Abstract

Experimental results showing “negative refraction” and some kind of “lensing” −in the microwave-infrared range− are often presented in the literature as undisputable evidence of the existence of composite left-handed materials. The purpose of this paper is to present experimental results on “negative refraction” and “lensing” at visible wavelengths involving a waveguide array formed by a tight-packed bundle of glass fibers. We will demonstrate that the observed phenomena are not necessarily evidence of the existence of left-handed materials and that they can be fully explained by classical optic concepts, e.g. light propagation in waveguides.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
    [CrossRef]
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  3. M. W. McCall, “What is negative refraction?” J. Mod. Opt. 56(16), 1727–1740 (2009).
    [CrossRef]
  4. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [CrossRef] [PubMed]
  5. A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett. 90(13), 137401 (2003).
    [CrossRef] [PubMed]
  6. D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett. 84(22), 4403–4405 (2004).
    [CrossRef]
  7. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90(10), 107401 (2003).
    [CrossRef] [PubMed]
  8. M. C. Velazquez-Ahumada, M. J. Freire, J. M. Algarin, and R. Marques, “Demonstration of negative refraction of microwaves,” Am. J. Phys. 79(4), 349–352 (2011).
    [CrossRef]
  9. D. Maystre and S. Enoch, “Perfect lenses made with left-handed materials: Alice’s mirror?” J. Opt. Soc. Am. A 21(1), 122–131 (2004).
    [CrossRef] [PubMed]
  10. M. Nieto-Vesperinas, “Problem of image superresolution with a negative-refractive-index slab,” J. Opt. Soc. Am. A 21(4), 491–498 (2004).
    [CrossRef] [PubMed]
  11. S. Durant, N. Fang, and X. Zhang, “Comment on ‘Submicron imaging with a planar silver lens’ [Appl. Phys. Lett. 84, 4403 (2004)],” Appl. Phys. Lett. 86(12), 126101 (2005).
    [CrossRef]
  12. J. A. Ferrari and C. D. Perciante, “Superlenses, metamaterials, and negative refraction,” J. Opt. Soc. Am. A 26(1), 78–84 (2009).
    [CrossRef] [PubMed]
  13. B. A. Munk, Metamaterials: Critique and Alternatives (John Wiley & Sons, 2009).
  14. T. G. Mackay and A. Lakhtakia, “Negative refraction, negative phase velocity, and counterposition in bianisotropic materials and metamaterials,” Phys. Rev. B 79(23), 235121 (2009).
    [CrossRef]
  15. Y.-J. Jen, A. Lakhtakia, C.-W. Yu, and C.-T. Lin, “Negative refraction in a uniaxial absorbent dielectric material,” Eur. J. Phys. 30(6), 1381–1390 (2009).
    [CrossRef]
  16. P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71(19), 193105 (2005).
    [CrossRef]
  17. A. Ono, J.-I. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95(26), 267407 (2005).
    [CrossRef] [PubMed]
  18. J. A. Ferrari, E. M. Frins, and A. Lezama, “Geometrical approach to backscattering from a side-illuminated optical fiber,” Opt. Commun. 113(1-3), 46–52 (1994).
    [CrossRef]
  19. E. Frins, H. Failache, J. Ferrari, G. D. Costa, and A. Lezama, “Optical-fiber diameter determination by scattering at oblique incidence,” Appl. Opt. 33(31), 7472–7476 (1994).
    [CrossRef] [PubMed]

2011 (1)

M. C. Velazquez-Ahumada, M. J. Freire, J. M. Algarin, and R. Marques, “Demonstration of negative refraction of microwaves,” Am. J. Phys. 79(4), 349–352 (2011).
[CrossRef]

2009 (4)

M. W. McCall, “What is negative refraction?” J. Mod. Opt. 56(16), 1727–1740 (2009).
[CrossRef]

J. A. Ferrari and C. D. Perciante, “Superlenses, metamaterials, and negative refraction,” J. Opt. Soc. Am. A 26(1), 78–84 (2009).
[CrossRef] [PubMed]

T. G. Mackay and A. Lakhtakia, “Negative refraction, negative phase velocity, and counterposition in bianisotropic materials and metamaterials,” Phys. Rev. B 79(23), 235121 (2009).
[CrossRef]

Y.-J. Jen, A. Lakhtakia, C.-W. Yu, and C.-T. Lin, “Negative refraction in a uniaxial absorbent dielectric material,” Eur. J. Phys. 30(6), 1381–1390 (2009).
[CrossRef]

2005 (3)

P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71(19), 193105 (2005).
[CrossRef]

A. Ono, J.-I. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95(26), 267407 (2005).
[CrossRef] [PubMed]

S. Durant, N. Fang, and X. Zhang, “Comment on ‘Submicron imaging with a planar silver lens’ [Appl. Phys. Lett. 84, 4403 (2004)],” Appl. Phys. Lett. 86(12), 126101 (2005).
[CrossRef]

2004 (3)

2003 (2)

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90(10), 107401 (2003).
[CrossRef] [PubMed]

A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett. 90(13), 137401 (2003).
[CrossRef] [PubMed]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1994 (2)

J. A. Ferrari, E. M. Frins, and A. Lezama, “Geometrical approach to backscattering from a side-illuminated optical fiber,” Opt. Commun. 113(1-3), 46–52 (1994).
[CrossRef]

E. Frins, H. Failache, J. Ferrari, G. D. Costa, and A. Lezama, “Optical-fiber diameter determination by scattering at oblique incidence,” Appl. Opt. 33(31), 7472–7476 (1994).
[CrossRef] [PubMed]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[CrossRef]

Algarin, J. M.

M. C. Velazquez-Ahumada, M. J. Freire, J. M. Algarin, and R. Marques, “Demonstration of negative refraction of microwaves,” Am. J. Phys. 79(4), 349–352 (2011).
[CrossRef]

Belov, P. A.

P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71(19), 193105 (2005).
[CrossRef]

Blaikie, R. J.

D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett. 84(22), 4403–4405 (2004).
[CrossRef]

Brock, J. B.

A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett. 90(13), 137401 (2003).
[CrossRef] [PubMed]

Chuang, I. L.

A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett. 90(13), 137401 (2003).
[CrossRef] [PubMed]

Costa, G. D.

Durant, S.

S. Durant, N. Fang, and X. Zhang, “Comment on ‘Submicron imaging with a planar silver lens’ [Appl. Phys. Lett. 84, 4403 (2004)],” Appl. Phys. Lett. 86(12), 126101 (2005).
[CrossRef]

Enoch, S.

Failache, H.

Fang, N.

S. Durant, N. Fang, and X. Zhang, “Comment on ‘Submicron imaging with a planar silver lens’ [Appl. Phys. Lett. 84, 4403 (2004)],” Appl. Phys. Lett. 86(12), 126101 (2005).
[CrossRef]

Ferrari, J.

Ferrari, J. A.

J. A. Ferrari and C. D. Perciante, “Superlenses, metamaterials, and negative refraction,” J. Opt. Soc. Am. A 26(1), 78–84 (2009).
[CrossRef] [PubMed]

J. A. Ferrari, E. M. Frins, and A. Lezama, “Geometrical approach to backscattering from a side-illuminated optical fiber,” Opt. Commun. 113(1-3), 46–52 (1994).
[CrossRef]

Freire, M. J.

M. C. Velazquez-Ahumada, M. J. Freire, J. M. Algarin, and R. Marques, “Demonstration of negative refraction of microwaves,” Am. J. Phys. 79(4), 349–352 (2011).
[CrossRef]

Frins, E.

Frins, E. M.

J. A. Ferrari, E. M. Frins, and A. Lezama, “Geometrical approach to backscattering from a side-illuminated optical fiber,” Opt. Commun. 113(1-3), 46–52 (1994).
[CrossRef]

Greegor, R. B.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90(10), 107401 (2003).
[CrossRef] [PubMed]

Houck, A. A.

A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett. 90(13), 137401 (2003).
[CrossRef] [PubMed]

Ikonen, P.

P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71(19), 193105 (2005).
[CrossRef]

Jen, Y.-J.

Y.-J. Jen, A. Lakhtakia, C.-W. Yu, and C.-T. Lin, “Negative refraction in a uniaxial absorbent dielectric material,” Eur. J. Phys. 30(6), 1381–1390 (2009).
[CrossRef]

Kato, J.-I.

A. Ono, J.-I. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95(26), 267407 (2005).
[CrossRef] [PubMed]

Kawata, S.

A. Ono, J.-I. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95(26), 267407 (2005).
[CrossRef] [PubMed]

Koltenbah, B. E. C.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90(10), 107401 (2003).
[CrossRef] [PubMed]

Lakhtakia, A.

Y.-J. Jen, A. Lakhtakia, C.-W. Yu, and C.-T. Lin, “Negative refraction in a uniaxial absorbent dielectric material,” Eur. J. Phys. 30(6), 1381–1390 (2009).
[CrossRef]

T. G. Mackay and A. Lakhtakia, “Negative refraction, negative phase velocity, and counterposition in bianisotropic materials and metamaterials,” Phys. Rev. B 79(23), 235121 (2009).
[CrossRef]

Lezama, A.

J. A. Ferrari, E. M. Frins, and A. Lezama, “Geometrical approach to backscattering from a side-illuminated optical fiber,” Opt. Commun. 113(1-3), 46–52 (1994).
[CrossRef]

E. Frins, H. Failache, J. Ferrari, G. D. Costa, and A. Lezama, “Optical-fiber diameter determination by scattering at oblique incidence,” Appl. Opt. 33(31), 7472–7476 (1994).
[CrossRef] [PubMed]

Li, K.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90(10), 107401 (2003).
[CrossRef] [PubMed]

Lin, C.-T.

Y.-J. Jen, A. Lakhtakia, C.-W. Yu, and C.-T. Lin, “Negative refraction in a uniaxial absorbent dielectric material,” Eur. J. Phys. 30(6), 1381–1390 (2009).
[CrossRef]

Mackay, T. G.

T. G. Mackay and A. Lakhtakia, “Negative refraction, negative phase velocity, and counterposition in bianisotropic materials and metamaterials,” Phys. Rev. B 79(23), 235121 (2009).
[CrossRef]

Marques, R.

M. C. Velazquez-Ahumada, M. J. Freire, J. M. Algarin, and R. Marques, “Demonstration of negative refraction of microwaves,” Am. J. Phys. 79(4), 349–352 (2011).
[CrossRef]

Maystre, D.

McCall, M. W.

M. W. McCall, “What is negative refraction?” J. Mod. Opt. 56(16), 1727–1740 (2009).
[CrossRef]

Melville, D. O. S.

D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett. 84(22), 4403–4405 (2004).
[CrossRef]

Nieto-Vesperinas, M.

Ono, A.

A. Ono, J.-I. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95(26), 267407 (2005).
[CrossRef] [PubMed]

Parazzoli, C. G.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90(10), 107401 (2003).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Perciante, C. D.

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Simovski, C. R.

P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71(19), 193105 (2005).
[CrossRef]

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Tanielian, M.

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90(10), 107401 (2003).
[CrossRef] [PubMed]

Velazquez-Ahumada, M. C.

M. C. Velazquez-Ahumada, M. J. Freire, J. M. Algarin, and R. Marques, “Demonstration of negative refraction of microwaves,” Am. J. Phys. 79(4), 349–352 (2011).
[CrossRef]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[CrossRef]

Wolf, C. R.

D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett. 84(22), 4403–4405 (2004).
[CrossRef]

Yu, C.-W.

Y.-J. Jen, A. Lakhtakia, C.-W. Yu, and C.-T. Lin, “Negative refraction in a uniaxial absorbent dielectric material,” Eur. J. Phys. 30(6), 1381–1390 (2009).
[CrossRef]

Zhang, X.

S. Durant, N. Fang, and X. Zhang, “Comment on ‘Submicron imaging with a planar silver lens’ [Appl. Phys. Lett. 84, 4403 (2004)],” Appl. Phys. Lett. 86(12), 126101 (2005).
[CrossRef]

Am. J. Phys. (1)

M. C. Velazquez-Ahumada, M. J. Freire, J. M. Algarin, and R. Marques, “Demonstration of negative refraction of microwaves,” Am. J. Phys. 79(4), 349–352 (2011).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. Durant, N. Fang, and X. Zhang, “Comment on ‘Submicron imaging with a planar silver lens’ [Appl. Phys. Lett. 84, 4403 (2004)],” Appl. Phys. Lett. 86(12), 126101 (2005).
[CrossRef]

D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett. 84(22), 4403–4405 (2004).
[CrossRef]

Eur. J. Phys. (1)

Y.-J. Jen, A. Lakhtakia, C.-W. Yu, and C.-T. Lin, “Negative refraction in a uniaxial absorbent dielectric material,” Eur. J. Phys. 30(6), 1381–1390 (2009).
[CrossRef]

J. Mod. Opt. (1)

M. W. McCall, “What is negative refraction?” J. Mod. Opt. 56(16), 1727–1740 (2009).
[CrossRef]

J. Opt. Soc. Am. A (3)

Opt. Commun. (1)

J. A. Ferrari, E. M. Frins, and A. Lezama, “Geometrical approach to backscattering from a side-illuminated optical fiber,” Opt. Commun. 113(1-3), 46–52 (1994).
[CrossRef]

Phys. Rev. B (2)

P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71(19), 193105 (2005).
[CrossRef]

T. G. Mackay and A. Lakhtakia, “Negative refraction, negative phase velocity, and counterposition in bianisotropic materials and metamaterials,” Phys. Rev. B 79(23), 235121 (2009).
[CrossRef]

Phys. Rev. Lett. (4)

A. A. Houck, J. B. Brock, and I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett. 90(13), 137401 (2003).
[CrossRef] [PubMed]

A. Ono, J.-I. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett. 95(26), 267407 (2005).
[CrossRef] [PubMed]

C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90(10), 107401 (2003).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Science (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10(4), 509–514 (1968).
[CrossRef]

Other (1)

B. A. Munk, Metamaterials: Critique and Alternatives (John Wiley & Sons, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Light propagating in a 2-D waveguide.

Fig. 2
Fig. 2

Image formation using an array of parallel waveguides.

Fig. 3
Fig. 3

Frontal view of the fiber bundle.

Fig. 4
Fig. 4

Ray paths in a plane containing an incident He-Ne beam (from the left-side of the fiber bundle) and the z-axis.

Fig. 5
Fig. 5

In this figure z 0 = 9 cm, P is the point-like light source, FB is the fiber bundle, and S the semi-transparent screen. (a) Almost frontal view showing the cylindrical fiber bundle mounted inside a rectangular support. (b) Lateral view.

Fig. 6
Fig. 6

Intensity distribution on a plane orthogonal to the bundle exit surface across the image of the point P at a distance z 0 = 3.5 cm.

Fig. 7
Fig. 7

(a)-(b) Test symbols illuminated by a UV-LED; (c)-(d) images obtained on an screen at z 0 = 3.5 cm from the bundle exit surface.

Metrics