Abstract

Experimental results showing “negative refraction” and some kind of “lensing” −in the microwave-infrared range− are often presented in the literature as undisputable evidence of the existence of composite left-handed materials. The purpose of this paper is to present experimental results on “negative refraction” and “lensing” at visible wavelengths involving a waveguide array formed by a tight-packed bundle of glass fibers. We will demonstrate that the observed phenomena are not necessarily evidence of the existence of left-handed materials and that they can be fully explained by classical optic concepts, e.g. light propagation in waveguides.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
    [CrossRef]
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  3. M. W. McCall, “What is negative refraction?” J. Mod. Opt. 56(16), 1727–1740 (2009).
    [CrossRef]
  4. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [CrossRef] [PubMed]
  5. A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett. 90(13), 137401 (2003).
    [CrossRef] [PubMed]
  6. D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett. 84(22), 4403–4405 (2004).
    [CrossRef]
  7. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90(10), 107401 (2003).
    [CrossRef] [PubMed]
  8. M. C. Velazquez-Ahumada, M. J. Freire, J. M. Algarin, and R. Marques, “Demonstration of negative refraction of microwaves,” Am. J. Phys. 79(4), 349–352 (2011).
    [CrossRef]
  9. D. Maystre and S. Enoch, “Perfect lenses made with left-handed materials: Alice’s mirror?” J. Opt. Soc. Am. A 21(1), 122–131 (2004).
    [CrossRef] [PubMed]
  10. M. Nieto-Vesperinas, “Problem of image superresolution with a negative-refractive-index slab,” J. Opt. Soc. Am. A 21(4), 491–498 (2004).
    [CrossRef] [PubMed]
  11. S. Durant, N. Fang, and X. Zhang, “Comment on ‘Submicron imaging with a planar silver lens’ [Appl. Phys. Lett. 84, 4403 (2004)],” Appl. Phys. Lett. 86(12), 126101 (2005).
    [CrossRef]
  12. J. A. Ferrari and C. D. Perciante, “Superlenses, metamaterials, and negative refraction,” J. Opt. Soc. Am. A 26(1), 78–84 (2009).
    [CrossRef] [PubMed]
  13. B. A. Munk, Metamaterials: Critique and Alternatives (John Wiley & Sons, 2009).
  14. T. G. Mackay and A. Lakhtakia, “Negative refraction, negative phase velocity, and counterposition in bianisotropic materials and metamaterials,” Phys. Rev. B 79(23), 235121 (2009).
    [CrossRef]
  15. Y.-J. Jen, A. Lakhtakia, C.-W. Yu, and C.-T. Lin, “Negative refraction in a uniaxial absorbent dielectric material,” Eur. J. Phys. 30(6), 1381–1390 (2009).
    [CrossRef]
  16. P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71(19), 193105 (2005).
    [CrossRef]
  17. A. Ono, J.-I. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95(26), 267407 (2005).
    [CrossRef] [PubMed]
  18. J. A. Ferrari, E. M. Frins, and A. Lezama, “Geometrical approach to backscattering from a side-illuminated optical fiber,” Opt. Commun. 113(1-3), 46–52 (1994).
    [CrossRef]
  19. E. Frins, H. Failache, J. Ferrari, G. D. Costa, and A. Lezama, “Optical-fiber diameter determination by scattering at oblique incidence,” Appl. Opt. 33(31), 7472–7476 (1994).
    [CrossRef] [PubMed]

2011 (1)

M. C. Velazquez-Ahumada, M. J. Freire, J. M. Algarin, and R. Marques, “Demonstration of negative refraction of microwaves,” Am. J. Phys. 79(4), 349–352 (2011).
[CrossRef]

2009 (4)

T. G. Mackay and A. Lakhtakia, “Negative refraction, negative phase velocity, and counterposition in bianisotropic materials and metamaterials,” Phys. Rev. B 79(23), 235121 (2009).
[CrossRef]

Y.-J. Jen, A. Lakhtakia, C.-W. Yu, and C.-T. Lin, “Negative refraction in a uniaxial absorbent dielectric material,” Eur. J. Phys. 30(6), 1381–1390 (2009).
[CrossRef]

M. W. McCall, “What is negative refraction?” J. Mod. Opt. 56(16), 1727–1740 (2009).
[CrossRef]

J. A. Ferrari and C. D. Perciante, “Superlenses, metamaterials, and negative refraction,” J. Opt. Soc. Am. A 26(1), 78–84 (2009).
[CrossRef] [PubMed]

2005 (3)

S. Durant, N. Fang, and X. Zhang, “Comment on ‘Submicron imaging with a planar silver lens’ [Appl. Phys. Lett. 84, 4403 (2004)],” Appl. Phys. Lett. 86(12), 126101 (2005).
[CrossRef]

P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71(19), 193105 (2005).
[CrossRef]

A. Ono, J.-I. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95(26), 267407 (2005).
[CrossRef] [PubMed]

2004 (3)

2003 (2)

A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett. 90(13), 137401 (2003).
[CrossRef] [PubMed]

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90(10), 107401 (2003).
[CrossRef] [PubMed]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1994 (2)

J. A. Ferrari, E. M. Frins, and A. Lezama, “Geometrical approach to backscattering from a side-illuminated optical fiber,” Opt. Commun. 113(1-3), 46–52 (1994).
[CrossRef]

E. Frins, H. Failache, J. Ferrari, G. D. Costa, and A. Lezama, “Optical-fiber diameter determination by scattering at oblique incidence,” Appl. Opt. 33(31), 7472–7476 (1994).
[CrossRef] [PubMed]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[CrossRef]

Algarin, J. M.

M. C. Velazquez-Ahumada, M. J. Freire, J. M. Algarin, and R. Marques, “Demonstration of negative refraction of microwaves,” Am. J. Phys. 79(4), 349–352 (2011).
[CrossRef]

Belov, P. A.

P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71(19), 193105 (2005).
[CrossRef]

Blaikie, R. J.

D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett. 84(22), 4403–4405 (2004).
[CrossRef]

Brock, J. B.

A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett. 90(13), 137401 (2003).
[CrossRef] [PubMed]

Chuang, I. L.

A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett. 90(13), 137401 (2003).
[CrossRef] [PubMed]

Costa, G. D.

Durant, S.

S. Durant, N. Fang, and X. Zhang, “Comment on ‘Submicron imaging with a planar silver lens’ [Appl. Phys. Lett. 84, 4403 (2004)],” Appl. Phys. Lett. 86(12), 126101 (2005).
[CrossRef]

Enoch, S.

Failache, H.

Fang, N.

S. Durant, N. Fang, and X. Zhang, “Comment on ‘Submicron imaging with a planar silver lens’ [Appl. Phys. Lett. 84, 4403 (2004)],” Appl. Phys. Lett. 86(12), 126101 (2005).
[CrossRef]

Ferrari, J.

Ferrari, J. A.

J. A. Ferrari and C. D. Perciante, “Superlenses, metamaterials, and negative refraction,” J. Opt. Soc. Am. A 26(1), 78–84 (2009).
[CrossRef] [PubMed]

J. A. Ferrari, E. M. Frins, and A. Lezama, “Geometrical approach to backscattering from a side-illuminated optical fiber,” Opt. Commun. 113(1-3), 46–52 (1994).
[CrossRef]

Freire, M. J.

M. C. Velazquez-Ahumada, M. J. Freire, J. M. Algarin, and R. Marques, “Demonstration of negative refraction of microwaves,” Am. J. Phys. 79(4), 349–352 (2011).
[CrossRef]

Frins, E.

Frins, E. M.

J. A. Ferrari, E. M. Frins, and A. Lezama, “Geometrical approach to backscattering from a side-illuminated optical fiber,” Opt. Commun. 113(1-3), 46–52 (1994).
[CrossRef]

Greegor, R. B.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90(10), 107401 (2003).
[CrossRef] [PubMed]

Houck, A. A.

A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett. 90(13), 137401 (2003).
[CrossRef] [PubMed]

Ikonen, P.

P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71(19), 193105 (2005).
[CrossRef]

Jen, Y.-J.

Y.-J. Jen, A. Lakhtakia, C.-W. Yu, and C.-T. Lin, “Negative refraction in a uniaxial absorbent dielectric material,” Eur. J. Phys. 30(6), 1381–1390 (2009).
[CrossRef]

Kato, J.-I.

A. Ono, J.-I. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95(26), 267407 (2005).
[CrossRef] [PubMed]

Kawata, S.

A. Ono, J.-I. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95(26), 267407 (2005).
[CrossRef] [PubMed]

Koltenbah, B. E. C.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90(10), 107401 (2003).
[CrossRef] [PubMed]

Lakhtakia, A.

Y.-J. Jen, A. Lakhtakia, C.-W. Yu, and C.-T. Lin, “Negative refraction in a uniaxial absorbent dielectric material,” Eur. J. Phys. 30(6), 1381–1390 (2009).
[CrossRef]

T. G. Mackay and A. Lakhtakia, “Negative refraction, negative phase velocity, and counterposition in bianisotropic materials and metamaterials,” Phys. Rev. B 79(23), 235121 (2009).
[CrossRef]

Lezama, A.

E. Frins, H. Failache, J. Ferrari, G. D. Costa, and A. Lezama, “Optical-fiber diameter determination by scattering at oblique incidence,” Appl. Opt. 33(31), 7472–7476 (1994).
[CrossRef] [PubMed]

J. A. Ferrari, E. M. Frins, and A. Lezama, “Geometrical approach to backscattering from a side-illuminated optical fiber,” Opt. Commun. 113(1-3), 46–52 (1994).
[CrossRef]

Li, K.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90(10), 107401 (2003).
[CrossRef] [PubMed]

Lin, C.-T.

Y.-J. Jen, A. Lakhtakia, C.-W. Yu, and C.-T. Lin, “Negative refraction in a uniaxial absorbent dielectric material,” Eur. J. Phys. 30(6), 1381–1390 (2009).
[CrossRef]

Mackay, T. G.

T. G. Mackay and A. Lakhtakia, “Negative refraction, negative phase velocity, and counterposition in bianisotropic materials and metamaterials,” Phys. Rev. B 79(23), 235121 (2009).
[CrossRef]

Marques, R.

M. C. Velazquez-Ahumada, M. J. Freire, J. M. Algarin, and R. Marques, “Demonstration of negative refraction of microwaves,” Am. J. Phys. 79(4), 349–352 (2011).
[CrossRef]

Maystre, D.

McCall, M. W.

M. W. McCall, “What is negative refraction?” J. Mod. Opt. 56(16), 1727–1740 (2009).
[CrossRef]

Melville, D. O. S.

D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett. 84(22), 4403–4405 (2004).
[CrossRef]

Nieto-Vesperinas, M.

Ono, A.

A. Ono, J.-I. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95(26), 267407 (2005).
[CrossRef] [PubMed]

Parazzoli, C. G.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90(10), 107401 (2003).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Perciante, C. D.

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Simovski, C. R.

P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71(19), 193105 (2005).
[CrossRef]

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Tanielian, M.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90(10), 107401 (2003).
[CrossRef] [PubMed]

Velazquez-Ahumada, M. C.

M. C. Velazquez-Ahumada, M. J. Freire, J. M. Algarin, and R. Marques, “Demonstration of negative refraction of microwaves,” Am. J. Phys. 79(4), 349–352 (2011).
[CrossRef]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[CrossRef]

Wolf, C. R.

D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett. 84(22), 4403–4405 (2004).
[CrossRef]

Yu, C.-W.

Y.-J. Jen, A. Lakhtakia, C.-W. Yu, and C.-T. Lin, “Negative refraction in a uniaxial absorbent dielectric material,” Eur. J. Phys. 30(6), 1381–1390 (2009).
[CrossRef]

Zhang, X.

S. Durant, N. Fang, and X. Zhang, “Comment on ‘Submicron imaging with a planar silver lens’ [Appl. Phys. Lett. 84, 4403 (2004)],” Appl. Phys. Lett. 86(12), 126101 (2005).
[CrossRef]

Am. J. Phys. (1)

M. C. Velazquez-Ahumada, M. J. Freire, J. M. Algarin, and R. Marques, “Demonstration of negative refraction of microwaves,” Am. J. Phys. 79(4), 349–352 (2011).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett. 84(22), 4403–4405 (2004).
[CrossRef]

S. Durant, N. Fang, and X. Zhang, “Comment on ‘Submicron imaging with a planar silver lens’ [Appl. Phys. Lett. 84, 4403 (2004)],” Appl. Phys. Lett. 86(12), 126101 (2005).
[CrossRef]

Eur. J. Phys. (1)

Y.-J. Jen, A. Lakhtakia, C.-W. Yu, and C.-T. Lin, “Negative refraction in a uniaxial absorbent dielectric material,” Eur. J. Phys. 30(6), 1381–1390 (2009).
[CrossRef]

J. Mod. Opt. (1)

M. W. McCall, “What is negative refraction?” J. Mod. Opt. 56(16), 1727–1740 (2009).
[CrossRef]

J. Opt. Soc. Am. A (3)

Opt. Commun. (1)

J. A. Ferrari, E. M. Frins, and A. Lezama, “Geometrical approach to backscattering from a side-illuminated optical fiber,” Opt. Commun. 113(1-3), 46–52 (1994).
[CrossRef]

Phys. Rev. B (2)

P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71(19), 193105 (2005).
[CrossRef]

T. G. Mackay and A. Lakhtakia, “Negative refraction, negative phase velocity, and counterposition in bianisotropic materials and metamaterials,” Phys. Rev. B 79(23), 235121 (2009).
[CrossRef]

Phys. Rev. Lett. (4)

A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett. 90(13), 137401 (2003).
[CrossRef] [PubMed]

A. Ono, J.-I. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95(26), 267407 (2005).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90(10), 107401 (2003).
[CrossRef] [PubMed]

Science (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[CrossRef]

Other (1)

B. A. Munk, Metamaterials: Critique and Alternatives (John Wiley & Sons, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Light propagating in a 2-D waveguide.

Fig. 2
Fig. 2

Image formation using an array of parallel waveguides.

Fig. 3
Fig. 3

Frontal view of the fiber bundle.

Fig. 4
Fig. 4

Ray paths in a plane containing an incident He-Ne beam (from the left-side of the fiber bundle) and the z-axis.

Fig. 5
Fig. 5

In this figure z 0 = 9 cm, P is the point-like light source, FB is the fiber bundle, and S the semi-transparent screen. (a) Almost frontal view showing the cylindrical fiber bundle mounted inside a rectangular support. (b) Lateral view.

Fig. 6
Fig. 6

Intensity distribution on a plane orthogonal to the bundle exit surface across the image of the point P at a distance z 0 = 3.5 cm.

Fig. 7
Fig. 7

(a)-(b) Test symbols illuminated by a UV-LED; (c)-(d) images obtained on an screen at z 0 = 3.5 cm from the bundle exit surface.

Metrics