Abstract

We elucidate that the luminescence from Eu3+-doped phosphor excited by the electron collision can be modified on location near the metallic nanoparticles. The Eu3+-doped phosphor was fabricated on the nanoscaled Ag particles ranging of 5 nm to 30 nm diameter. As a result of the cathodoluminescence measurements, the phosphor films on the Ag particles showed up to twofold more than that of an isolated phosphor film. Enhanced cathodoluminescence originated from the resonant coupling between the localized surface plasmon of Ag nanoparticles and radiating energy of the phosphor. Cathodoluminescent phosphor for high luminous display devices can be addressed by locating phosphor near the surface of metallic nanoparticles.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Lee and K. C. Choi, “Enhanced emission from BaMgAl10O17:Eu2+ by localized surface plasmon resonance of silver particles,” Opt. Express 18(12), 12144–12152 (2010).
    [CrossRef] [PubMed]
  2. J. R. Lakowicz, “Plasmonics in biology and plasmon-controlled fluorescence,” Plasmonics 1(1), 5–33 (2006).
    [CrossRef] [PubMed]
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  4. B. Moine and G. Bizarri, “Rare-earth doped phosphors: oldies or goldies?” Mater. Sci. Eng. B 105(1-3), 2–7 (2003).
    [CrossRef]
  5. T. Hayakawa, K. Furuhashi, and M. Nogami, “Enhancement of 5D0-7FJ emissions of Eu3+ ions in the vicinity of polymer-protected Au nanoparticles in sol−gel-derived B2O3−SiO2 glass,” J. Phys. Chem. B 108(31), 11301–11307 (2004).
    [CrossRef]
  6. R. Reisfeld, M. Pietraszkiewicz, T. Saraidarov, and V. Levchenko, “Luminescence intensification of lanthanide complexes by silver nanoparticles incorporated in sol-gel matrix,” J. Rare Earths 27(4), 544–549 (2009).
    [CrossRef]
  7. J. Zhu, “Enhanced fluorescence from Dy3+ owing to surface plasmon resonance of Au colloid nanoparticles,” Mater. Lett. 59(11), 1413–1416 (2005).
    [CrossRef]
  8. X. Fang, H. Song, L. Xie, Q. Liu, H. Zhang, X. Bai, B. Dong, Y. Wang, and W. Han, “Origin of luminescence enhancement and quenching of europium complex in solution phase containing Ag nanoparticles,” J. Chem. Phys. 131(5), 054506 (2009).
    [CrossRef] [PubMed]
  9. Y. Wang, J. Zhou, and T. Wang, “Enhanced luminescence from europium complex owing to surface plasmon resonance of silver nanoparticles,” Mater. Lett. 62(12-13), 1937–1940 (2008).
    [CrossRef]
  10. K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: cathode structure for plasmonic application,” Appl. Phys. Lett. 94(17), 173301 (2009).
    [CrossRef]
  11. K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced energy transfer in an organic light-emitting device structure,” Opt. Express 17(14), 11495–11504 (2009).
    [CrossRef] [PubMed]
  12. W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. (Deerfield Beach Fla.) 19(22), 3771–3782 (2007).
    [CrossRef]
  13. K. H. Cho, S. I. Ahn, S. M. Lee, C. S. Choi, and K. C. Choi, “Surface plasmonic controllable enhanced emission from the intrachain and interchain excitons of a conjugated polymer,” Appl. Phys. Lett. 97(19), 193306 (2010).
    [CrossRef]
  14. J. H. Kang, M. Nazarov, W. B. Im, J. Y. Kim, and D. Y. Jeon, “Characterization of nano-size YVO4:Eu and (Y,Gd)VO4:Eu phosphors by low voltage cathodo- and photoluminescence,” J. Vac. Sci. Technol. B 23(2), 843–848 (2005).
    [CrossRef]
  15. C. C. Wu, K. B. Chen, C. S. Lee, T. M. Chen, and B. M. Cheng, “Synthesis and VUV photoluminescence characterization of (Y, Gd)(V, P)O4:Eu3+ as a potential red-emitting PDP phosphor,” Chem. Mater. 19(13), 3278–3285 (2007).
    [CrossRef]
  16. A. K. Levine and F. C. Palilla, “A new, highly efficient red-emitting cathodoluminescent phosphor (YVO4:Eu) for color television,” Appl. Phys. Lett. 5(6), 118–120 (1964).
    [CrossRef]
  17. T. Hayakawa, S. T. Selvan, and M. Nogami, “Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass,” Appl. Phys. Lett. 74(11), 1513–1515 (1999).
    [CrossRef]
  18. V. Bulović, V. Khalfin, G. Gu, P. Burrows, D. Garbuzov, and S. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
    [CrossRef]
  19. K. Matsubara, H. Tampo, H. Shibata, A. Yamada, P. Fons, K. Iwata, and S. Niki, “Band-gap modified Al-doped Zn1−xMgxO transparent conducting films deposited by pulsed laser deposition,” Appl. Phys. Lett. 85(8), 1374–1376 (2004).
    [CrossRef]
  20. T. Hayakawa, S. Tamil Selvan, and M. Nogami, “Enhanced fluorescence from Eu3+ owing to surface plasma oscillation of silver particles in glass,” J. Non-Cryst. Solids 259(1-3), 16–22 (1999).
    [CrossRef]
  21. M. S. Elmanharawy, A. H. Eid, and A. A. Kader, “Spectra of europium-doped yttrium oxide and yttrium vanadate phosphors,” Czech. J. Phys. 28(10), 1164–1173 (1978).
    [CrossRef]
  22. N. Noginova, Y. Barnakov, H. Li, and M. A. Noginov, “Effect of metallic surface on electric dipole and magnetic dipole emission transitions in Eu3+ doped polymeric film,” Opt. Express 17(13), 10767–10772 (2009).
    [CrossRef] [PubMed]
  23. B. J. Lawrie, R. F. Haglund, and R. Mu, “Enhancement of ZnO photoluminescence by localized and propagating surface plasmons,” Opt. Express 17(4), 2565–2572 (2009).
    [CrossRef] [PubMed]
  24. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced super bright InGaN light emitter,” Phys. Status Solidi C 2(7), 2841–2844 (2005).
    [CrossRef]
  25. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
    [CrossRef] [PubMed]

2010 (2)

K. H. Cho, S. I. Ahn, S. M. Lee, C. S. Choi, and K. C. Choi, “Surface plasmonic controllable enhanced emission from the intrachain and interchain excitons of a conjugated polymer,” Appl. Phys. Lett. 97(19), 193306 (2010).
[CrossRef]

S. M. Lee and K. C. Choi, “Enhanced emission from BaMgAl10O17:Eu2+ by localized surface plasmon resonance of silver particles,” Opt. Express 18(12), 12144–12152 (2010).
[CrossRef] [PubMed]

2009 (6)

B. J. Lawrie, R. F. Haglund, and R. Mu, “Enhancement of ZnO photoluminescence by localized and propagating surface plasmons,” Opt. Express 17(4), 2565–2572 (2009).
[CrossRef] [PubMed]

N. Noginova, Y. Barnakov, H. Li, and M. A. Noginov, “Effect of metallic surface on electric dipole and magnetic dipole emission transitions in Eu3+ doped polymeric film,” Opt. Express 17(13), 10767–10772 (2009).
[CrossRef] [PubMed]

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced energy transfer in an organic light-emitting device structure,” Opt. Express 17(14), 11495–11504 (2009).
[CrossRef] [PubMed]

R. Reisfeld, M. Pietraszkiewicz, T. Saraidarov, and V. Levchenko, “Luminescence intensification of lanthanide complexes by silver nanoparticles incorporated in sol-gel matrix,” J. Rare Earths 27(4), 544–549 (2009).
[CrossRef]

X. Fang, H. Song, L. Xie, Q. Liu, H. Zhang, X. Bai, B. Dong, Y. Wang, and W. Han, “Origin of luminescence enhancement and quenching of europium complex in solution phase containing Ag nanoparticles,” J. Chem. Phys. 131(5), 054506 (2009).
[CrossRef] [PubMed]

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: cathode structure for plasmonic application,” Appl. Phys. Lett. 94(17), 173301 (2009).
[CrossRef]

2008 (1)

Y. Wang, J. Zhou, and T. Wang, “Enhanced luminescence from europium complex owing to surface plasmon resonance of silver nanoparticles,” Mater. Lett. 62(12-13), 1937–1940 (2008).
[CrossRef]

2007 (2)

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. (Deerfield Beach Fla.) 19(22), 3771–3782 (2007).
[CrossRef]

C. C. Wu, K. B. Chen, C. S. Lee, T. M. Chen, and B. M. Cheng, “Synthesis and VUV photoluminescence characterization of (Y, Gd)(V, P)O4:Eu3+ as a potential red-emitting PDP phosphor,” Chem. Mater. 19(13), 3278–3285 (2007).
[CrossRef]

2006 (2)

J. R. Lakowicz, “Plasmonics in biology and plasmon-controlled fluorescence,” Plasmonics 1(1), 5–33 (2006).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

2005 (3)

J. Zhu, “Enhanced fluorescence from Dy3+ owing to surface plasmon resonance of Au colloid nanoparticles,” Mater. Lett. 59(11), 1413–1416 (2005).
[CrossRef]

J. H. Kang, M. Nazarov, W. B. Im, J. Y. Kim, and D. Y. Jeon, “Characterization of nano-size YVO4:Eu and (Y,Gd)VO4:Eu phosphors by low voltage cathodo- and photoluminescence,” J. Vac. Sci. Technol. B 23(2), 843–848 (2005).
[CrossRef]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced super bright InGaN light emitter,” Phys. Status Solidi C 2(7), 2841–2844 (2005).
[CrossRef]

2004 (3)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

T. Hayakawa, K. Furuhashi, and M. Nogami, “Enhancement of 5D0-7FJ emissions of Eu3+ ions in the vicinity of polymer-protected Au nanoparticles in sol−gel-derived B2O3−SiO2 glass,” J. Phys. Chem. B 108(31), 11301–11307 (2004).
[CrossRef]

K. Matsubara, H. Tampo, H. Shibata, A. Yamada, P. Fons, K. Iwata, and S. Niki, “Band-gap modified Al-doped Zn1−xMgxO transparent conducting films deposited by pulsed laser deposition,” Appl. Phys. Lett. 85(8), 1374–1376 (2004).
[CrossRef]

2003 (1)

B. Moine and G. Bizarri, “Rare-earth doped phosphors: oldies or goldies?” Mater. Sci. Eng. B 105(1-3), 2–7 (2003).
[CrossRef]

1999 (2)

T. Hayakawa, S. Tamil Selvan, and M. Nogami, “Enhanced fluorescence from Eu3+ owing to surface plasma oscillation of silver particles in glass,” J. Non-Cryst. Solids 259(1-3), 16–22 (1999).
[CrossRef]

T. Hayakawa, S. T. Selvan, and M. Nogami, “Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass,” Appl. Phys. Lett. 74(11), 1513–1515 (1999).
[CrossRef]

1998 (1)

V. Bulović, V. Khalfin, G. Gu, P. Burrows, D. Garbuzov, and S. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[CrossRef]

1978 (1)

M. S. Elmanharawy, A. H. Eid, and A. A. Kader, “Spectra of europium-doped yttrium oxide and yttrium vanadate phosphors,” Czech. J. Phys. 28(10), 1164–1173 (1978).
[CrossRef]

1964 (1)

A. K. Levine and F. C. Palilla, “A new, highly efficient red-emitting cathodoluminescent phosphor (YVO4:Eu) for color television,” Appl. Phys. Lett. 5(6), 118–120 (1964).
[CrossRef]

Ahn, C. W.

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: cathode structure for plasmonic application,” Appl. Phys. Lett. 94(17), 173301 (2009).
[CrossRef]

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced energy transfer in an organic light-emitting device structure,” Opt. Express 17(14), 11495–11504 (2009).
[CrossRef] [PubMed]

Ahn, S. I.

K. H. Cho, S. I. Ahn, S. M. Lee, C. S. Choi, and K. C. Choi, “Surface plasmonic controllable enhanced emission from the intrachain and interchain excitons of a conjugated polymer,” Appl. Phys. Lett. 97(19), 193306 (2010).
[CrossRef]

Bai, X.

X. Fang, H. Song, L. Xie, Q. Liu, H. Zhang, X. Bai, B. Dong, Y. Wang, and W. Han, “Origin of luminescence enhancement and quenching of europium complex in solution phase containing Ag nanoparticles,” J. Chem. Phys. 131(5), 054506 (2009).
[CrossRef] [PubMed]

Barnakov, Y.

Barnes, W. L.

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. (Deerfield Beach Fla.) 19(22), 3771–3782 (2007).
[CrossRef]

Bizarri, G.

B. Moine and G. Bizarri, “Rare-earth doped phosphors: oldies or goldies?” Mater. Sci. Eng. B 105(1-3), 2–7 (2003).
[CrossRef]

Bulovic, V.

V. Bulović, V. Khalfin, G. Gu, P. Burrows, D. Garbuzov, and S. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[CrossRef]

Burrows, P.

V. Bulović, V. Khalfin, G. Gu, P. Burrows, D. Garbuzov, and S. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[CrossRef]

Chen, K. B.

C. C. Wu, K. B. Chen, C. S. Lee, T. M. Chen, and B. M. Cheng, “Synthesis and VUV photoluminescence characterization of (Y, Gd)(V, P)O4:Eu3+ as a potential red-emitting PDP phosphor,” Chem. Mater. 19(13), 3278–3285 (2007).
[CrossRef]

Chen, T. M.

C. C. Wu, K. B. Chen, C. S. Lee, T. M. Chen, and B. M. Cheng, “Synthesis and VUV photoluminescence characterization of (Y, Gd)(V, P)O4:Eu3+ as a potential red-emitting PDP phosphor,” Chem. Mater. 19(13), 3278–3285 (2007).
[CrossRef]

Cheng, B. M.

C. C. Wu, K. B. Chen, C. S. Lee, T. M. Chen, and B. M. Cheng, “Synthesis and VUV photoluminescence characterization of (Y, Gd)(V, P)O4:Eu3+ as a potential red-emitting PDP phosphor,” Chem. Mater. 19(13), 3278–3285 (2007).
[CrossRef]

Cho, K. H.

K. H. Cho, S. I. Ahn, S. M. Lee, C. S. Choi, and K. C. Choi, “Surface plasmonic controllable enhanced emission from the intrachain and interchain excitons of a conjugated polymer,” Appl. Phys. Lett. 97(19), 193306 (2010).
[CrossRef]

Choi, C. S.

K. H. Cho, S. I. Ahn, S. M. Lee, C. S. Choi, and K. C. Choi, “Surface plasmonic controllable enhanced emission from the intrachain and interchain excitons of a conjugated polymer,” Appl. Phys. Lett. 97(19), 193306 (2010).
[CrossRef]

Choi, K. C.

K. H. Cho, S. I. Ahn, S. M. Lee, C. S. Choi, and K. C. Choi, “Surface plasmonic controllable enhanced emission from the intrachain and interchain excitons of a conjugated polymer,” Appl. Phys. Lett. 97(19), 193306 (2010).
[CrossRef]

S. M. Lee and K. C. Choi, “Enhanced emission from BaMgAl10O17:Eu2+ by localized surface plasmon resonance of silver particles,” Opt. Express 18(12), 12144–12152 (2010).
[CrossRef] [PubMed]

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: cathode structure for plasmonic application,” Appl. Phys. Lett. 94(17), 173301 (2009).
[CrossRef]

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced energy transfer in an organic light-emitting device structure,” Opt. Express 17(14), 11495–11504 (2009).
[CrossRef] [PubMed]

Dong, B.

X. Fang, H. Song, L. Xie, Q. Liu, H. Zhang, X. Bai, B. Dong, Y. Wang, and W. Han, “Origin of luminescence enhancement and quenching of europium complex in solution phase containing Ag nanoparticles,” J. Chem. Phys. 131(5), 054506 (2009).
[CrossRef] [PubMed]

Eid, A. H.

M. S. Elmanharawy, A. H. Eid, and A. A. Kader, “Spectra of europium-doped yttrium oxide and yttrium vanadate phosphors,” Czech. J. Phys. 28(10), 1164–1173 (1978).
[CrossRef]

Elmanharawy, M. S.

M. S. Elmanharawy, A. H. Eid, and A. A. Kader, “Spectra of europium-doped yttrium oxide and yttrium vanadate phosphors,” Czech. J. Phys. 28(10), 1164–1173 (1978).
[CrossRef]

Fang, X.

X. Fang, H. Song, L. Xie, Q. Liu, H. Zhang, X. Bai, B. Dong, Y. Wang, and W. Han, “Origin of luminescence enhancement and quenching of europium complex in solution phase containing Ag nanoparticles,” J. Chem. Phys. 131(5), 054506 (2009).
[CrossRef] [PubMed]

Fons, P.

K. Matsubara, H. Tampo, H. Shibata, A. Yamada, P. Fons, K. Iwata, and S. Niki, “Band-gap modified Al-doped Zn1−xMgxO transparent conducting films deposited by pulsed laser deposition,” Appl. Phys. Lett. 85(8), 1374–1376 (2004).
[CrossRef]

Forrest, S.

V. Bulović, V. Khalfin, G. Gu, P. Burrows, D. Garbuzov, and S. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[CrossRef]

Furuhashi, K.

T. Hayakawa, K. Furuhashi, and M. Nogami, “Enhancement of 5D0-7FJ emissions of Eu3+ ions in the vicinity of polymer-protected Au nanoparticles in sol−gel-derived B2O3−SiO2 glass,” J. Phys. Chem. B 108(31), 11301–11307 (2004).
[CrossRef]

Garbuzov, D.

V. Bulović, V. Khalfin, G. Gu, P. Burrows, D. Garbuzov, and S. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[CrossRef]

Gu, G.

V. Bulović, V. Khalfin, G. Gu, P. Burrows, D. Garbuzov, and S. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[CrossRef]

Haglund, R. F.

Han, W.

X. Fang, H. Song, L. Xie, Q. Liu, H. Zhang, X. Bai, B. Dong, Y. Wang, and W. Han, “Origin of luminescence enhancement and quenching of europium complex in solution phase containing Ag nanoparticles,” J. Chem. Phys. 131(5), 054506 (2009).
[CrossRef] [PubMed]

Hayakawa, T.

T. Hayakawa, K. Furuhashi, and M. Nogami, “Enhancement of 5D0-7FJ emissions of Eu3+ ions in the vicinity of polymer-protected Au nanoparticles in sol−gel-derived B2O3−SiO2 glass,” J. Phys. Chem. B 108(31), 11301–11307 (2004).
[CrossRef]

T. Hayakawa, S. Tamil Selvan, and M. Nogami, “Enhanced fluorescence from Eu3+ owing to surface plasma oscillation of silver particles in glass,” J. Non-Cryst. Solids 259(1-3), 16–22 (1999).
[CrossRef]

T. Hayakawa, S. T. Selvan, and M. Nogami, “Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass,” Appl. Phys. Lett. 74(11), 1513–1515 (1999).
[CrossRef]

Im, W. B.

J. H. Kang, M. Nazarov, W. B. Im, J. Y. Kim, and D. Y. Jeon, “Characterization of nano-size YVO4:Eu and (Y,Gd)VO4:Eu phosphors by low voltage cathodo- and photoluminescence,” J. Vac. Sci. Technol. B 23(2), 843–848 (2005).
[CrossRef]

Iwata, K.

K. Matsubara, H. Tampo, H. Shibata, A. Yamada, P. Fons, K. Iwata, and S. Niki, “Band-gap modified Al-doped Zn1−xMgxO transparent conducting films deposited by pulsed laser deposition,” Appl. Phys. Lett. 85(8), 1374–1376 (2004).
[CrossRef]

Jeon, D. Y.

J. H. Kang, M. Nazarov, W. B. Im, J. Y. Kim, and D. Y. Jeon, “Characterization of nano-size YVO4:Eu and (Y,Gd)VO4:Eu phosphors by low voltage cathodo- and photoluminescence,” J. Vac. Sci. Technol. B 23(2), 843–848 (2005).
[CrossRef]

Kader, A. A.

M. S. Elmanharawy, A. H. Eid, and A. A. Kader, “Spectra of europium-doped yttrium oxide and yttrium vanadate phosphors,” Czech. J. Phys. 28(10), 1164–1173 (1978).
[CrossRef]

Kang, J. H.

J. H. Kang, M. Nazarov, W. B. Im, J. Y. Kim, and D. Y. Jeon, “Characterization of nano-size YVO4:Eu and (Y,Gd)VO4:Eu phosphors by low voltage cathodo- and photoluminescence,” J. Vac. Sci. Technol. B 23(2), 843–848 (2005).
[CrossRef]

Khalfin, V.

V. Bulović, V. Khalfin, G. Gu, P. Burrows, D. Garbuzov, and S. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[CrossRef]

Kim, J. Y.

J. H. Kang, M. Nazarov, W. B. Im, J. Y. Kim, and D. Y. Jeon, “Characterization of nano-size YVO4:Eu and (Y,Gd)VO4:Eu phosphors by low voltage cathodo- and photoluminescence,” J. Vac. Sci. Technol. B 23(2), 843–848 (2005).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, “Plasmonics in biology and plasmon-controlled fluorescence,” Plasmonics 1(1), 5–33 (2006).
[CrossRef] [PubMed]

Lawrie, B. J.

Lee, C. S.

C. C. Wu, K. B. Chen, C. S. Lee, T. M. Chen, and B. M. Cheng, “Synthesis and VUV photoluminescence characterization of (Y, Gd)(V, P)O4:Eu3+ as a potential red-emitting PDP phosphor,” Chem. Mater. 19(13), 3278–3285 (2007).
[CrossRef]

Lee, S. M.

S. M. Lee and K. C. Choi, “Enhanced emission from BaMgAl10O17:Eu2+ by localized surface plasmon resonance of silver particles,” Opt. Express 18(12), 12144–12152 (2010).
[CrossRef] [PubMed]

K. H. Cho, S. I. Ahn, S. M. Lee, C. S. Choi, and K. C. Choi, “Surface plasmonic controllable enhanced emission from the intrachain and interchain excitons of a conjugated polymer,” Appl. Phys. Lett. 97(19), 193306 (2010).
[CrossRef]

Levchenko, V.

R. Reisfeld, M. Pietraszkiewicz, T. Saraidarov, and V. Levchenko, “Luminescence intensification of lanthanide complexes by silver nanoparticles incorporated in sol-gel matrix,” J. Rare Earths 27(4), 544–549 (2009).
[CrossRef]

Levine, A. K.

A. K. Levine and F. C. Palilla, “A new, highly efficient red-emitting cathodoluminescent phosphor (YVO4:Eu) for color television,” Appl. Phys. Lett. 5(6), 118–120 (1964).
[CrossRef]

Li, H.

Liu, Q.

X. Fang, H. Song, L. Xie, Q. Liu, H. Zhang, X. Bai, B. Dong, Y. Wang, and W. Han, “Origin of luminescence enhancement and quenching of europium complex in solution phase containing Ag nanoparticles,” J. Chem. Phys. 131(5), 054506 (2009).
[CrossRef] [PubMed]

Matsubara, K.

K. Matsubara, H. Tampo, H. Shibata, A. Yamada, P. Fons, K. Iwata, and S. Niki, “Band-gap modified Al-doped Zn1−xMgxO transparent conducting films deposited by pulsed laser deposition,” Appl. Phys. Lett. 85(8), 1374–1376 (2004).
[CrossRef]

Moine, B.

B. Moine and G. Bizarri, “Rare-earth doped phosphors: oldies or goldies?” Mater. Sci. Eng. B 105(1-3), 2–7 (2003).
[CrossRef]

Mu, R.

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced super bright InGaN light emitter,” Phys. Status Solidi C 2(7), 2841–2844 (2005).
[CrossRef]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Murray, W. A.

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. (Deerfield Beach Fla.) 19(22), 3771–3782 (2007).
[CrossRef]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced super bright InGaN light emitter,” Phys. Status Solidi C 2(7), 2841–2844 (2005).
[CrossRef]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Nazarov, M.

J. H. Kang, M. Nazarov, W. B. Im, J. Y. Kim, and D. Y. Jeon, “Characterization of nano-size YVO4:Eu and (Y,Gd)VO4:Eu phosphors by low voltage cathodo- and photoluminescence,” J. Vac. Sci. Technol. B 23(2), 843–848 (2005).
[CrossRef]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced super bright InGaN light emitter,” Phys. Status Solidi C 2(7), 2841–2844 (2005).
[CrossRef]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Niki, S.

K. Matsubara, H. Tampo, H. Shibata, A. Yamada, P. Fons, K. Iwata, and S. Niki, “Band-gap modified Al-doped Zn1−xMgxO transparent conducting films deposited by pulsed laser deposition,” Appl. Phys. Lett. 85(8), 1374–1376 (2004).
[CrossRef]

Nogami, M.

T. Hayakawa, K. Furuhashi, and M. Nogami, “Enhancement of 5D0-7FJ emissions of Eu3+ ions in the vicinity of polymer-protected Au nanoparticles in sol−gel-derived B2O3−SiO2 glass,” J. Phys. Chem. B 108(31), 11301–11307 (2004).
[CrossRef]

T. Hayakawa, S. Tamil Selvan, and M. Nogami, “Enhanced fluorescence from Eu3+ owing to surface plasma oscillation of silver particles in glass,” J. Non-Cryst. Solids 259(1-3), 16–22 (1999).
[CrossRef]

T. Hayakawa, S. T. Selvan, and M. Nogami, “Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass,” Appl. Phys. Lett. 74(11), 1513–1515 (1999).
[CrossRef]

Noginov, M. A.

Noginova, N.

Okamoto, K.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced super bright InGaN light emitter,” Phys. Status Solidi C 2(7), 2841–2844 (2005).
[CrossRef]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Palilla, F. C.

A. K. Levine and F. C. Palilla, “A new, highly efficient red-emitting cathodoluminescent phosphor (YVO4:Eu) for color television,” Appl. Phys. Lett. 5(6), 118–120 (1964).
[CrossRef]

Pietraszkiewicz, M.

R. Reisfeld, M. Pietraszkiewicz, T. Saraidarov, and V. Levchenko, “Luminescence intensification of lanthanide complexes by silver nanoparticles incorporated in sol-gel matrix,” J. Rare Earths 27(4), 544–549 (2009).
[CrossRef]

Reisfeld, R.

R. Reisfeld, M. Pietraszkiewicz, T. Saraidarov, and V. Levchenko, “Luminescence intensification of lanthanide complexes by silver nanoparticles incorporated in sol-gel matrix,” J. Rare Earths 27(4), 544–549 (2009).
[CrossRef]

Saraidarov, T.

R. Reisfeld, M. Pietraszkiewicz, T. Saraidarov, and V. Levchenko, “Luminescence intensification of lanthanide complexes by silver nanoparticles incorporated in sol-gel matrix,” J. Rare Earths 27(4), 544–549 (2009).
[CrossRef]

Scherer, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced super bright InGaN light emitter,” Phys. Status Solidi C 2(7), 2841–2844 (2005).
[CrossRef]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Selvan, S. T.

T. Hayakawa, S. T. Selvan, and M. Nogami, “Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass,” Appl. Phys. Lett. 74(11), 1513–1515 (1999).
[CrossRef]

Shibata, H.

K. Matsubara, H. Tampo, H. Shibata, A. Yamada, P. Fons, K. Iwata, and S. Niki, “Band-gap modified Al-doped Zn1−xMgxO transparent conducting films deposited by pulsed laser deposition,” Appl. Phys. Lett. 85(8), 1374–1376 (2004).
[CrossRef]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced super bright InGaN light emitter,” Phys. Status Solidi C 2(7), 2841–2844 (2005).
[CrossRef]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Song, H.

X. Fang, H. Song, L. Xie, Q. Liu, H. Zhang, X. Bai, B. Dong, Y. Wang, and W. Han, “Origin of luminescence enhancement and quenching of europium complex in solution phase containing Ag nanoparticles,” J. Chem. Phys. 131(5), 054506 (2009).
[CrossRef] [PubMed]

Tamil Selvan, S.

T. Hayakawa, S. Tamil Selvan, and M. Nogami, “Enhanced fluorescence from Eu3+ owing to surface plasma oscillation of silver particles in glass,” J. Non-Cryst. Solids 259(1-3), 16–22 (1999).
[CrossRef]

Tampo, H.

K. Matsubara, H. Tampo, H. Shibata, A. Yamada, P. Fons, K. Iwata, and S. Niki, “Band-gap modified Al-doped Zn1−xMgxO transparent conducting films deposited by pulsed laser deposition,” Appl. Phys. Lett. 85(8), 1374–1376 (2004).
[CrossRef]

Wang, T.

Y. Wang, J. Zhou, and T. Wang, “Enhanced luminescence from europium complex owing to surface plasmon resonance of silver nanoparticles,” Mater. Lett. 62(12-13), 1937–1940 (2008).
[CrossRef]

Wang, Y.

X. Fang, H. Song, L. Xie, Q. Liu, H. Zhang, X. Bai, B. Dong, Y. Wang, and W. Han, “Origin of luminescence enhancement and quenching of europium complex in solution phase containing Ag nanoparticles,” J. Chem. Phys. 131(5), 054506 (2009).
[CrossRef] [PubMed]

Y. Wang, J. Zhou, and T. Wang, “Enhanced luminescence from europium complex owing to surface plasmon resonance of silver nanoparticles,” Mater. Lett. 62(12-13), 1937–1940 (2008).
[CrossRef]

Wu, C. C.

C. C. Wu, K. B. Chen, C. S. Lee, T. M. Chen, and B. M. Cheng, “Synthesis and VUV photoluminescence characterization of (Y, Gd)(V, P)O4:Eu3+ as a potential red-emitting PDP phosphor,” Chem. Mater. 19(13), 3278–3285 (2007).
[CrossRef]

Xie, L.

X. Fang, H. Song, L. Xie, Q. Liu, H. Zhang, X. Bai, B. Dong, Y. Wang, and W. Han, “Origin of luminescence enhancement and quenching of europium complex in solution phase containing Ag nanoparticles,” J. Chem. Phys. 131(5), 054506 (2009).
[CrossRef] [PubMed]

Yamada, A.

K. Matsubara, H. Tampo, H. Shibata, A. Yamada, P. Fons, K. Iwata, and S. Niki, “Band-gap modified Al-doped Zn1−xMgxO transparent conducting films deposited by pulsed laser deposition,” Appl. Phys. Lett. 85(8), 1374–1376 (2004).
[CrossRef]

Yang, K. Y.

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: cathode structure for plasmonic application,” Appl. Phys. Lett. 94(17), 173301 (2009).
[CrossRef]

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced energy transfer in an organic light-emitting device structure,” Opt. Express 17(14), 11495–11504 (2009).
[CrossRef] [PubMed]

Zhang, H.

X. Fang, H. Song, L. Xie, Q. Liu, H. Zhang, X. Bai, B. Dong, Y. Wang, and W. Han, “Origin of luminescence enhancement and quenching of europium complex in solution phase containing Ag nanoparticles,” J. Chem. Phys. 131(5), 054506 (2009).
[CrossRef] [PubMed]

Zhou, J.

Y. Wang, J. Zhou, and T. Wang, “Enhanced luminescence from europium complex owing to surface plasmon resonance of silver nanoparticles,” Mater. Lett. 62(12-13), 1937–1940 (2008).
[CrossRef]

Zhu, J.

J. Zhu, “Enhanced fluorescence from Dy3+ owing to surface plasmon resonance of Au colloid nanoparticles,” Mater. Lett. 59(11), 1413–1416 (2005).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. (Deerfield Beach Fla.) 19(22), 3771–3782 (2007).
[CrossRef]

Appl. Phys. Lett. (5)

K. H. Cho, S. I. Ahn, S. M. Lee, C. S. Choi, and K. C. Choi, “Surface plasmonic controllable enhanced emission from the intrachain and interchain excitons of a conjugated polymer,” Appl. Phys. Lett. 97(19), 193306 (2010).
[CrossRef]

A. K. Levine and F. C. Palilla, “A new, highly efficient red-emitting cathodoluminescent phosphor (YVO4:Eu) for color television,” Appl. Phys. Lett. 5(6), 118–120 (1964).
[CrossRef]

T. Hayakawa, S. T. Selvan, and M. Nogami, “Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass,” Appl. Phys. Lett. 74(11), 1513–1515 (1999).
[CrossRef]

K. Matsubara, H. Tampo, H. Shibata, A. Yamada, P. Fons, K. Iwata, and S. Niki, “Band-gap modified Al-doped Zn1−xMgxO transparent conducting films deposited by pulsed laser deposition,” Appl. Phys. Lett. 85(8), 1374–1376 (2004).
[CrossRef]

K. Y. Yang, K. C. Choi, and C. W. Ahn, “Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: cathode structure for plasmonic application,” Appl. Phys. Lett. 94(17), 173301 (2009).
[CrossRef]

Chem. Mater. (1)

C. C. Wu, K. B. Chen, C. S. Lee, T. M. Chen, and B. M. Cheng, “Synthesis and VUV photoluminescence characterization of (Y, Gd)(V, P)O4:Eu3+ as a potential red-emitting PDP phosphor,” Chem. Mater. 19(13), 3278–3285 (2007).
[CrossRef]

Czech. J. Phys. (1)

M. S. Elmanharawy, A. H. Eid, and A. A. Kader, “Spectra of europium-doped yttrium oxide and yttrium vanadate phosphors,” Czech. J. Phys. 28(10), 1164–1173 (1978).
[CrossRef]

J. Chem. Phys. (1)

X. Fang, H. Song, L. Xie, Q. Liu, H. Zhang, X. Bai, B. Dong, Y. Wang, and W. Han, “Origin of luminescence enhancement and quenching of europium complex in solution phase containing Ag nanoparticles,” J. Chem. Phys. 131(5), 054506 (2009).
[CrossRef] [PubMed]

J. Non-Cryst. Solids (1)

T. Hayakawa, S. Tamil Selvan, and M. Nogami, “Enhanced fluorescence from Eu3+ owing to surface plasma oscillation of silver particles in glass,” J. Non-Cryst. Solids 259(1-3), 16–22 (1999).
[CrossRef]

J. Phys. Chem. B (1)

T. Hayakawa, K. Furuhashi, and M. Nogami, “Enhancement of 5D0-7FJ emissions of Eu3+ ions in the vicinity of polymer-protected Au nanoparticles in sol−gel-derived B2O3−SiO2 glass,” J. Phys. Chem. B 108(31), 11301–11307 (2004).
[CrossRef]

J. Rare Earths (1)

R. Reisfeld, M. Pietraszkiewicz, T. Saraidarov, and V. Levchenko, “Luminescence intensification of lanthanide complexes by silver nanoparticles incorporated in sol-gel matrix,” J. Rare Earths 27(4), 544–549 (2009).
[CrossRef]

J. Vac. Sci. Technol. B (1)

J. H. Kang, M. Nazarov, W. B. Im, J. Y. Kim, and D. Y. Jeon, “Characterization of nano-size YVO4:Eu and (Y,Gd)VO4:Eu phosphors by low voltage cathodo- and photoluminescence,” J. Vac. Sci. Technol. B 23(2), 843–848 (2005).
[CrossRef]

Mater. Lett. (2)

J. Zhu, “Enhanced fluorescence from Dy3+ owing to surface plasmon resonance of Au colloid nanoparticles,” Mater. Lett. 59(11), 1413–1416 (2005).
[CrossRef]

Y. Wang, J. Zhou, and T. Wang, “Enhanced luminescence from europium complex owing to surface plasmon resonance of silver nanoparticles,” Mater. Lett. 62(12-13), 1937–1940 (2008).
[CrossRef]

Mater. Sci. Eng. B (1)

B. Moine and G. Bizarri, “Rare-earth doped phosphors: oldies or goldies?” Mater. Sci. Eng. B 105(1-3), 2–7 (2003).
[CrossRef]

Nat. Mater. (1)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Opt. Express (4)

Phys. Rev. B (1)

V. Bulović, V. Khalfin, G. Gu, P. Burrows, D. Garbuzov, and S. Forrest, “Weak microcavity effects in organic light-emitting devices,” Phys. Rev. B 58(7), 3730–3740 (1998).
[CrossRef]

Phys. Status Solidi C (1)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface plasmon enhanced super bright InGaN light emitter,” Phys. Status Solidi C 2(7), 2841–2844 (2005).
[CrossRef]

Plasmonics (1)

J. R. Lakowicz, “Plasmonics in biology and plasmon-controlled fluorescence,” Plasmonics 1(1), 5–33 (2006).
[CrossRef] [PubMed]

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Graphical representation of the multilayer test sample: the phosphor layer, the dielectric spacer (MgO), the Ag nanoparticles, and the ITO-coated glass substrate.

Fig. 2
Fig. 2

SEM images of Ag particles thermally evaporated on an ITO-coated glass substrate for the following deposition thicknesses: (a) 0.5 nm, (b) 1.5 nm, (c) 2.5 nm, and (d) 3.5 nm, at constant rate of 0.1 Å/s.

Fig. 3
Fig. 3

The extinction spectra of Ag particles surrounded by a dielectric spacer (MgO) and the ITO-coated glass substrate for the following deposition thicknesses: (a) 0.5 nm, (b) 1.5 nm, (c) 2.5 nm, and (d) 3.5 nm.

Fig. 4
Fig. 4

(a) CL spectra taken at a dielectric spacer distance of 20 nm between the phosphor layer and the Ag nanoparticles for the following deposition thicknesses: 0 nm, 0.5 nm, 1.5 nm, 2.5 nm, and 3.5 nm, (b) partially integrated enhancement factors at magnetic and electric dipole transitions. (The inset figure shows asymmetric ratios, which are calculated by I A S = 0 2 I ( ω ) d ω 0 1 I ( ω ) d ω .)

Fig. 5
Fig. 5

The enhancement factors of the integrated CL intensity in relation to (a) the thickness of the evaporated Ag and (b) the thickness of the dielectric spacer; and comparison of this ratio with that of the reference sample without Ag nanoparticles.

Fig. 6
Fig. 6

The three-dimensional AFM images of the surface roughness of the fully fabricated samples for the following thicknesses of Ag nanoparticles deposition: (a) 0 nm, (b) 0.5 nm, (c) 1.5 nm, (d) 2.5 nm, and (e) 3.5 nm, all samples have an MgO spacer of 20 nm. The measured area is 1 µm2.

Fig. 7
Fig. 7

Numerical analysis of the localized field enhancement on the resonance of an Ag nanoparticle and the emitting dipole under the sample structure, (a) simulation configuration for the FDTD calculation and the near-field distribution around this, (b) an isolated 620 nm-radiating dipole, (c) the diameter of 30 nm of an Ag nanoparticle placed 2 nm from the radiating dipole, and (d) the enhanced/quenched electric field intensity.

Tables (1)

Tables Icon

Table 1 The Calculated Surface Roughness from AFM Measurements of the Phosphor Film as the Following Thicknesses of Ag Nanoparticles and an MgO Deposition*

Metrics