Abstract

We discuss a set of phase plate-pairs for the generation of variable amounts of primary spherical aberration. The surface descriptions of these optical plates are provided, and their aberration-generating properties are verified with real ray-tracing. These plate-pairs are robust in that they allow large tolerances to spacing as well as errors in the relative displacement of the plates. Both primary spherical aberration (r4) and Zernike spherical aberration (6r4- 6r2 + 1) can be generated. The amount of spherical aberration is proportional to the plate-pair displacement and in our example it reaches up to 48 waves (~8 waves Zernike) for a clear aperture of 25 mm.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
    [CrossRef]
  2. E. Theofanidou, L. Wilson, W. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236(1-3), 145–150 (2004).
    [CrossRef]
  3. J. Knittel, H. Richter, M. Hain, S. Somalingam, and T. Tschudi, “Liquid crystal lens for spherical aberration compensation in blu-ray disc systems,” IEE Proc. Sci. Meas. Technol. 152(1), 15–18 (2005).
    [CrossRef]
  4. P. Mouroulis, “Depth of field extension with spherical optics,” Opt. Express 16(17), 12995–13004 (2008).
    [CrossRef] [PubMed]
  5. M. Schwertner, M. J. Booth, T. Tanaka, T. Wilson, and S. Kawata, “Spherical aberration correction system using an adaptive optics deformable mirror,” Opt. Commun. 263(2), 147–151 (2006).
    [CrossRef]
  6. R. A. Buchroeder and R. B. Hooker, “Aberration generator,” Appl. Opt. 14(10), 2476–2479 (1975).
    [CrossRef] [PubMed]
  7. L. W. Alvarez and W. E. Humphrey, “Variable power lens and system,” U.S. Patent 3,507,565 (1970).
  8. L. W. Alvarez, “Two-element variable-power spherical lens,” U.S. Patent 3,305,294 (1967).
  9. A. W. Lohmann, “A new class of varifocal lenses,” Appl. Opt. 9(7), 1669–1671 (1970).
    [CrossRef] [PubMed]
  10. S. Bará, Z. Jaroszewicz, A. Kołodziejczyk, and V. Moreno, “Determination of basic grids for subtractive moire patterns,” Appl. Opt. 30(10), 1258–1262 (1991).
    [CrossRef] [PubMed]
  11. A. W. Lohmann and D. P. Paris, “Variable Fresnel zone pattern,” Appl. Opt. 6(9), 1567–1570 (1967).
    [CrossRef] [PubMed]
  12. A. Kołodziejczyk and Z. Jaroszewicz, “Diffractive elements of variable optical power and high diffraction efficiency,” Appl. Opt. 32(23), 4317–4322 (1993).
    [CrossRef] [PubMed]
  13. J. M. Burch and D. C. Williams, “Varifocal moiré zone plates for straightness measurement,” Appl. Opt. 16(9), 2445–2450 (1977).
    [CrossRef] [PubMed]
  14. N. López-Gil, H. C. Howland, B. Howland, N. Charman, and R. Applegate, “Generation of third order spherical and coma aberrations by use of radially symmetrical fourth order lenses,” J. Opt. Soc. Am. A 15(9), 2563–2571 (1998).
    [CrossRef]
  15. I. A. Palusinski, J. M. Sasián, and J. E. Greivenkamp, “Lateral-shift variable aberration generators,” Appl. Opt. 38(1), 86–90 (1999).
    [CrossRef] [PubMed]
  16. T. Hellmuth, A. Bich, R. Börret, A. Holschbach, and A. Kelm, “Variable phaseplates for focus invariant optical systems,” Proc. SPIE 5962, 596215 (2005).
    [CrossRef]
  17. A. Guirao, D. R. Williams, and I. G. Cox, “Effect of rotation and translation on the expected benefits of an ideal method to correct the eye’s higher order aberrations,” J. Opt. Soc. Am. A 18(5), 1003–1015 (2001).
    [CrossRef]
  18. E. Acosta and S. Bará, “Variable aberration generators using rotated Zernike plates,” J. Opt. Soc. Am. A 22(9), 1993–1996 (2005).
    [CrossRef] [PubMed]
  19. B. M. Pixton and J. E. Greivenkamp, “Spherical aberration gauge for human vision,” Appl. Opt. 49(30), 5906–5913 (2010).
    [CrossRef] [PubMed]

2010 (1)

2008 (1)

2007 (1)

P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
[CrossRef]

2006 (1)

M. Schwertner, M. J. Booth, T. Tanaka, T. Wilson, and S. Kawata, “Spherical aberration correction system using an adaptive optics deformable mirror,” Opt. Commun. 263(2), 147–151 (2006).
[CrossRef]

2005 (3)

J. Knittel, H. Richter, M. Hain, S. Somalingam, and T. Tschudi, “Liquid crystal lens for spherical aberration compensation in blu-ray disc systems,” IEE Proc. Sci. Meas. Technol. 152(1), 15–18 (2005).
[CrossRef]

T. Hellmuth, A. Bich, R. Börret, A. Holschbach, and A. Kelm, “Variable phaseplates for focus invariant optical systems,” Proc. SPIE 5962, 596215 (2005).
[CrossRef]

E. Acosta and S. Bará, “Variable aberration generators using rotated Zernike plates,” J. Opt. Soc. Am. A 22(9), 1993–1996 (2005).
[CrossRef] [PubMed]

2004 (1)

E. Theofanidou, L. Wilson, W. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236(1-3), 145–150 (2004).
[CrossRef]

2001 (1)

1999 (1)

1998 (1)

1993 (1)

1991 (1)

1977 (1)

1975 (1)

1970 (1)

1967 (1)

Acosta, E.

Applegate, R.

Arlt, J.

E. Theofanidou, L. Wilson, W. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236(1-3), 145–150 (2004).
[CrossRef]

Bará, S.

Bich, A.

T. Hellmuth, A. Bich, R. Börret, A. Holschbach, and A. Kelm, “Variable phaseplates for focus invariant optical systems,” Proc. SPIE 5962, 596215 (2005).
[CrossRef]

Booth, M. J.

M. Schwertner, M. J. Booth, T. Tanaka, T. Wilson, and S. Kawata, “Spherical aberration correction system using an adaptive optics deformable mirror,” Opt. Commun. 263(2), 147–151 (2006).
[CrossRef]

Börret, R.

T. Hellmuth, A. Bich, R. Börret, A. Holschbach, and A. Kelm, “Variable phaseplates for focus invariant optical systems,” Proc. SPIE 5962, 596215 (2005).
[CrossRef]

Buchroeder, R. A.

Burch, J. M.

Campbell, K.

P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
[CrossRef]

Charman, N.

Cox, I. G.

Greivenkamp, J. E.

Groisman, A.

P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
[CrossRef]

Guirao, A.

Hain, M.

J. Knittel, H. Richter, M. Hain, S. Somalingam, and T. Tschudi, “Liquid crystal lens for spherical aberration compensation in blu-ray disc systems,” IEE Proc. Sci. Meas. Technol. 152(1), 15–18 (2005).
[CrossRef]

Hellmuth, T.

T. Hellmuth, A. Bich, R. Börret, A. Holschbach, and A. Kelm, “Variable phaseplates for focus invariant optical systems,” Proc. SPIE 5962, 596215 (2005).
[CrossRef]

Holschbach, A.

T. Hellmuth, A. Bich, R. Börret, A. Holschbach, and A. Kelm, “Variable phaseplates for focus invariant optical systems,” Proc. SPIE 5962, 596215 (2005).
[CrossRef]

Hooker, R. B.

Hossack, W.

E. Theofanidou, L. Wilson, W. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236(1-3), 145–150 (2004).
[CrossRef]

Howland, B.

Howland, H. C.

Jaroszewicz, Z.

Kam, Z.

P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
[CrossRef]

Kawata, S.

M. Schwertner, M. J. Booth, T. Tanaka, T. Wilson, and S. Kawata, “Spherical aberration correction system using an adaptive optics deformable mirror,” Opt. Commun. 263(2), 147–151 (2006).
[CrossRef]

Kelm, A.

T. Hellmuth, A. Bich, R. Börret, A. Holschbach, and A. Kelm, “Variable phaseplates for focus invariant optical systems,” Proc. SPIE 5962, 596215 (2005).
[CrossRef]

Kim, T. N.

P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
[CrossRef]

Kleinfeld, D.

P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
[CrossRef]

Knittel, J.

J. Knittel, H. Richter, M. Hain, S. Somalingam, and T. Tschudi, “Liquid crystal lens for spherical aberration compensation in blu-ray disc systems,” IEE Proc. Sci. Meas. Technol. 152(1), 15–18 (2005).
[CrossRef]

Kolodziejczyk, A.

Lohmann, A. W.

López-Gil, N.

Migliori, B.

P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
[CrossRef]

Moreno, V.

Mouroulis, P.

Palusinski, I. A.

Paris, D. P.

Pixton, B. M.

Richter, H.

J. Knittel, H. Richter, M. Hain, S. Somalingam, and T. Tschudi, “Liquid crystal lens for spherical aberration compensation in blu-ray disc systems,” IEE Proc. Sci. Meas. Technol. 152(1), 15–18 (2005).
[CrossRef]

Sasián, J. M.

Schwertner, M.

M. Schwertner, M. J. Booth, T. Tanaka, T. Wilson, and S. Kawata, “Spherical aberration correction system using an adaptive optics deformable mirror,” Opt. Commun. 263(2), 147–151 (2006).
[CrossRef]

Somalingam, S.

J. Knittel, H. Richter, M. Hain, S. Somalingam, and T. Tschudi, “Liquid crystal lens for spherical aberration compensation in blu-ray disc systems,” IEE Proc. Sci. Meas. Technol. 152(1), 15–18 (2005).
[CrossRef]

Tanaka, T.

M. Schwertner, M. J. Booth, T. Tanaka, T. Wilson, and S. Kawata, “Spherical aberration correction system using an adaptive optics deformable mirror,” Opt. Commun. 263(2), 147–151 (2006).
[CrossRef]

Theofanidou, E.

E. Theofanidou, L. Wilson, W. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236(1-3), 145–150 (2004).
[CrossRef]

Tsai, P. S.

P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
[CrossRef]

Tschudi, T.

J. Knittel, H. Richter, M. Hain, S. Somalingam, and T. Tschudi, “Liquid crystal lens for spherical aberration compensation in blu-ray disc systems,” IEE Proc. Sci. Meas. Technol. 152(1), 15–18 (2005).
[CrossRef]

Williams, D. C.

Williams, D. R.

Wilson, L.

E. Theofanidou, L. Wilson, W. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236(1-3), 145–150 (2004).
[CrossRef]

Wilson, T.

M. Schwertner, M. J. Booth, T. Tanaka, T. Wilson, and S. Kawata, “Spherical aberration correction system using an adaptive optics deformable mirror,” Opt. Commun. 263(2), 147–151 (2006).
[CrossRef]

Appl. Opt. (8)

Appl. Phys. Lett. (1)

P. S. Tsai, B. Migliori, K. Campbell, T. N. Kim, Z. Kam, A. Groisman, and D. Kleinfeld, “Spherical aberration correction in nonlinear microscopy and optical ablation using a transparent deformable membrane,” Appl. Phys. Lett. 91(19), 191102 (2007).
[CrossRef]

IEE Proc. Sci. Meas. Technol. (1)

J. Knittel, H. Richter, M. Hain, S. Somalingam, and T. Tschudi, “Liquid crystal lens for spherical aberration compensation in blu-ray disc systems,” IEE Proc. Sci. Meas. Technol. 152(1), 15–18 (2005).
[CrossRef]

J. Opt. Soc. Am. A (3)

Opt. Commun. (2)

M. Schwertner, M. J. Booth, T. Tanaka, T. Wilson, and S. Kawata, “Spherical aberration correction system using an adaptive optics deformable mirror,” Opt. Commun. 263(2), 147–151 (2006).
[CrossRef]

E. Theofanidou, L. Wilson, W. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun. 236(1-3), 145–150 (2004).
[CrossRef]

Opt. Express (1)

Proc. SPIE (1)

T. Hellmuth, A. Bich, R. Börret, A. Holschbach, and A. Kelm, “Variable phaseplates for focus invariant optical systems,” Proc. SPIE 5962, 596215 (2005).
[CrossRef]

Other (2)

L. W. Alvarez and W. E. Humphrey, “Variable power lens and system,” U.S. Patent 3,507,565 (1970).

L. W. Alvarez, “Two-element variable-power spherical lens,” U.S. Patent 3,305,294 (1967).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

System of phase plates and way of displacement.

Fig. 2
Fig. 2

Surface shapes for classic spherical aberration (top) and Zernike spherical aberration (bottom).

Fig. 3
Fig. 3

Phase plate schematic drawing.

Fig. 4
Fig. 4

Variation of the Zernike spherical aberration versus plates displacement.

Fig. 5
Fig. 5

P-V value of the residual aberration.

Fig. 6
Fig. 6

rms value of the residual aberration.

Fig. 7
Fig. 7

Phase maps for the residual aberration for displacements between plates of (a) 0mm, (b) + 5mm and −5mm (c) + 10mm and −10mm.

Fig. 8
Fig. 8

Phase map (in waves) for a set-up randomly misaligned for displacements of (a) 0mm, (b) 5mm and (c) 10 mm.

Tables (1)

Tables Icon

Table 1 List of Zernike Polynomials Used for the Fit

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S 1 ( x , y ) = A [ x 3 y 2 + 2 x y 4 3 a 2 x y 2 ] ,
O P D 1 = A ( n n ' ) [ 6 Δ x 2 y 2 + 2 Δ 3 y 2 + 4 Δ y 4 3 a Δ y 2 ] ,
S 2 ( x , y ) = A [ 1 10 y 5 + 3 2 y x 4 3 a 2 y x 2 ] .
O P D 2 = A ( n n ' ) [ Δ y 4 2 y 2 Δ 3 + 3 Δ x 4 3 a Δ x 2 ] .
O P D = 3 A ( n n ' ) Δ [ r 4 a r 2 ] ,

Metrics