Abstract

This paper describes the results of exploring photonic structures that behave as wavelength selective concentrators (WSCs) of solar/thermal radiation. An evolutionary algorithm was combined with the finite-difference time-domain method (EA-FDTD) to determine the optimum photonic structure that can concentrate a designated wavelength range of beam solar radiation and diffusive thermal radiation in such a manner that the range matches the photosensitivity of micro photovoltaic and thermophotovoltaic cells. Our EA-FDTD method successfully generated a photonic structure capable of performing wavelength selective concentration close to the theoretical limit. Our WSC design concept can be successfully extended to three-dimensional structures to further enhance efficiency.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. K. Chou, W. M. Yang, K. J. Chua, J. Li, and K. L. Zhang, “Development of micro power generators - A review,” Appl. Energy 88(1), 1–16 (2011).
    [CrossRef]
  2. B. D. Yuhas and P. Yang, “Nanowire-based all-oxide solar cells,” J. Am. Chem. Soc. 131(10), 3756–3761 (2009).
    [CrossRef] [PubMed]
  3. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
    [CrossRef] [PubMed]
  4. A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451(7175), 168–171 (2008).
    [CrossRef] [PubMed]
  5. K. Hanamura and K. Mori, “Nano-gap TPV generation of electricity through evanescent wave in near-field above emitter surface,” in Proceedings of 7th world TPV Conference (Madrid, 2007), pp. 291–296.
  6. J. L. Cruz-Campa, M. Okandan, P. J. Resnick, P. Clews, T. Pluym, R. K. Grubbs, V. P. Gupta, D. Zubia, and G. N. Nielson, “Micro systems enabled photovoltaics: 14.9% efficient 14 μm thick crystalline silicon solar cell,” Sol. Energy Mater. Sol. Cells 95(2), 551–558 (2011).
    [CrossRef]
  7. T. Matsumoto, K. S. Eom, and T. Baba, “Focusing of light by negative refraction in a photonic crystal slab superlens on silicon-on-insulator substrate,” Opt. Lett. 31(18), 2786–2788 (2006).
    [CrossRef] [PubMed]
  8. G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Melique, O. Vanbesien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97(7), 071119–071113 (2010).
    [CrossRef]
  9. J. Sun, Y. F. Shen, J. Chen, L. G. Wang, L. L. Sun, J. Wang, K. Han, and G. Tang, “Imaging properties of a two-dimensional photonic crystal with rectangular air holes embedded in a silicon slab,” Photon. Nanostructures 8(3), 163–171 (2010).
    [CrossRef]
  10. S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9(5), 407–412 (2010).
    [CrossRef] [PubMed]
  11. D. Kirikae, Y. Suzuki, and N. Kasagi, “Emission spectral control using metal-coated silicon,” in Proceedings of Power MEMS (Washington, 2009), pp. 161–164.
  12. B. Gesemann, S. L. Schweizer, and R. B. Wehrspohn, “Thermal emission properties of 2D and 3D silicon photonic crystals,” Photon. Nanostructures 8(2), 107–111 (2010).
    [CrossRef]
  13. H. Katsunori and K. Yuki, “Spectral control of thermal radiation using rectangular micro-cavities on emitter-surface for thermophotovoltaic generation of electricity,” J. Therm. Sci. Tech. 3(1), 33–44 (2008).
    [CrossRef]
  14. T. Matsumoto and M. Tomita, “Modified blackbody radiation spectrum of a selective emitter with application to incandescent light source design,” Opt. Express 18(S2Suppl 2), A192–A200 (2010).
    [CrossRef] [PubMed]
  15. F. O’Sullivan, I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97(3), 033529–033527 (2005).
    [CrossRef]
  16. T. Shirakawa, K. L. Ishikawa, S. Suzuki, Y. Yamada, and H. Takahashi, “Design of binary diffractive microlenses with subwavelength structures using the genetic algorithm,” Opt. Express 18(8), 8383–8391 (2010).
    [CrossRef] [PubMed]
  17. J. Marqués-Hueso, L. Sanchis, B. Cluzel, F. de Fornel, and J. P. Martinez-Pastor, “Genetic algorithm designed silicon integrated photonic lens operating at 1550 nm,” Appl. Phys. Lett. 97(7), 071115–071113 (2010).
    [CrossRef]
  18. M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express 16(8), 5290–5298 (2008).
    [CrossRef] [PubMed]
  19. N. Yamada and T. Nishikawa, “Evolutionary algorithm for optimization of nonimaging Fresnel lens geometry,” Opt. Express 18(S2Suppl 2), A126–A132 (2010).
    [CrossRef] [PubMed]
  20. A. Taflove and S. C. Hagness, Computional Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005), Chap. 3.
  21. C. Honsberg and S. Bowden, “PVCDROM, Appendices: Standard Solar Spectra,” http://www.pveducation.org/pvcdrom/appendicies/standard-solar-spectra .
  22. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994).
    [CrossRef]
  23. M. Born and E. Wolf, Principles Optics (Cambridge University Press, 1999), Chap. 8.
  24. F. Hudelist, A. J. Waddie, and M. R. Taghizadeh, “Design of all-glass multilayer phase gratings for cylindrical microlenses,” Opt. Lett. 34(11), 1681–1683 (2009).
    [CrossRef] [PubMed]

2011

S. K. Chou, W. M. Yang, K. J. Chua, J. Li, and K. L. Zhang, “Development of micro power generators - A review,” Appl. Energy 88(1), 1–16 (2011).
[CrossRef]

J. L. Cruz-Campa, M. Okandan, P. J. Resnick, P. Clews, T. Pluym, R. K. Grubbs, V. P. Gupta, D. Zubia, and G. N. Nielson, “Micro systems enabled photovoltaics: 14.9% efficient 14 μm thick crystalline silicon solar cell,” Sol. Energy Mater. Sol. Cells 95(2), 551–558 (2011).
[CrossRef]

2010

G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Melique, O. Vanbesien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97(7), 071119–071113 (2010).
[CrossRef]

J. Sun, Y. F. Shen, J. Chen, L. G. Wang, L. L. Sun, J. Wang, K. Han, and G. Tang, “Imaging properties of a two-dimensional photonic crystal with rectangular air holes embedded in a silicon slab,” Photon. Nanostructures 8(3), 163–171 (2010).
[CrossRef]

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9(5), 407–412 (2010).
[CrossRef] [PubMed]

B. Gesemann, S. L. Schweizer, and R. B. Wehrspohn, “Thermal emission properties of 2D and 3D silicon photonic crystals,” Photon. Nanostructures 8(2), 107–111 (2010).
[CrossRef]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

J. Marqués-Hueso, L. Sanchis, B. Cluzel, F. de Fornel, and J. P. Martinez-Pastor, “Genetic algorithm designed silicon integrated photonic lens operating at 1550 nm,” Appl. Phys. Lett. 97(7), 071115–071113 (2010).
[CrossRef]

T. Shirakawa, K. L. Ishikawa, S. Suzuki, Y. Yamada, and H. Takahashi, “Design of binary diffractive microlenses with subwavelength structures using the genetic algorithm,” Opt. Express 18(8), 8383–8391 (2010).
[CrossRef] [PubMed]

N. Yamada and T. Nishikawa, “Evolutionary algorithm for optimization of nonimaging Fresnel lens geometry,” Opt. Express 18(S2Suppl 2), A126–A132 (2010).
[CrossRef] [PubMed]

T. Matsumoto and M. Tomita, “Modified blackbody radiation spectrum of a selective emitter with application to incandescent light source design,” Opt. Express 18(S2Suppl 2), A192–A200 (2010).
[CrossRef] [PubMed]

2009

2008

A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451(7175), 168–171 (2008).
[CrossRef] [PubMed]

H. Katsunori and K. Yuki, “Spectral control of thermal radiation using rectangular micro-cavities on emitter-surface for thermophotovoltaic generation of electricity,” J. Therm. Sci. Tech. 3(1), 33–44 (2008).
[CrossRef]

M. F. Schubert, F. W. Mont, S. Chhajed, D. J. Poxson, J. K. Kim, and E. F. Schubert, “Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm,” Opt. Express 16(8), 5290–5298 (2008).
[CrossRef] [PubMed]

2006

2005

F. O’Sullivan, I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97(3), 033529–033527 (2005).
[CrossRef]

1994

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[CrossRef]

Akiyama, S.

F. O’Sullivan, I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97(3), 033529–033527 (2005).
[CrossRef]

Atwater, H. A.

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9(5), 407–412 (2010).
[CrossRef] [PubMed]

Baba, T.

Berenger, J. P.

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[CrossRef]

Boukai, A. I.

A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451(7175), 168–171 (2008).
[CrossRef] [PubMed]

Bunimovich, Y.

A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451(7175), 168–171 (2008).
[CrossRef] [PubMed]

Burgos, S. P.

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9(5), 407–412 (2010).
[CrossRef] [PubMed]

Celanovic, I.

F. O’Sullivan, I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97(3), 033529–033527 (2005).
[CrossRef]

Chen, J.

J. Sun, Y. F. Shen, J. Chen, L. G. Wang, L. L. Sun, J. Wang, K. Han, and G. Tang, “Imaging properties of a two-dimensional photonic crystal with rectangular air holes embedded in a silicon slab,” Photon. Nanostructures 8(3), 163–171 (2010).
[CrossRef]

Chhajed, S.

Chou, S. K.

S. K. Chou, W. M. Yang, K. J. Chua, J. Li, and K. L. Zhang, “Development of micro power generators - A review,” Appl. Energy 88(1), 1–16 (2011).
[CrossRef]

Chua, K. J.

S. K. Chou, W. M. Yang, K. J. Chua, J. Li, and K. L. Zhang, “Development of micro power generators - A review,” Appl. Energy 88(1), 1–16 (2011).
[CrossRef]

Clews, P.

J. L. Cruz-Campa, M. Okandan, P. J. Resnick, P. Clews, T. Pluym, R. K. Grubbs, V. P. Gupta, D. Zubia, and G. N. Nielson, “Micro systems enabled photovoltaics: 14.9% efficient 14 μm thick crystalline silicon solar cell,” Sol. Energy Mater. Sol. Cells 95(2), 551–558 (2011).
[CrossRef]

Cluzel, B.

J. Marqués-Hueso, L. Sanchis, B. Cluzel, F. de Fornel, and J. P. Martinez-Pastor, “Genetic algorithm designed silicon integrated photonic lens operating at 1550 nm,” Appl. Phys. Lett. 97(7), 071115–071113 (2010).
[CrossRef]

G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Melique, O. Vanbesien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97(7), 071119–071113 (2010).
[CrossRef]

Cruz-Campa, J. L.

J. L. Cruz-Campa, M. Okandan, P. J. Resnick, P. Clews, T. Pluym, R. K. Grubbs, V. P. Gupta, D. Zubia, and G. N. Nielson, “Micro systems enabled photovoltaics: 14.9% efficient 14 μm thick crystalline silicon solar cell,” Sol. Energy Mater. Sol. Cells 95(2), 551–558 (2011).
[CrossRef]

de Fornel, F.

J. Marqués-Hueso, L. Sanchis, B. Cluzel, F. de Fornel, and J. P. Martinez-Pastor, “Genetic algorithm designed silicon integrated photonic lens operating at 1550 nm,” Appl. Phys. Lett. 97(7), 071115–071113 (2010).
[CrossRef]

G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Melique, O. Vanbesien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97(7), 071119–071113 (2010).
[CrossRef]

de Waele, R.

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9(5), 407–412 (2010).
[CrossRef] [PubMed]

Dumas, C.

G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Melique, O. Vanbesien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97(7), 071119–071113 (2010).
[CrossRef]

Eom, K. S.

Garnett, E.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

Gesemann, B.

B. Gesemann, S. L. Schweizer, and R. B. Wehrspohn, “Thermal emission properties of 2D and 3D silicon photonic crystals,” Photon. Nanostructures 8(2), 107–111 (2010).
[CrossRef]

Goddard, W. A.

A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451(7175), 168–171 (2008).
[CrossRef] [PubMed]

Gralak, B.

G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Melique, O. Vanbesien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97(7), 071119–071113 (2010).
[CrossRef]

Grubbs, R. K.

J. L. Cruz-Campa, M. Okandan, P. J. Resnick, P. Clews, T. Pluym, R. K. Grubbs, V. P. Gupta, D. Zubia, and G. N. Nielson, “Micro systems enabled photovoltaics: 14.9% efficient 14 μm thick crystalline silicon solar cell,” Sol. Energy Mater. Sol. Cells 95(2), 551–558 (2011).
[CrossRef]

Gupta, V. P.

J. L. Cruz-Campa, M. Okandan, P. J. Resnick, P. Clews, T. Pluym, R. K. Grubbs, V. P. Gupta, D. Zubia, and G. N. Nielson, “Micro systems enabled photovoltaics: 14.9% efficient 14 μm thick crystalline silicon solar cell,” Sol. Energy Mater. Sol. Cells 95(2), 551–558 (2011).
[CrossRef]

Han, K.

J. Sun, Y. F. Shen, J. Chen, L. G. Wang, L. L. Sun, J. Wang, K. Han, and G. Tang, “Imaging properties of a two-dimensional photonic crystal with rectangular air holes embedded in a silicon slab,” Photon. Nanostructures 8(3), 163–171 (2010).
[CrossRef]

Heath, J. R.

A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451(7175), 168–171 (2008).
[CrossRef] [PubMed]

Hofman, M.

G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Melique, O. Vanbesien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97(7), 071119–071113 (2010).
[CrossRef]

Hudelist, F.

Ishikawa, K. L.

Jovanovic, N.

F. O’Sullivan, I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97(3), 033529–033527 (2005).
[CrossRef]

Kassakian, J.

F. O’Sullivan, I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97(3), 033529–033527 (2005).
[CrossRef]

Katsunori, H.

H. Katsunori and K. Yuki, “Spectral control of thermal radiation using rectangular micro-cavities on emitter-surface for thermophotovoltaic generation of electricity,” J. Therm. Sci. Tech. 3(1), 33–44 (2008).
[CrossRef]

Kim, J. K.

Li, J.

S. K. Chou, W. M. Yang, K. J. Chua, J. Li, and K. L. Zhang, “Development of micro power generators - A review,” Appl. Energy 88(1), 1–16 (2011).
[CrossRef]

Lippens, D.

G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Melique, O. Vanbesien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97(7), 071119–071113 (2010).
[CrossRef]

Marqués-Hueso, J.

J. Marqués-Hueso, L. Sanchis, B. Cluzel, F. de Fornel, and J. P. Martinez-Pastor, “Genetic algorithm designed silicon integrated photonic lens operating at 1550 nm,” Appl. Phys. Lett. 97(7), 071115–071113 (2010).
[CrossRef]

Martinez-Pastor, J. P.

J. Marqués-Hueso, L. Sanchis, B. Cluzel, F. de Fornel, and J. P. Martinez-Pastor, “Genetic algorithm designed silicon integrated photonic lens operating at 1550 nm,” Appl. Phys. Lett. 97(7), 071115–071113 (2010).
[CrossRef]

Matsumoto, T.

Melique, X.

G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Melique, O. Vanbesien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97(7), 071119–071113 (2010).
[CrossRef]

Mont, F. W.

Nielson, G. N.

J. L. Cruz-Campa, M. Okandan, P. J. Resnick, P. Clews, T. Pluym, R. K. Grubbs, V. P. Gupta, D. Zubia, and G. N. Nielson, “Micro systems enabled photovoltaics: 14.9% efficient 14 μm thick crystalline silicon solar cell,” Sol. Energy Mater. Sol. Cells 95(2), 551–558 (2011).
[CrossRef]

Nishikawa, T.

O’Sullivan, F.

F. O’Sullivan, I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97(3), 033529–033527 (2005).
[CrossRef]

Okandan, M.

J. L. Cruz-Campa, M. Okandan, P. J. Resnick, P. Clews, T. Pluym, R. K. Grubbs, V. P. Gupta, D. Zubia, and G. N. Nielson, “Micro systems enabled photovoltaics: 14.9% efficient 14 μm thick crystalline silicon solar cell,” Sol. Energy Mater. Sol. Cells 95(2), 551–558 (2011).
[CrossRef]

Pluym, T.

J. L. Cruz-Campa, M. Okandan, P. J. Resnick, P. Clews, T. Pluym, R. K. Grubbs, V. P. Gupta, D. Zubia, and G. N. Nielson, “Micro systems enabled photovoltaics: 14.9% efficient 14 μm thick crystalline silicon solar cell,” Sol. Energy Mater. Sol. Cells 95(2), 551–558 (2011).
[CrossRef]

Polman, A.

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9(5), 407–412 (2010).
[CrossRef] [PubMed]

Poxson, D. J.

Resnick, P. J.

J. L. Cruz-Campa, M. Okandan, P. J. Resnick, P. Clews, T. Pluym, R. K. Grubbs, V. P. Gupta, D. Zubia, and G. N. Nielson, “Micro systems enabled photovoltaics: 14.9% efficient 14 μm thick crystalline silicon solar cell,” Sol. Energy Mater. Sol. Cells 95(2), 551–558 (2011).
[CrossRef]

Sanchis, L.

J. Marqués-Hueso, L. Sanchis, B. Cluzel, F. de Fornel, and J. P. Martinez-Pastor, “Genetic algorithm designed silicon integrated photonic lens operating at 1550 nm,” Appl. Phys. Lett. 97(7), 071115–071113 (2010).
[CrossRef]

Scherrer, G.

G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Melique, O. Vanbesien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97(7), 071119–071113 (2010).
[CrossRef]

Schubert, E. F.

Schubert, M. F.

Schweizer, S. L.

B. Gesemann, S. L. Schweizer, and R. B. Wehrspohn, “Thermal emission properties of 2D and 3D silicon photonic crystals,” Photon. Nanostructures 8(2), 107–111 (2010).
[CrossRef]

Shen, Y. F.

J. Sun, Y. F. Shen, J. Chen, L. G. Wang, L. L. Sun, J. Wang, K. Han, and G. Tang, “Imaging properties of a two-dimensional photonic crystal with rectangular air holes embedded in a silicon slab,” Photon. Nanostructures 8(3), 163–171 (2010).
[CrossRef]

Shirakawa, T.

Smigaj, W.

G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Melique, O. Vanbesien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97(7), 071119–071113 (2010).
[CrossRef]

Sun, J.

J. Sun, Y. F. Shen, J. Chen, L. G. Wang, L. L. Sun, J. Wang, K. Han, and G. Tang, “Imaging properties of a two-dimensional photonic crystal with rectangular air holes embedded in a silicon slab,” Photon. Nanostructures 8(3), 163–171 (2010).
[CrossRef]

Sun, L. L.

J. Sun, Y. F. Shen, J. Chen, L. G. Wang, L. L. Sun, J. Wang, K. Han, and G. Tang, “Imaging properties of a two-dimensional photonic crystal with rectangular air holes embedded in a silicon slab,” Photon. Nanostructures 8(3), 163–171 (2010).
[CrossRef]

Suzuki, S.

Taghizadeh, M. R.

Tahir-Kheli, J.

A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451(7175), 168–171 (2008).
[CrossRef] [PubMed]

Takahashi, H.

Tang, G.

J. Sun, Y. F. Shen, J. Chen, L. G. Wang, L. L. Sun, J. Wang, K. Han, and G. Tang, “Imaging properties of a two-dimensional photonic crystal with rectangular air holes embedded in a silicon slab,” Photon. Nanostructures 8(3), 163–171 (2010).
[CrossRef]

Tomita, M.

Vanbesien, O.

G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Melique, O. Vanbesien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97(7), 071119–071113 (2010).
[CrossRef]

Wada, K.

F. O’Sullivan, I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97(3), 033529–033527 (2005).
[CrossRef]

Waddie, A. J.

Wang, J.

J. Sun, Y. F. Shen, J. Chen, L. G. Wang, L. L. Sun, J. Wang, K. Han, and G. Tang, “Imaging properties of a two-dimensional photonic crystal with rectangular air holes embedded in a silicon slab,” Photon. Nanostructures 8(3), 163–171 (2010).
[CrossRef]

Wang, L. G.

J. Sun, Y. F. Shen, J. Chen, L. G. Wang, L. L. Sun, J. Wang, K. Han, and G. Tang, “Imaging properties of a two-dimensional photonic crystal with rectangular air holes embedded in a silicon slab,” Photon. Nanostructures 8(3), 163–171 (2010).
[CrossRef]

Wehrspohn, R. B.

B. Gesemann, S. L. Schweizer, and R. B. Wehrspohn, “Thermal emission properties of 2D and 3D silicon photonic crystals,” Photon. Nanostructures 8(2), 107–111 (2010).
[CrossRef]

Yamada, N.

Yamada, Y.

Yang, P.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

B. D. Yuhas and P. Yang, “Nanowire-based all-oxide solar cells,” J. Am. Chem. Soc. 131(10), 3756–3761 (2009).
[CrossRef] [PubMed]

Yang, W. M.

S. K. Chou, W. M. Yang, K. J. Chua, J. Li, and K. L. Zhang, “Development of micro power generators - A review,” Appl. Energy 88(1), 1–16 (2011).
[CrossRef]

Yu, J. K.

A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451(7175), 168–171 (2008).
[CrossRef] [PubMed]

Yuhas, B. D.

B. D. Yuhas and P. Yang, “Nanowire-based all-oxide solar cells,” J. Am. Chem. Soc. 131(10), 3756–3761 (2009).
[CrossRef] [PubMed]

Yuki, K.

H. Katsunori and K. Yuki, “Spectral control of thermal radiation using rectangular micro-cavities on emitter-surface for thermophotovoltaic generation of electricity,” J. Therm. Sci. Tech. 3(1), 33–44 (2008).
[CrossRef]

Zhang, K. L.

S. K. Chou, W. M. Yang, K. J. Chua, J. Li, and K. L. Zhang, “Development of micro power generators - A review,” Appl. Energy 88(1), 1–16 (2011).
[CrossRef]

Zubia, D.

J. L. Cruz-Campa, M. Okandan, P. J. Resnick, P. Clews, T. Pluym, R. K. Grubbs, V. P. Gupta, D. Zubia, and G. N. Nielson, “Micro systems enabled photovoltaics: 14.9% efficient 14 μm thick crystalline silicon solar cell,” Sol. Energy Mater. Sol. Cells 95(2), 551–558 (2011).
[CrossRef]

Appl. Energy

S. K. Chou, W. M. Yang, K. J. Chua, J. Li, and K. L. Zhang, “Development of micro power generators - A review,” Appl. Energy 88(1), 1–16 (2011).
[CrossRef]

Appl. Phys. Lett.

G. Scherrer, M. Hofman, W. Smigaj, B. Gralak, X. Melique, O. Vanbesien, D. Lippens, C. Dumas, B. Cluzel, and F. de Fornel, “Interface engineering for improved light transmittance through photonic crystal flat lenses,” Appl. Phys. Lett. 97(7), 071119–071113 (2010).
[CrossRef]

J. Marqués-Hueso, L. Sanchis, B. Cluzel, F. de Fornel, and J. P. Martinez-Pastor, “Genetic algorithm designed silicon integrated photonic lens operating at 1550 nm,” Appl. Phys. Lett. 97(7), 071115–071113 (2010).
[CrossRef]

J. Am. Chem. Soc.

B. D. Yuhas and P. Yang, “Nanowire-based all-oxide solar cells,” J. Am. Chem. Soc. 131(10), 3756–3761 (2009).
[CrossRef] [PubMed]

J. Appl. Phys.

F. O’Sullivan, I. Celanovic, N. Jovanovic, J. Kassakian, S. Akiyama, and K. Wada, “Optical characteristics of one-dimensional Si/SiO2 photonic crystals for thermophotovoltaic applications,” J. Appl. Phys. 97(3), 033529–033527 (2005).
[CrossRef]

J. Comput. Phys.

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[CrossRef]

J. Therm. Sci. Tech.

H. Katsunori and K. Yuki, “Spectral control of thermal radiation using rectangular micro-cavities on emitter-surface for thermophotovoltaic generation of electricity,” J. Therm. Sci. Tech. 3(1), 33–44 (2008).
[CrossRef]

Nano Lett.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

Nat. Mater.

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9(5), 407–412 (2010).
[CrossRef] [PubMed]

Nature

A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard, and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451(7175), 168–171 (2008).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Photon. Nanostructures

J. Sun, Y. F. Shen, J. Chen, L. G. Wang, L. L. Sun, J. Wang, K. Han, and G. Tang, “Imaging properties of a two-dimensional photonic crystal with rectangular air holes embedded in a silicon slab,” Photon. Nanostructures 8(3), 163–171 (2010).
[CrossRef]

B. Gesemann, S. L. Schweizer, and R. B. Wehrspohn, “Thermal emission properties of 2D and 3D silicon photonic crystals,” Photon. Nanostructures 8(2), 107–111 (2010).
[CrossRef]

Sol. Energy Mater. Sol. Cells

J. L. Cruz-Campa, M. Okandan, P. J. Resnick, P. Clews, T. Pluym, R. K. Grubbs, V. P. Gupta, D. Zubia, and G. N. Nielson, “Micro systems enabled photovoltaics: 14.9% efficient 14 μm thick crystalline silicon solar cell,” Sol. Energy Mater. Sol. Cells 95(2), 551–558 (2011).
[CrossRef]

Other

M. Born and E. Wolf, Principles Optics (Cambridge University Press, 1999), Chap. 8.

A. Taflove and S. C. Hagness, Computional Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005), Chap. 3.

C. Honsberg and S. Bowden, “PVCDROM, Appendices: Standard Solar Spectra,” http://www.pveducation.org/pvcdrom/appendicies/standard-solar-spectra .

D. Kirikae, Y. Suzuki, and N. Kasagi, “Emission spectral control using metal-coated silicon,” in Proceedings of Power MEMS (Washington, 2009), pp. 161–164.

K. Hanamura and K. Mori, “Nano-gap TPV generation of electricity through evanescent wave in near-field above emitter surface,” in Proceedings of 7th world TPV Conference (Madrid, 2007), pp. 291–296.

Supplementary Material (4)

» Media 1: AVI (3138 KB)     
» Media 2: AVI (2221 KB)     
» Media 3: AVI (3894 KB)     
» Media 4: AVI (3713 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Two-dimensional computational model. (a) A parallel plane wave source emulating the AM1.5D solar spectrum was applied; the spectral response (SR) of the Si cell was set as 0.4–1.2 μm. (b) A pointwise source emulating perfectly diffuse blackbody radiation at 1500 K was applied; the SR of the GaSb cell was set as 0.8−1.8 μm.

Fig. 2
Fig. 2

Two types of photonic structures. Both (a) circular-gap and (b) layered binary structures were individually examined in the PV/TPV model. The blue region represents poly methyl methacrylate (PMMA) or silicon (for the PV or TPV model, respectively), while the white region represents the air gap.

Fig. 3
Fig. 3

Flowchart of EA with finite-difference time-domain (EA-FDTD) for design of wavelength selective concentrator (WSC).

Fig. 4
Fig. 4

Genetic manipulations that generate new structures. (a) crossover and (b) mutation. The manipulated parts are shown in red. Upper: circular-gap structure. Lower: layered binary structure.

Fig. 5
Fig. 5

Evaluation index F vs. generation (iteration) step for selective wavelength concentration (TE mode).

Fig. 6
Fig. 6

Optical efficiency of EA-generated photonic structures and theoretical limits. (a) EA-generated layered binary structure (PV model); (b) EA-generated circular-gap structure (TPV model). Upper: TE mode. Lower: Average of TE and TM modes.

Fig. 7
Fig. 7

EA-generated photonic structures at 10000th generation for selective wavelength concentrations (TE mode).(a) EA-generated layered binary structure in PV model (b) EA-generated circular-gap structure in TPV model.Upper: TE mode. Lower: Average of TE and TM modes.

Fig. 8
Fig. 8

Two-dimensional simulation of the steady |E z|2 field intensity using the 10000th-generation photonic structure (TE mode). (a) λ within SR range of Si cell (Media 1); (b) λ outside SR range of Si cell (Media 2);(c) λ within SR range of GaSb cell (Media 3); (d) λ outside SR range of GaSb cell (Media 4).

Tables (1)

Tables Icon

Table 1 Parameters for Two Types of Photonic Structures

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F = 0 | η λ _ i d e a l η λ | E ¯ λ d λ

Metrics