McFarlane and L. D. Hess, “Photoacoustic measurements of ion-implanted and laser-annealed GaAs,” Appl. Phys. Lett. 36(2), 137–139 (1980).
[CrossRef]

J. J. Barrett and M. J. Berry, “Photoacoustic Raman spectroscopy (PARS) using cw laser sources,” Appl. Phys. Lett. 34(2), 144–146 (1979).
[CrossRef]

Chemphyschem (1)

C. Eggeling, A. Volkmer, and C. A. Seidel, "Molecular photobleaching kinetics of Rhodamine 6G by one- and two-photon induced confocal fluorescence microscopy," Chemphyschem 6(5), 791-804 (2005).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (1)

C. Guittet, F. Ossant, L. Vaillant, and M. Berson, “In vivo high-frequency ultrasonic characterization of human dermis,” IEEE Trans. Biomed. Eng. 46(6), 740–746 (1999).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (1)

R. Bitton, R. Zemp, J. Yen, L. V. Wang, and K. K. Shung, “A 3-D high-frequency array based 16 channel photoacoustic microscopy system for in vivo micro-vascular imaging,” IEEE Trans. Med. Imaging 28(8), 1190–1197 (2009).
[CrossRef] [PubMed]

Int. J. Appl. Biomed. Eng. (1)

S. Boonsang, “Photoacoustic generation mechanisms and measurement systems for biomedical applications,” Int. J. Appl. Biomed. Eng. 2(1), 17–23 (2009).

J. Appl. Phys. (1)

Y. Bae, J. J. Song, and Y. B. Kim, “Photoacoustic study of two-photon absorption in hexagonal ZnS,” J. Appl. Phys. 53(1), 615–619 (1982).
[CrossRef]

J. Biomed. Opt. (1)

G. Ku, K. Maslov, L. Li, and L. V. Wang, “Photoacoustic microscopy with 2-μm transverse resolution,” J. Biomed. Opt. 15(2), 021302 (2010).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

V. N. Mahajan, “Uniform versus Gaussian beams: a comparison of the effects of diffraction, obscuration, and aberrations,” J. Opt. Soc. Am. 3(4), 470–485 (1986).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nat. Biotechnol. (2)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24(7), 848–851 (2006).
[CrossRef] [PubMed]

Nat. Photonics (1)

L. V. Wang, “Multiscale photoacoustic microscopy and computed tomography,” Nat. Photonics 3(9), 503–509 (2009).
[CrossRef] [PubMed]

Opt. Commun. (2)

P. Sathy, R. Philip, V. P. N. Nampoori, and C. P. G. Vallabhan, “Observation of two-photon absorption in rhodamine 6G using photoacoustic technique,” Opt. Commun. 74(5), 313–317 (1990).
[CrossRef]

J. P. Hermann and J. Ducuing, “Dispersion of the two-photon cross section in rhodamine dyes,” Opt. Commun. 6(2), 101–105 (1972).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rep. (1)

H. Vargas and L. C. M. Miranda, “Photoacoustic and related photothermal techniques,” Phys. Rep. 161(2), 43–101 (1988).
[CrossRef]

Rev. Sci. Instrum. (1)

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[CrossRef]

Other (7)

A. Diaspro, Confocal and Two-Photon Microscopy (Wiley-Liss, 2002).

L. V. Wang, ed., Photoacoustic Imaging and Spectroscopy (CRC press, Boca Raton, 2009).

C. R. Hill, J. C. Bamber, and G. R. t. Haar, eds., Physical principles of medical ultrasonics (John Weily & Sons, Chichester, 2004).

W. H. Press, Numerical recipes in C: the art of scientific computing (Cambridge University Press, 2002).

National Astronomical Observatory, Rika Nenpyo (Chronological Scientific Tables 2008) (Maruzen Co., Ltd., 2008).

A. Yariv, Introduction to Optical Electronics (Holt, Rinehart and Winston, Inc., New York, 1985).

L. H. Wang, and H.-I. Wu, Biomedical Optics (John Wiley & Sons, Hoboken, 2007).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Comparison between the depth resolutions and the detection frequencies of photoacoustic waves for (a) one-photon photoacoustic microscopy (PAM) and (b) two-photon absorption-induced photoacoustic microscopy (TP-PAM).

Fig. 2
Fig. 2

TP-PAM system.

Fig. 3
Fig. 3

(a) Target sample for evaluating spatial resolution and (b) expected cross sectional image of the solution-filled hollow.

Fig. 4
Fig. 4

Experimental photoacoustic signals as a function of time acquired when the beam focus is outside the Rhodamine B/ethanol-filled hollow ((a), one-photon, black line) and when it is inside the hollow ((b), two-photon, red lines) and their power spectra (c). Calculated photoacoustic signals for one-photon ((d), black line) and two-photon ((e), red line) absorbers and their power spectra (f).

Fig. 5
Fig. 5

Comparison between TP-PAM images acquired without (a) and with (b) frequency filtering of 1-10 MHz of a 300-μm-diameter silicone hollow filled with Rhodamine B/ethanol.

Fig. 6
Fig. 6

Depth (a) and transverse (b) intensity profiles of TP-PAM image of 300-μm Rhodamine B/ethanol-filled hollow with frequency filtering (1-10 MHz) obtained using a 20X objective lens (NA: 0.4). Black open dots and red solid lines denote the experimental data and fitting results obtained using Eq. (4) for depth profiles and Eq. (6) for transverse profiles.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I ( x ' , y ' , z ' ) = I 0 z 0 2 z ' 2 + z 0 2 exp [ 2 z 0 2 ( x ' 2 + y ' 2 ) w 0 2 ( z ' 2 + z 0 2 ) ] ,
f TPPA ( x , y , z , a ) ( x x ) 2 + ( z z ) 2 a 2 d x d z d y I 2 ( x , y , z ) .
f TPPA ( 0 , 0 , z , a ) = I 0 2 z a z + a d z d x d y z 0 4 ( z 2 + z 0 2 ) 2 exp [ 4 z 0 2 ( x 2 + y 2 ) w 0 2 ( z 2 + z 0 2 ) ]
tan 1 ( z + a z 0 ) tan 1 ( z a z 0 ) .
f TPPA ( x , 0 , 0 , a ) = I 0 2 d z x a x + a d x d y z 0 4 ( z 2 + z 0 2 ) 2 exp [ 4 z 0 2 ( x 2 + y 2 ) w 0 2 ( z 2 + z 0 2 ) ]
erf ( 2 ( x a ) w 0 , 2 ( x + a ) w 0 ) ,
erf ( x 1 , x 2 ) x 1 x 2 d x exp [ x 2 ] .
  f TPPA ( 0 , 0 , z , a 0 ) 1 w ( z ) 2 = 1 w 0 2 [ 1 + ( z z 0 ) 2 ] ,
z 0 = π w 0 2 n λ .

Metrics