Abstract

Different designs for producing multiple stopband mesoporous silicon rugate filters via electrochemical anodization are compared. The effects of light absorption and dispersion to visible range filter design are investigated. Thermal oxidation is applied for passivating the chemically reactive porous silicon surface, and the response of the passivated structures to ethanol vapor is examined. Differences in gas sensing properties for the various designs are evaluated and possible reasons for the observed differences are discussed. Methods for sidelobe suppression in multipeak filters are discussed and demonstrated, and their effects in gas sensing applications are estimated.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. T. Canham, “Silicon quantum wire array fabricated by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57, 1046–1048 (1990).
    [CrossRef]
  2. A. Halimaoui, C. Oules, G. Bomchil, A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, and F. Muller, “Electroluminescence in the visible range during anodic oxidation of porous silicon films,” Appl. Phys. Lett. 59, 304–306 (1991).
    [CrossRef]
  3. N. Koshida and H. Koyama, “Visible electroluminescence from porous silicon,” Appl. Phys. Lett. 60, 347–349 (1992).
    [CrossRef]
  4. C. Pickering, M. I. J. Beale, D. J. Robbins, P. J. Pearson, and R. Greef, “Optical properties of porous silicon films,” Thin Solid Films 125, 157–163 (1985).
    [CrossRef]
  5. G. Vincent, “Optical properties of porous silicon superlattices,” Appl. Phys. Lett. 64, 2367–2369 (1994).
    [CrossRef]
  6. M. G. Berger, C. Dieker, M. Thönissen, L. Vescan, H. Lüth, H. Münder, W. Theiss, M. Wernke, and P. Grosse, “Porosity superlattices: a new class of Si heterostructures,” J. Phys. D. 27, 1333–1336 (1994).
    [CrossRef]
  7. M. G. Berger, R. Arens-Fischer, M. Thönissen, M. Krüger, S. Billat, H. Lüth, S. Hilbrich, W. Theiss, and P. Grosse, “Dielectric filters made of PS: advanced performance by oxidation and new layer structures,” Thin Solid Films 297, 237–240 (1997).
    [CrossRef]
  8. V. Torres-Costa and R. J. Martín-Palma, “Application of nanostructured porous silicon in the field of optics. A review,” J. Mater. Sci. 45, 2823–2838 (2010).
    [CrossRef]
  9. I. Schechter, M. Ben-Chorin, and A. Kux, “Gas sensing properties of porous silicon,” Anal. Chem. 67, 3727–3732 (1995).
    [CrossRef]
  10. R. B. Bjorklund, S. Zangooie, and H. Arwin, “Color changes in thin porous silicon films caused by vapor exposure,” Appl. Phys. Lett. 69, 3001–3003 (1996).
    [CrossRef]
  11. P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999).
    [CrossRef]
  12. M. Arroyo-Hernández, R. J. Martín-Palma, V. Torres-Costa, and J. M. Martínez-Duart, “Porous silicon optical filters for biosensing applications,” J. Non-Cryst. Solids 352, 2457–2460 (2006).
    [CrossRef]
  13. B. H. King, A. M. Ruminski, J. L. Snyder, and M. J. Sailor, “Optical-fiber-mounted porous silicon photonic crystals for sensing organic vapor breakthrough in activated carbon,” Adv. Mater. 19, 4530–4534 (2007).
    [CrossRef]
  14. M. S. Salem, M. J. Sailor, K. Fukami, T. Sakka, and Y. H. Ogata, “Sensitivity of porous silicon rugate filters for chemical vapor detection,” J. Appl. Phys. 103, 083516 (2008).
    [CrossRef]
  15. T. Jalkanen, V. Torres-Costa, J. Salonen, M. Bjorkqvist, E. Mäkilä, J. M. Martínez-Duart, and V.-P. Lehto, “Optical gas sensing properties of thermally hydrocarbonized porous silicon Bragg reflectors,” Opt. Express 17, 5446–5456 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-7-5446 .
    [CrossRef] [PubMed]
  16. A. M. Ruminski, M. M. Moore, and M. J. Sailor, “Humidity-compensating sensor for volatile organic compounds using stacked porous silicon photonic crystals,” Adv. Funct. Mater. 18, 3418–3426 (2008).
    [CrossRef]
  17. B. G. Bovard, “Rugate filter theory: an overview,” Appl. Opt. 32, 5427–5442 (1993).
    [CrossRef] [PubMed]
  18. F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41 (2002).
    [CrossRef]
  19. S. O. Meade, M. S. Yoon, K. H. Ahn, and M. J. Sailor, “Porous silicon photonic crystals as encoded microcarriers,” Adv. Mater. 16, 1811–1814 (2004).
    [CrossRef]
  20. E. Lorenzo, C. J. Oton, N. E. Capuj, M. Ghulinyan, D. Navarro-Urrios, Z. Gaburro, and L. Pavesi, “Porous silicon-based rugate filters,” Appl. Opt. 44, 5415–5421 (2005).
    [CrossRef] [PubMed]
  21. N. Ishikura, M. Fujii, K. Nishida, S. Hayashi, and J. Diener, “Dichroic rugate filters based on birefringent porous silicon,” Opt. Express 16, 15531–15539 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-20-15531 .
    [CrossRef] [PubMed]
  22. W. H. Southwell and R. L. Hall, “Rugate filter sidelobe suppression using quintic and rugated quintic matching layers,” Appl. Opt. 28, 2949–2951 (1989).
    [CrossRef] [PubMed]
  23. W. H. Southwell, “Using apodization functions to reduce sidelobes in rugate filters,” Appl. Opt. 28, 5091–5094 (1989).
    [CrossRef] [PubMed]
  24. H. A. Abu-Safia, A. I. Al-Sharif, and I. O. Abu Aljarayesh, “Rugate filter sidelobe suppression using half-apodization,” Appl. Opt. 32, 4831–4835 (1993).
    [CrossRef] [PubMed]
  25. V. Torres-Costa, R. J. Martín-Palma, and J. M. Martínez-Duart, “Optical constants of porous silicon films and multilayers determined by genetic algorithms,” J. Appl. Phys. 96, 4197–4203 (2004).
    [CrossRef]
  26. M. S. Salem, M. J. Sailor, T. Sakka, and Y. H. Ogata, “Electrochemical preparation of a rugate filter in silicon and its deviation from the ideal structure,” J. Appl. Phys. 101, 063503 (2007).
    [CrossRef]
  27. H. A. MacLeod, Thin-film Optical Filters , 2nd. ed. (Adam Hilger Ltd., 1986).
    [CrossRef]
  28. M. Kildemo, O. Hunderi, and B. Drévillon, “Approximation of reflection coefficients for rapid real-time calculation of inhomogenous films,” J. Opt. Soc. Am. A 14, 931–939 (1997).
    [CrossRef]
  29. J. Salonen, K. Saarinen, J. Peura, J. Viinikanoja, I. Salomaa, E. Laine, and J. Kauppinen, “Dispersive Fourier transform spectroscopy of free-standing porous silicon films,” Mater. Res. Soc. Symp. Proc. 486, 323–327, (1998).
    [CrossRef]
  30. T. Jalkanen, J. Tuura, E. Mäkilä, and J. Salonen, “Electro-optical porous silicon gas sensor with enhanced selectivity,” Sens. Actuators B 147, 100–104 (2010).
    [CrossRef]
  31. J. Salonen, V.-P. Lehto, and E. Laine, “Thermal oxidation of free-standing porous silicon films,” Appl. Phys. Lett. 70, 637–639 (1997).
    [CrossRef]
  32. W. H. Southwell, “Graded-index antireflection coatings,” Opt. Lett. 8, 584–586 (1983).
    [CrossRef] [PubMed]
  33. S. Ilias, T. Böcking, K. Kilian, P. J. Reece, J. Gooding, K. Gaus, and M. Gal, “Porous silicon based narrow line-width rugate filters,” Opt. Mater. 29, 619–622 (2007).
    [CrossRef]
  34. E. Delano, “Fourier synthesis of multilayer films,” J. Opt. Soc. Am. 57, 1529–1533 (1967).
    [CrossRef]
  35. B. G. Bovard, “Derivation of a matrix describing a rugate dielectric thin film,” Appl. Opt. 27, 1998–2005 (1988).
    [CrossRef] [PubMed]
  36. B. G. Bovard, “Rugate filter design: the modified Fourier transform technique,” Appl. Opt. 29, 24–30 (1990).
    [CrossRef] [PubMed]

2010 (2)

V. Torres-Costa and R. J. Martín-Palma, “Application of nanostructured porous silicon in the field of optics. A review,” J. Mater. Sci. 45, 2823–2838 (2010).
[CrossRef]

T. Jalkanen, J. Tuura, E. Mäkilä, and J. Salonen, “Electro-optical porous silicon gas sensor with enhanced selectivity,” Sens. Actuators B 147, 100–104 (2010).
[CrossRef]

2008 (2)

M. S. Salem, M. J. Sailor, K. Fukami, T. Sakka, and Y. H. Ogata, “Sensitivity of porous silicon rugate filters for chemical vapor detection,” J. Appl. Phys. 103, 083516 (2008).
[CrossRef]

A. M. Ruminski, M. M. Moore, and M. J. Sailor, “Humidity-compensating sensor for volatile organic compounds using stacked porous silicon photonic crystals,” Adv. Funct. Mater. 18, 3418–3426 (2008).
[CrossRef]

2007 (3)

B. H. King, A. M. Ruminski, J. L. Snyder, and M. J. Sailor, “Optical-fiber-mounted porous silicon photonic crystals for sensing organic vapor breakthrough in activated carbon,” Adv. Mater. 19, 4530–4534 (2007).
[CrossRef]

M. S. Salem, M. J. Sailor, T. Sakka, and Y. H. Ogata, “Electrochemical preparation of a rugate filter in silicon and its deviation from the ideal structure,” J. Appl. Phys. 101, 063503 (2007).
[CrossRef]

S. Ilias, T. Böcking, K. Kilian, P. J. Reece, J. Gooding, K. Gaus, and M. Gal, “Porous silicon based narrow line-width rugate filters,” Opt. Mater. 29, 619–622 (2007).
[CrossRef]

2006 (1)

M. Arroyo-Hernández, R. J. Martín-Palma, V. Torres-Costa, and J. M. Martínez-Duart, “Porous silicon optical filters for biosensing applications,” J. Non-Cryst. Solids 352, 2457–2460 (2006).
[CrossRef]

2005 (1)

2004 (2)

V. Torres-Costa, R. J. Martín-Palma, and J. M. Martínez-Duart, “Optical constants of porous silicon films and multilayers determined by genetic algorithms,” J. Appl. Phys. 96, 4197–4203 (2004).
[CrossRef]

S. O. Meade, M. S. Yoon, K. H. Ahn, and M. J. Sailor, “Porous silicon photonic crystals as encoded microcarriers,” Adv. Mater. 16, 1811–1814 (2004).
[CrossRef]

2002 (1)

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41 (2002).
[CrossRef]

1999 (1)

P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999).
[CrossRef]

1998 (1)

J. Salonen, K. Saarinen, J. Peura, J. Viinikanoja, I. Salomaa, E. Laine, and J. Kauppinen, “Dispersive Fourier transform spectroscopy of free-standing porous silicon films,” Mater. Res. Soc. Symp. Proc. 486, 323–327, (1998).
[CrossRef]

1997 (3)

M. G. Berger, R. Arens-Fischer, M. Thönissen, M. Krüger, S. Billat, H. Lüth, S. Hilbrich, W. Theiss, and P. Grosse, “Dielectric filters made of PS: advanced performance by oxidation and new layer structures,” Thin Solid Films 297, 237–240 (1997).
[CrossRef]

J. Salonen, V.-P. Lehto, and E. Laine, “Thermal oxidation of free-standing porous silicon films,” Appl. Phys. Lett. 70, 637–639 (1997).
[CrossRef]

M. Kildemo, O. Hunderi, and B. Drévillon, “Approximation of reflection coefficients for rapid real-time calculation of inhomogenous films,” J. Opt. Soc. Am. A 14, 931–939 (1997).
[CrossRef]

1996 (1)

R. B. Bjorklund, S. Zangooie, and H. Arwin, “Color changes in thin porous silicon films caused by vapor exposure,” Appl. Phys. Lett. 69, 3001–3003 (1996).
[CrossRef]

1995 (1)

I. Schechter, M. Ben-Chorin, and A. Kux, “Gas sensing properties of porous silicon,” Anal. Chem. 67, 3727–3732 (1995).
[CrossRef]

1994 (2)

G. Vincent, “Optical properties of porous silicon superlattices,” Appl. Phys. Lett. 64, 2367–2369 (1994).
[CrossRef]

M. G. Berger, C. Dieker, M. Thönissen, L. Vescan, H. Lüth, H. Münder, W. Theiss, M. Wernke, and P. Grosse, “Porosity superlattices: a new class of Si heterostructures,” J. Phys. D. 27, 1333–1336 (1994).
[CrossRef]

1993 (2)

1992 (1)

N. Koshida and H. Koyama, “Visible electroluminescence from porous silicon,” Appl. Phys. Lett. 60, 347–349 (1992).
[CrossRef]

1991 (1)

A. Halimaoui, C. Oules, G. Bomchil, A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, and F. Muller, “Electroluminescence in the visible range during anodic oxidation of porous silicon films,” Appl. Phys. Lett. 59, 304–306 (1991).
[CrossRef]

1990 (2)

L. T. Canham, “Silicon quantum wire array fabricated by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57, 1046–1048 (1990).
[CrossRef]

B. G. Bovard, “Rugate filter design: the modified Fourier transform technique,” Appl. Opt. 29, 24–30 (1990).
[CrossRef] [PubMed]

1989 (2)

1988 (1)

1985 (1)

C. Pickering, M. I. J. Beale, D. J. Robbins, P. J. Pearson, and R. Greef, “Optical properties of porous silicon films,” Thin Solid Films 125, 157–163 (1985).
[CrossRef]

1983 (1)

1967 (1)

Abu Aljarayesh, I. O.

Abu-Safia, H. A.

Ahn, K. H.

S. O. Meade, M. S. Yoon, K. H. Ahn, and M. J. Sailor, “Porous silicon photonic crystals as encoded microcarriers,” Adv. Mater. 16, 1811–1814 (2004).
[CrossRef]

Al-Sharif, A. I.

Arens-Fischer, R.

M. G. Berger, R. Arens-Fischer, M. Thönissen, M. Krüger, S. Billat, H. Lüth, S. Hilbrich, W. Theiss, and P. Grosse, “Dielectric filters made of PS: advanced performance by oxidation and new layer structures,” Thin Solid Films 297, 237–240 (1997).
[CrossRef]

Arroyo-Hernández, M.

M. Arroyo-Hernández, R. J. Martín-Palma, V. Torres-Costa, and J. M. Martínez-Duart, “Porous silicon optical filters for biosensing applications,” J. Non-Cryst. Solids 352, 2457–2460 (2006).
[CrossRef]

Arwin, H.

R. B. Bjorklund, S. Zangooie, and H. Arwin, “Color changes in thin porous silicon films caused by vapor exposure,” Appl. Phys. Lett. 69, 3001–3003 (1996).
[CrossRef]

Beale, M. I. J.

C. Pickering, M. I. J. Beale, D. J. Robbins, P. J. Pearson, and R. Greef, “Optical properties of porous silicon films,” Thin Solid Films 125, 157–163 (1985).
[CrossRef]

Ben-Chorin, M.

I. Schechter, M. Ben-Chorin, and A. Kux, “Gas sensing properties of porous silicon,” Anal. Chem. 67, 3727–3732 (1995).
[CrossRef]

Berger, M. G.

M. G. Berger, R. Arens-Fischer, M. Thönissen, M. Krüger, S. Billat, H. Lüth, S. Hilbrich, W. Theiss, and P. Grosse, “Dielectric filters made of PS: advanced performance by oxidation and new layer structures,” Thin Solid Films 297, 237–240 (1997).
[CrossRef]

M. G. Berger, C. Dieker, M. Thönissen, L. Vescan, H. Lüth, H. Münder, W. Theiss, M. Wernke, and P. Grosse, “Porosity superlattices: a new class of Si heterostructures,” J. Phys. D. 27, 1333–1336 (1994).
[CrossRef]

Bhatia, S. N.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41 (2002).
[CrossRef]

Billat, S.

M. G. Berger, R. Arens-Fischer, M. Thönissen, M. Krüger, S. Billat, H. Lüth, S. Hilbrich, W. Theiss, and P. Grosse, “Dielectric filters made of PS: advanced performance by oxidation and new layer structures,” Thin Solid Films 297, 237–240 (1997).
[CrossRef]

Bjorklund, R. B.

R. B. Bjorklund, S. Zangooie, and H. Arwin, “Color changes in thin porous silicon films caused by vapor exposure,” Appl. Phys. Lett. 69, 3001–3003 (1996).
[CrossRef]

Böcking, T.

S. Ilias, T. Böcking, K. Kilian, P. J. Reece, J. Gooding, K. Gaus, and M. Gal, “Porous silicon based narrow line-width rugate filters,” Opt. Mater. 29, 619–622 (2007).
[CrossRef]

Bomchil, G.

A. Halimaoui, C. Oules, G. Bomchil, A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, and F. Muller, “Electroluminescence in the visible range during anodic oxidation of porous silicon films,” Appl. Phys. Lett. 59, 304–306 (1991).
[CrossRef]

Bovard, B. G.

Bsiesy, A.

A. Halimaoui, C. Oules, G. Bomchil, A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, and F. Muller, “Electroluminescence in the visible range during anodic oxidation of porous silicon films,” Appl. Phys. Lett. 59, 304–306 (1991).
[CrossRef]

Canham, L. T.

P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999).
[CrossRef]

L. T. Canham, “Silicon quantum wire array fabricated by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57, 1046–1048 (1990).
[CrossRef]

Capuj, N. E.

Cunin, F.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41 (2002).
[CrossRef]

Delano, E.

Dieker, C.

M. G. Berger, C. Dieker, M. Thönissen, L. Vescan, H. Lüth, H. Münder, W. Theiss, M. Wernke, and P. Grosse, “Porosity superlattices: a new class of Si heterostructures,” J. Phys. D. 27, 1333–1336 (1994).
[CrossRef]

Drévillon, B.

Fukami, K.

M. S. Salem, M. J. Sailor, K. Fukami, T. Sakka, and Y. H. Ogata, “Sensitivity of porous silicon rugate filters for chemical vapor detection,” J. Appl. Phys. 103, 083516 (2008).
[CrossRef]

Gaburro, Z.

Gal, M.

S. Ilias, T. Böcking, K. Kilian, P. J. Reece, J. Gooding, K. Gaus, and M. Gal, “Porous silicon based narrow line-width rugate filters,” Opt. Mater. 29, 619–622 (2007).
[CrossRef]

Gaspard, F.

A. Halimaoui, C. Oules, G. Bomchil, A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, and F. Muller, “Electroluminescence in the visible range during anodic oxidation of porous silicon films,” Appl. Phys. Lett. 59, 304–306 (1991).
[CrossRef]

Gaus, K.

S. Ilias, T. Böcking, K. Kilian, P. J. Reece, J. Gooding, K. Gaus, and M. Gal, “Porous silicon based narrow line-width rugate filters,” Opt. Mater. 29, 619–622 (2007).
[CrossRef]

Ghulinyan, M.

Gooding, J.

S. Ilias, T. Böcking, K. Kilian, P. J. Reece, J. Gooding, K. Gaus, and M. Gal, “Porous silicon based narrow line-width rugate filters,” Opt. Mater. 29, 619–622 (2007).
[CrossRef]

Greef, R.

C. Pickering, M. I. J. Beale, D. J. Robbins, P. J. Pearson, and R. Greef, “Optical properties of porous silicon films,” Thin Solid Films 125, 157–163 (1985).
[CrossRef]

Grosse, P.

M. G. Berger, R. Arens-Fischer, M. Thönissen, M. Krüger, S. Billat, H. Lüth, S. Hilbrich, W. Theiss, and P. Grosse, “Dielectric filters made of PS: advanced performance by oxidation and new layer structures,” Thin Solid Films 297, 237–240 (1997).
[CrossRef]

M. G. Berger, C. Dieker, M. Thönissen, L. Vescan, H. Lüth, H. Münder, W. Theiss, M. Wernke, and P. Grosse, “Porosity superlattices: a new class of Si heterostructures,” J. Phys. D. 27, 1333–1336 (1994).
[CrossRef]

Halimaoui, A.

A. Halimaoui, C. Oules, G. Bomchil, A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, and F. Muller, “Electroluminescence in the visible range during anodic oxidation of porous silicon films,” Appl. Phys. Lett. 59, 304–306 (1991).
[CrossRef]

Hall, R. L.

Herino, R.

A. Halimaoui, C. Oules, G. Bomchil, A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, and F. Muller, “Electroluminescence in the visible range during anodic oxidation of porous silicon films,” Appl. Phys. Lett. 59, 304–306 (1991).
[CrossRef]

Hilbrich, S.

M. G. Berger, R. Arens-Fischer, M. Thönissen, M. Krüger, S. Billat, H. Lüth, S. Hilbrich, W. Theiss, and P. Grosse, “Dielectric filters made of PS: advanced performance by oxidation and new layer structures,” Thin Solid Films 297, 237–240 (1997).
[CrossRef]

Hunderi, O.

Ilias, S.

S. Ilias, T. Böcking, K. Kilian, P. J. Reece, J. Gooding, K. Gaus, and M. Gal, “Porous silicon based narrow line-width rugate filters,” Opt. Mater. 29, 619–622 (2007).
[CrossRef]

Jalkanen, T.

T. Jalkanen, J. Tuura, E. Mäkilä, and J. Salonen, “Electro-optical porous silicon gas sensor with enhanced selectivity,” Sens. Actuators B 147, 100–104 (2010).
[CrossRef]

Kauppinen, J.

J. Salonen, K. Saarinen, J. Peura, J. Viinikanoja, I. Salomaa, E. Laine, and J. Kauppinen, “Dispersive Fourier transform spectroscopy of free-standing porous silicon films,” Mater. Res. Soc. Symp. Proc. 486, 323–327, (1998).
[CrossRef]

Kildemo, M.

Kilian, K.

S. Ilias, T. Böcking, K. Kilian, P. J. Reece, J. Gooding, K. Gaus, and M. Gal, “Porous silicon based narrow line-width rugate filters,” Opt. Mater. 29, 619–622 (2007).
[CrossRef]

King, B. H.

B. H. King, A. M. Ruminski, J. L. Snyder, and M. J. Sailor, “Optical-fiber-mounted porous silicon photonic crystals for sensing organic vapor breakthrough in activated carbon,” Adv. Mater. 19, 4530–4534 (2007).
[CrossRef]

Koh, J.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41 (2002).
[CrossRef]

Koshida, N.

N. Koshida and H. Koyama, “Visible electroluminescence from porous silicon,” Appl. Phys. Lett. 60, 347–349 (1992).
[CrossRef]

Koyama, H.

N. Koshida and H. Koyama, “Visible electroluminescence from porous silicon,” Appl. Phys. Lett. 60, 347–349 (1992).
[CrossRef]

Krüger, M.

M. G. Berger, R. Arens-Fischer, M. Thönissen, M. Krüger, S. Billat, H. Lüth, S. Hilbrich, W. Theiss, and P. Grosse, “Dielectric filters made of PS: advanced performance by oxidation and new layer structures,” Thin Solid Films 297, 237–240 (1997).
[CrossRef]

Kux, A.

I. Schechter, M. Ben-Chorin, and A. Kux, “Gas sensing properties of porous silicon,” Anal. Chem. 67, 3727–3732 (1995).
[CrossRef]

Laine, E.

J. Salonen, K. Saarinen, J. Peura, J. Viinikanoja, I. Salomaa, E. Laine, and J. Kauppinen, “Dispersive Fourier transform spectroscopy of free-standing porous silicon films,” Mater. Res. Soc. Symp. Proc. 486, 323–327, (1998).
[CrossRef]

J. Salonen, V.-P. Lehto, and E. Laine, “Thermal oxidation of free-standing porous silicon films,” Appl. Phys. Lett. 70, 637–639 (1997).
[CrossRef]

Lehto, V.-P.

J. Salonen, V.-P. Lehto, and E. Laine, “Thermal oxidation of free-standing porous silicon films,” Appl. Phys. Lett. 70, 637–639 (1997).
[CrossRef]

Li, Y. Y.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41 (2002).
[CrossRef]

Ligeon, M.

A. Halimaoui, C. Oules, G. Bomchil, A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, and F. Muller, “Electroluminescence in the visible range during anodic oxidation of porous silicon films,” Appl. Phys. Lett. 59, 304–306 (1991).
[CrossRef]

Link, J. R.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41 (2002).
[CrossRef]

Lorenzo, E.

Lüth, H.

M. G. Berger, R. Arens-Fischer, M. Thönissen, M. Krüger, S. Billat, H. Lüth, S. Hilbrich, W. Theiss, and P. Grosse, “Dielectric filters made of PS: advanced performance by oxidation and new layer structures,” Thin Solid Films 297, 237–240 (1997).
[CrossRef]

M. G. Berger, C. Dieker, M. Thönissen, L. Vescan, H. Lüth, H. Münder, W. Theiss, M. Wernke, and P. Grosse, “Porosity superlattices: a new class of Si heterostructures,” J. Phys. D. 27, 1333–1336 (1994).
[CrossRef]

MacLeod, H. A.

H. A. MacLeod, Thin-film Optical Filters , 2nd. ed. (Adam Hilger Ltd., 1986).
[CrossRef]

Mäkilä, E.

T. Jalkanen, J. Tuura, E. Mäkilä, and J. Salonen, “Electro-optical porous silicon gas sensor with enhanced selectivity,” Sens. Actuators B 147, 100–104 (2010).
[CrossRef]

Martínez-Duart, J. M.

M. Arroyo-Hernández, R. J. Martín-Palma, V. Torres-Costa, and J. M. Martínez-Duart, “Porous silicon optical filters for biosensing applications,” J. Non-Cryst. Solids 352, 2457–2460 (2006).
[CrossRef]

V. Torres-Costa, R. J. Martín-Palma, and J. M. Martínez-Duart, “Optical constants of porous silicon films and multilayers determined by genetic algorithms,” J. Appl. Phys. 96, 4197–4203 (2004).
[CrossRef]

Martín-Palma, R. J.

V. Torres-Costa and R. J. Martín-Palma, “Application of nanostructured porous silicon in the field of optics. A review,” J. Mater. Sci. 45, 2823–2838 (2010).
[CrossRef]

M. Arroyo-Hernández, R. J. Martín-Palma, V. Torres-Costa, and J. M. Martínez-Duart, “Porous silicon optical filters for biosensing applications,” J. Non-Cryst. Solids 352, 2457–2460 (2006).
[CrossRef]

V. Torres-Costa, R. J. Martín-Palma, and J. M. Martínez-Duart, “Optical constants of porous silicon films and multilayers determined by genetic algorithms,” J. Appl. Phys. 96, 4197–4203 (2004).
[CrossRef]

Meade, S. O.

S. O. Meade, M. S. Yoon, K. H. Ahn, and M. J. Sailor, “Porous silicon photonic crystals as encoded microcarriers,” Adv. Mater. 16, 1811–1814 (2004).
[CrossRef]

Moore, M. M.

A. M. Ruminski, M. M. Moore, and M. J. Sailor, “Humidity-compensating sensor for volatile organic compounds using stacked porous silicon photonic crystals,” Adv. Funct. Mater. 18, 3418–3426 (2008).
[CrossRef]

Muller, F.

A. Halimaoui, C. Oules, G. Bomchil, A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, and F. Muller, “Electroluminescence in the visible range during anodic oxidation of porous silicon films,” Appl. Phys. Lett. 59, 304–306 (1991).
[CrossRef]

Münder, H.

M. G. Berger, C. Dieker, M. Thönissen, L. Vescan, H. Lüth, H. Münder, W. Theiss, M. Wernke, and P. Grosse, “Porosity superlattices: a new class of Si heterostructures,” J. Phys. D. 27, 1333–1336 (1994).
[CrossRef]

Navarro-Urrios, D.

Ogata, Y. H.

M. S. Salem, M. J. Sailor, K. Fukami, T. Sakka, and Y. H. Ogata, “Sensitivity of porous silicon rugate filters for chemical vapor detection,” J. Appl. Phys. 103, 083516 (2008).
[CrossRef]

M. S. Salem, M. J. Sailor, T. Sakka, and Y. H. Ogata, “Electrochemical preparation of a rugate filter in silicon and its deviation from the ideal structure,” J. Appl. Phys. 101, 063503 (2007).
[CrossRef]

Oton, C. J.

Oules, C.

A. Halimaoui, C. Oules, G. Bomchil, A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, and F. Muller, “Electroluminescence in the visible range during anodic oxidation of porous silicon films,” Appl. Phys. Lett. 59, 304–306 (1991).
[CrossRef]

Pavesi, L.

Pearson, P. J.

C. Pickering, M. I. J. Beale, D. J. Robbins, P. J. Pearson, and R. Greef, “Optical properties of porous silicon films,” Thin Solid Films 125, 157–163 (1985).
[CrossRef]

Peura, J.

J. Salonen, K. Saarinen, J. Peura, J. Viinikanoja, I. Salomaa, E. Laine, and J. Kauppinen, “Dispersive Fourier transform spectroscopy of free-standing porous silicon films,” Mater. Res. Soc. Symp. Proc. 486, 323–327, (1998).
[CrossRef]

Pickering, C.

C. Pickering, M. I. J. Beale, D. J. Robbins, P. J. Pearson, and R. Greef, “Optical properties of porous silicon films,” Thin Solid Films 125, 157–163 (1985).
[CrossRef]

Reece, P. J.

S. Ilias, T. Böcking, K. Kilian, P. J. Reece, J. Gooding, K. Gaus, and M. Gal, “Porous silicon based narrow line-width rugate filters,” Opt. Mater. 29, 619–622 (2007).
[CrossRef]

Robbins, D. J.

C. Pickering, M. I. J. Beale, D. J. Robbins, P. J. Pearson, and R. Greef, “Optical properties of porous silicon films,” Thin Solid Films 125, 157–163 (1985).
[CrossRef]

Ruminski, A. M.

A. M. Ruminski, M. M. Moore, and M. J. Sailor, “Humidity-compensating sensor for volatile organic compounds using stacked porous silicon photonic crystals,” Adv. Funct. Mater. 18, 3418–3426 (2008).
[CrossRef]

B. H. King, A. M. Ruminski, J. L. Snyder, and M. J. Sailor, “Optical-fiber-mounted porous silicon photonic crystals for sensing organic vapor breakthrough in activated carbon,” Adv. Mater. 19, 4530–4534 (2007).
[CrossRef]

Russell, P. St. J.

P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999).
[CrossRef]

Saarinen, K.

J. Salonen, K. Saarinen, J. Peura, J. Viinikanoja, I. Salomaa, E. Laine, and J. Kauppinen, “Dispersive Fourier transform spectroscopy of free-standing porous silicon films,” Mater. Res. Soc. Symp. Proc. 486, 323–327, (1998).
[CrossRef]

Sailor, M. J.

A. M. Ruminski, M. M. Moore, and M. J. Sailor, “Humidity-compensating sensor for volatile organic compounds using stacked porous silicon photonic crystals,” Adv. Funct. Mater. 18, 3418–3426 (2008).
[CrossRef]

M. S. Salem, M. J. Sailor, K. Fukami, T. Sakka, and Y. H. Ogata, “Sensitivity of porous silicon rugate filters for chemical vapor detection,” J. Appl. Phys. 103, 083516 (2008).
[CrossRef]

B. H. King, A. M. Ruminski, J. L. Snyder, and M. J. Sailor, “Optical-fiber-mounted porous silicon photonic crystals for sensing organic vapor breakthrough in activated carbon,” Adv. Mater. 19, 4530–4534 (2007).
[CrossRef]

M. S. Salem, M. J. Sailor, T. Sakka, and Y. H. Ogata, “Electrochemical preparation of a rugate filter in silicon and its deviation from the ideal structure,” J. Appl. Phys. 101, 063503 (2007).
[CrossRef]

S. O. Meade, M. S. Yoon, K. H. Ahn, and M. J. Sailor, “Porous silicon photonic crystals as encoded microcarriers,” Adv. Mater. 16, 1811–1814 (2004).
[CrossRef]

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41 (2002).
[CrossRef]

Sakka, T.

M. S. Salem, M. J. Sailor, K. Fukami, T. Sakka, and Y. H. Ogata, “Sensitivity of porous silicon rugate filters for chemical vapor detection,” J. Appl. Phys. 103, 083516 (2008).
[CrossRef]

M. S. Salem, M. J. Sailor, T. Sakka, and Y. H. Ogata, “Electrochemical preparation of a rugate filter in silicon and its deviation from the ideal structure,” J. Appl. Phys. 101, 063503 (2007).
[CrossRef]

Salem, M. S.

M. S. Salem, M. J. Sailor, K. Fukami, T. Sakka, and Y. H. Ogata, “Sensitivity of porous silicon rugate filters for chemical vapor detection,” J. Appl. Phys. 103, 083516 (2008).
[CrossRef]

M. S. Salem, M. J. Sailor, T. Sakka, and Y. H. Ogata, “Electrochemical preparation of a rugate filter in silicon and its deviation from the ideal structure,” J. Appl. Phys. 101, 063503 (2007).
[CrossRef]

Salomaa, I.

J. Salonen, K. Saarinen, J. Peura, J. Viinikanoja, I. Salomaa, E. Laine, and J. Kauppinen, “Dispersive Fourier transform spectroscopy of free-standing porous silicon films,” Mater. Res. Soc. Symp. Proc. 486, 323–327, (1998).
[CrossRef]

Salonen, J.

T. Jalkanen, J. Tuura, E. Mäkilä, and J. Salonen, “Electro-optical porous silicon gas sensor with enhanced selectivity,” Sens. Actuators B 147, 100–104 (2010).
[CrossRef]

J. Salonen, K. Saarinen, J. Peura, J. Viinikanoja, I. Salomaa, E. Laine, and J. Kauppinen, “Dispersive Fourier transform spectroscopy of free-standing porous silicon films,” Mater. Res. Soc. Symp. Proc. 486, 323–327, (1998).
[CrossRef]

J. Salonen, V.-P. Lehto, and E. Laine, “Thermal oxidation of free-standing porous silicon films,” Appl. Phys. Lett. 70, 637–639 (1997).
[CrossRef]

Schechter, I.

I. Schechter, M. Ben-Chorin, and A. Kux, “Gas sensing properties of porous silicon,” Anal. Chem. 67, 3727–3732 (1995).
[CrossRef]

Schmedake, T. A.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41 (2002).
[CrossRef]

Snow, P. A.

P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999).
[CrossRef]

Snyder, J. L.

B. H. King, A. M. Ruminski, J. L. Snyder, and M. J. Sailor, “Optical-fiber-mounted porous silicon photonic crystals for sensing organic vapor breakthrough in activated carbon,” Adv. Mater. 19, 4530–4534 (2007).
[CrossRef]

Southwell, W. H.

Squire, E. K.

P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999).
[CrossRef]

Theiss, W.

M. G. Berger, R. Arens-Fischer, M. Thönissen, M. Krüger, S. Billat, H. Lüth, S. Hilbrich, W. Theiss, and P. Grosse, “Dielectric filters made of PS: advanced performance by oxidation and new layer structures,” Thin Solid Films 297, 237–240 (1997).
[CrossRef]

M. G. Berger, C. Dieker, M. Thönissen, L. Vescan, H. Lüth, H. Münder, W. Theiss, M. Wernke, and P. Grosse, “Porosity superlattices: a new class of Si heterostructures,” J. Phys. D. 27, 1333–1336 (1994).
[CrossRef]

Thönissen, M.

M. G. Berger, R. Arens-Fischer, M. Thönissen, M. Krüger, S. Billat, H. Lüth, S. Hilbrich, W. Theiss, and P. Grosse, “Dielectric filters made of PS: advanced performance by oxidation and new layer structures,” Thin Solid Films 297, 237–240 (1997).
[CrossRef]

M. G. Berger, C. Dieker, M. Thönissen, L. Vescan, H. Lüth, H. Münder, W. Theiss, M. Wernke, and P. Grosse, “Porosity superlattices: a new class of Si heterostructures,” J. Phys. D. 27, 1333–1336 (1994).
[CrossRef]

Torres-Costa, V.

V. Torres-Costa and R. J. Martín-Palma, “Application of nanostructured porous silicon in the field of optics. A review,” J. Mater. Sci. 45, 2823–2838 (2010).
[CrossRef]

M. Arroyo-Hernández, R. J. Martín-Palma, V. Torres-Costa, and J. M. Martínez-Duart, “Porous silicon optical filters for biosensing applications,” J. Non-Cryst. Solids 352, 2457–2460 (2006).
[CrossRef]

V. Torres-Costa, R. J. Martín-Palma, and J. M. Martínez-Duart, “Optical constants of porous silicon films and multilayers determined by genetic algorithms,” J. Appl. Phys. 96, 4197–4203 (2004).
[CrossRef]

Tuura, J.

T. Jalkanen, J. Tuura, E. Mäkilä, and J. Salonen, “Electro-optical porous silicon gas sensor with enhanced selectivity,” Sens. Actuators B 147, 100–104 (2010).
[CrossRef]

Vescan, L.

M. G. Berger, C. Dieker, M. Thönissen, L. Vescan, H. Lüth, H. Münder, W. Theiss, M. Wernke, and P. Grosse, “Porosity superlattices: a new class of Si heterostructures,” J. Phys. D. 27, 1333–1336 (1994).
[CrossRef]

Viinikanoja, J.

J. Salonen, K. Saarinen, J. Peura, J. Viinikanoja, I. Salomaa, E. Laine, and J. Kauppinen, “Dispersive Fourier transform spectroscopy of free-standing porous silicon films,” Mater. Res. Soc. Symp. Proc. 486, 323–327, (1998).
[CrossRef]

Vincent, G.

G. Vincent, “Optical properties of porous silicon superlattices,” Appl. Phys. Lett. 64, 2367–2369 (1994).
[CrossRef]

Wernke, M.

M. G. Berger, C. Dieker, M. Thönissen, L. Vescan, H. Lüth, H. Münder, W. Theiss, M. Wernke, and P. Grosse, “Porosity superlattices: a new class of Si heterostructures,” J. Phys. D. 27, 1333–1336 (1994).
[CrossRef]

Yoon, M. S.

S. O. Meade, M. S. Yoon, K. H. Ahn, and M. J. Sailor, “Porous silicon photonic crystals as encoded microcarriers,” Adv. Mater. 16, 1811–1814 (2004).
[CrossRef]

Zangooie, S.

R. B. Bjorklund, S. Zangooie, and H. Arwin, “Color changes in thin porous silicon films caused by vapor exposure,” Appl. Phys. Lett. 69, 3001–3003 (1996).
[CrossRef]

Adv. Funct. Mater. (1)

A. M. Ruminski, M. M. Moore, and M. J. Sailor, “Humidity-compensating sensor for volatile organic compounds using stacked porous silicon photonic crystals,” Adv. Funct. Mater. 18, 3418–3426 (2008).
[CrossRef]

Adv. Mater. (2)

S. O. Meade, M. S. Yoon, K. H. Ahn, and M. J. Sailor, “Porous silicon photonic crystals as encoded microcarriers,” Adv. Mater. 16, 1811–1814 (2004).
[CrossRef]

B. H. King, A. M. Ruminski, J. L. Snyder, and M. J. Sailor, “Optical-fiber-mounted porous silicon photonic crystals for sensing organic vapor breakthrough in activated carbon,” Adv. Mater. 19, 4530–4534 (2007).
[CrossRef]

Anal. Chem. (1)

I. Schechter, M. Ben-Chorin, and A. Kux, “Gas sensing properties of porous silicon,” Anal. Chem. 67, 3727–3732 (1995).
[CrossRef]

Appl. Opt. (7)

Appl. Phys. Lett. (6)

J. Salonen, V.-P. Lehto, and E. Laine, “Thermal oxidation of free-standing porous silicon films,” Appl. Phys. Lett. 70, 637–639 (1997).
[CrossRef]

G. Vincent, “Optical properties of porous silicon superlattices,” Appl. Phys. Lett. 64, 2367–2369 (1994).
[CrossRef]

R. B. Bjorklund, S. Zangooie, and H. Arwin, “Color changes in thin porous silicon films caused by vapor exposure,” Appl. Phys. Lett. 69, 3001–3003 (1996).
[CrossRef]

L. T. Canham, “Silicon quantum wire array fabricated by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57, 1046–1048 (1990).
[CrossRef]

A. Halimaoui, C. Oules, G. Bomchil, A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, and F. Muller, “Electroluminescence in the visible range during anodic oxidation of porous silicon films,” Appl. Phys. Lett. 59, 304–306 (1991).
[CrossRef]

N. Koshida and H. Koyama, “Visible electroluminescence from porous silicon,” Appl. Phys. Lett. 60, 347–349 (1992).
[CrossRef]

J. Appl. Phys. (4)

P. A. Snow, E. K. Squire, P. St. J. Russell, and L. T. Canham, “Vapor sensing using the optical properties of porous silicon Bragg mirrors,” J. Appl. Phys. 86, 1781–1784 (1999).
[CrossRef]

M. S. Salem, M. J. Sailor, K. Fukami, T. Sakka, and Y. H. Ogata, “Sensitivity of porous silicon rugate filters for chemical vapor detection,” J. Appl. Phys. 103, 083516 (2008).
[CrossRef]

V. Torres-Costa, R. J. Martín-Palma, and J. M. Martínez-Duart, “Optical constants of porous silicon films and multilayers determined by genetic algorithms,” J. Appl. Phys. 96, 4197–4203 (2004).
[CrossRef]

M. S. Salem, M. J. Sailor, T. Sakka, and Y. H. Ogata, “Electrochemical preparation of a rugate filter in silicon and its deviation from the ideal structure,” J. Appl. Phys. 101, 063503 (2007).
[CrossRef]

J. Mater. Sci. (1)

V. Torres-Costa and R. J. Martín-Palma, “Application of nanostructured porous silicon in the field of optics. A review,” J. Mater. Sci. 45, 2823–2838 (2010).
[CrossRef]

J. Non-Cryst. Solids (1)

M. Arroyo-Hernández, R. J. Martín-Palma, V. Torres-Costa, and J. M. Martínez-Duart, “Porous silicon optical filters for biosensing applications,” J. Non-Cryst. Solids 352, 2457–2460 (2006).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Phys. D. (1)

M. G. Berger, C. Dieker, M. Thönissen, L. Vescan, H. Lüth, H. Münder, W. Theiss, M. Wernke, and P. Grosse, “Porosity superlattices: a new class of Si heterostructures,” J. Phys. D. 27, 1333–1336 (1994).
[CrossRef]

Mater. Res. Soc. Symp. Proc. (1)

J. Salonen, K. Saarinen, J. Peura, J. Viinikanoja, I. Salomaa, E. Laine, and J. Kauppinen, “Dispersive Fourier transform spectroscopy of free-standing porous silicon films,” Mater. Res. Soc. Symp. Proc. 486, 323–327, (1998).
[CrossRef]

Nat. Mater. (1)

F. Cunin, T. A. Schmedake, J. R. Link, Y. Y. Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41 (2002).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. (1)

S. Ilias, T. Böcking, K. Kilian, P. J. Reece, J. Gooding, K. Gaus, and M. Gal, “Porous silicon based narrow line-width rugate filters,” Opt. Mater. 29, 619–622 (2007).
[CrossRef]

Sens. Actuators B (1)

T. Jalkanen, J. Tuura, E. Mäkilä, and J. Salonen, “Electro-optical porous silicon gas sensor with enhanced selectivity,” Sens. Actuators B 147, 100–104 (2010).
[CrossRef]

Thin Solid Films (2)

M. G. Berger, R. Arens-Fischer, M. Thönissen, M. Krüger, S. Billat, H. Lüth, S. Hilbrich, W. Theiss, and P. Grosse, “Dielectric filters made of PS: advanced performance by oxidation and new layer structures,” Thin Solid Films 297, 237–240 (1997).
[CrossRef]

C. Pickering, M. I. J. Beale, D. J. Robbins, P. J. Pearson, and R. Greef, “Optical properties of porous silicon films,” Thin Solid Films 125, 157–163 (1985).
[CrossRef]

Other (3)

T. Jalkanen, V. Torres-Costa, J. Salonen, M. Bjorkqvist, E. Mäkilä, J. M. Martínez-Duart, and V.-P. Lehto, “Optical gas sensing properties of thermally hydrocarbonized porous silicon Bragg reflectors,” Opt. Express 17, 5446–5456 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-7-5446 .
[CrossRef] [PubMed]

N. Ishikura, M. Fujii, K. Nishida, S. Hayashi, and J. Diener, “Dichroic rugate filters based on birefringent porous silicon,” Opt. Express 16, 15531–15539 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-20-15531 .
[CrossRef] [PubMed]

H. A. MacLeod, Thin-film Optical Filters , 2nd. ed. (Adam Hilger Ltd., 1986).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Reflectance spectra for two PS rugate filters prepared with a sinusoidal anodization current oscillating between 49.4 and 89.9 mA/cm2. The period durations were (a) 3 s and (b) 5 s, with the total preparation times being 180 and 200 s, respectively.

Fig. 2
Fig. 2

Reflectance spectra for two distinct dual-peak PS rugate filters prepared by stacking two filters similar to the ones shown in Fig. 1 on top of each other. (a) A filter prepared with similar parameters as the one shown in Fig. 1 (a) is on top, and a filter shown in Fig. 1 (b) is at the bottom. (b) The stacking order for the filters is reversed. The reflective peak originating from the bottom filter is completely invisible due to light absorption at the lower wavelength range. Existence of the lower filter only manifests irregularities in the sidelobe fringe pattern.

Fig. 3
Fig. 3

Imaginary part of the porous silicon refractive index determined for an as-anodized sample produced with 88.6 mA/cm2 anodization current density. The extinction coefficient for lower wavelengths increases considerably. This behaviour is analogous to crystalline silicon refractive index.

Fig. 4
Fig. 4

Rugate filters displaying two reflective peaks produced with different current profiles ((a) linear combination of two sine waves, (b) successive sine waves with different periodicity, (c) successive sine waves with different periodicity and offset level). The insets display schematic profiles for the anodization current density J. Solid and dashed lines represent the measured reflectance spectra before and after thermal oxidation, respectively.

Fig. 5
Fig. 5

Real part of the refractive index for as-anodized and thermally oxidized porous silicon.

Fig. 6
Fig. 6

Recorded redshifts induced by 8012 ± 172 ppm of ethanol vapor, measured for dual-peak rugate filters produced with an anodization current density profile composed of two sine waves with different amplitude and periodicity, (a) in superposition (sample S1), (b) as successive waves, i.e. stacked structure (sample S2). Peak 1 refers to the lower wavelength peaks around 500 nm, whereas peak 2 shows the redshift values obtained for the higher wavelength reflective peak.

Fig. 7
Fig. 7

Response of two stacked dual-peak filters to 8012 ± 172 ppm of ethanol vapor. The filters were produced with identical anodization parameters (sample S3).

Fig. 8
Fig. 8

Effect of quintic refractive index matching layers to the reflectance spectra of multipeak PS rugate filters. (a) Reflectance spectra for stacked dual-peak rugate filters, where the upper spectrum is obtained for a sample without quintic matching layers. The sample with quintic matching layers incorporated in the design (below) displays significant side-lobe suppression. (b) Reflectance spectra for superimposed triple-peak rugate filters, with (lower spectrum) and without (upper spectrum) quintic matching layers. The insets display the anodization current density profiles J(t) for the samples including quintic refractive index matching layers.

Fig. 9
Fig. 9

Cross-sectional SEM micrograph of a stacked dual-peak PS rugate filter with quintic refractive index matching layers. The arrow indicates the interface between the filter layers. The scale bar at the bottom equals 2 μm.

Fig. 10
Fig. 10

Three single-line rugate filters with (a) normal sinusoidal profile, (b) sinusoidal profile with Gaussian apodization, and (c) sinusoidal profile with Gaussian apodization and quintic refractive index matching layers incorporated at the beginning and end of the anodization current profile.

Fig. 11
Fig. 11

Response of stacked PS rugate filters to 8012 ± 172 ppm of ethanol vapor. The incorporation of quintic refractive index matching layers does not affect the response time and sensitivity of the porous structure.

Tables (2)

Tables Icon

Table 1 Anodization parameters for the PS rugate filters shown in Fig. 4

Tables Icon

Table 2 Anodization parameters for a superimposed triple-peak PS rugate filter. The offset current density was 88.6 mA/cm2 with the total anodization time being 240 s. The reflectance spectrum for a filter obtained with these parameters is shown in Fig. 8 (b).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ λ λ 0 = 1 2 ln η M η m ,
J ( t ) = J off + i = 1 m A i sin ( 2 π t p i + ϕ i ) ,
n = n 1 + ( n 2 n 1 ) ( 10 a 3 15 a 4 + 6 a 5 ) ,

Metrics