Abstract

The combination of two-photon microscopy (TPM) and optical coherence tomography (OCT) is useful in conducting in-vivo tissue studies, because they provide complementary information regarding tissues. In the present study, we developed a new combined system using separate light sources and scanners for individually optimal imaging conditions. TPM used a Ti-Sapphire laser and provided molecular and cellular information in microscopic tissue regions. Meanwhile, OCT used a wavelength-swept source centered at 1300 nm and provided structural information in larger tissue regions than TPM. The system was designed to do simultaneous imaging by combining light from both sources. TPM and OCT had the field of view values of 300 μm and 800 μm on one side respectively with a 20x objective. TPM had resolutions of 0.47 μm and 2.5 μm in the lateral and axial directions respectively, and an imaging speed of 40 frames/s. OCT had resolutions of 5 μm and 8 μm in lateral and axial directions respectively, a sensitivity of 97dB, and an imaging speed of 0.8 volumes per second. This combined system was tested with simple microsphere specimens, and was then applied to image small intestine and ear tissues of mouse models ex-vivo. Molecular, cellular, and structural information of the tissues were visualized using the proposed combined system.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
    [CrossRef] [PubMed]
  2. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21(11), 1361–1367 (2003).
    [CrossRef] [PubMed]
  3. A. D. Aguirre, Y. Chen, B. Bryan, H. Mashimo, Q. Huang, J. L. Connolly, and J. G. Fujimoto, “Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy,” J. Biomed. Opt. 15(1), 016025 (2010).
    [CrossRef] [PubMed]
  4. E. Beaurepaire, L. Moreaux, F. Amblard, and J. Mertz, “Combined scanning optical coherence and two-photon-excited fluorescence microscopy,” Opt. Lett. 24(14), 969–971 (1999), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-24-14-969 .
    [CrossRef] [PubMed]
  5. C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, “Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy,” Appl. Phys. Lett. 88(5), 053901 (2006).
    [CrossRef]
  6. S. Tang, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Combined multiphoton microscopy and optical coherence tomography using a 12-fs broadband source,” J. Biomed. Opt. 11(2), 020502 (2006).
    [CrossRef] [PubMed]
  7. S. Yazdanfar, Y. Y. Chen, P. T. C. So, and L. H. Laiho, “Multifunctional imaging of endogenous contrast by simultaneous nonlinear and optical coherence microscopy of thick tissues,” Microsc. Res. Tech. 70(7), 628–633 (2007).
    [CrossRef] [PubMed]
  8. B. W. Graf, Z. Jiang, H. Tu, and S. A. Boppart, “Dual-spectrum laser source based on fiber continuum generation for integrated optical coherence and multiphoton microscopy,” J. Biomed. Opt. 14(3), 034019 (2009).
    [CrossRef] [PubMed]
  9. A. T. Yeh, B. Kao, W. G. Jung, Z. Chen, J. S. Nelson, and B. J. Tromberg, “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model,” J. Biomed. Opt. 9(2), 248–253 (2004).
    [CrossRef] [PubMed]
  10. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28(20), 1981–1983 (2003), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-28-20-1981 .
    [CrossRef] [PubMed]
  11. K. H. Kim, B. H. Park, Y. Tu, T. Hasan, B. Lee, J. Li, and J. F. de Boer, “Polarization-sensitive optical frequency domain imaging based on unpolarized light,” Opt. Express 19(2), 552–561 (2011), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-2-552 .
    [CrossRef] [PubMed]
  12. J. H. Niess, S. Brand, X. Gu, L. Landsman, S. Jung, B. A. McCormick, J. M. Vyas, M. Boes, H. L. Ploegh, J. G. Fox, D. R. Littman, and H. C. Reinecker, “CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance,” Science 307(5707), 254–258 (2005).
    [CrossRef] [PubMed]
  13. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27(4), 243–245 (2002), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-27-4-243 .
    [CrossRef] [PubMed]
  14. T. S. Ralston, D. L. Marks, P. Scott Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
    [CrossRef]
  15. N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
    [CrossRef] [PubMed]

2011

2010

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[CrossRef] [PubMed]

A. D. Aguirre, Y. Chen, B. Bryan, H. Mashimo, Q. Huang, J. L. Connolly, and J. G. Fujimoto, “Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy,” J. Biomed. Opt. 15(1), 016025 (2010).
[CrossRef] [PubMed]

2009

B. W. Graf, Z. Jiang, H. Tu, and S. A. Boppart, “Dual-spectrum laser source based on fiber continuum generation for integrated optical coherence and multiphoton microscopy,” J. Biomed. Opt. 14(3), 034019 (2009).
[CrossRef] [PubMed]

2007

S. Yazdanfar, Y. Y. Chen, P. T. C. So, and L. H. Laiho, “Multifunctional imaging of endogenous contrast by simultaneous nonlinear and optical coherence microscopy of thick tissues,” Microsc. Res. Tech. 70(7), 628–633 (2007).
[CrossRef] [PubMed]

T. S. Ralston, D. L. Marks, P. Scott Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[CrossRef]

2006

C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, “Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy,” Appl. Phys. Lett. 88(5), 053901 (2006).
[CrossRef]

S. Tang, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Combined multiphoton microscopy and optical coherence tomography using a 12-fs broadband source,” J. Biomed. Opt. 11(2), 020502 (2006).
[CrossRef] [PubMed]

2005

J. H. Niess, S. Brand, X. Gu, L. Landsman, S. Jung, B. A. McCormick, J. M. Vyas, M. Boes, H. L. Ploegh, J. G. Fox, D. R. Littman, and H. C. Reinecker, “CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance,” Science 307(5707), 254–258 (2005).
[CrossRef] [PubMed]

2004

A. T. Yeh, B. Kao, W. G. Jung, Z. Chen, J. S. Nelson, and B. J. Tromberg, “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model,” J. Biomed. Opt. 9(2), 248–253 (2004).
[CrossRef] [PubMed]

2003

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28(20), 1981–1983 (2003), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-28-20-1981 .
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21(11), 1361–1367 (2003).
[CrossRef] [PubMed]

2002

1999

Aguirre, A. D.

A. D. Aguirre, Y. Chen, B. Bryan, H. Mashimo, Q. Huang, J. L. Connolly, and J. G. Fujimoto, “Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy,” J. Biomed. Opt. 15(1), 016025 (2010).
[CrossRef] [PubMed]

Amblard, F.

Beaurepaire, E.

Betzig, E.

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[CrossRef] [PubMed]

Boes, M.

J. H. Niess, S. Brand, X. Gu, L. Landsman, S. Jung, B. A. McCormick, J. M. Vyas, M. Boes, H. L. Ploegh, J. G. Fox, D. R. Littman, and H. C. Reinecker, “CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance,” Science 307(5707), 254–258 (2005).
[CrossRef] [PubMed]

Boppart, S. A.

B. W. Graf, Z. Jiang, H. Tu, and S. A. Boppart, “Dual-spectrum laser source based on fiber continuum generation for integrated optical coherence and multiphoton microscopy,” J. Biomed. Opt. 14(3), 034019 (2009).
[CrossRef] [PubMed]

T. S. Ralston, D. L. Marks, P. Scott Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[CrossRef]

C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, “Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy,” Appl. Phys. Lett. 88(5), 053901 (2006).
[CrossRef]

Boudoux, C.

Bouma, B. E.

Brand, S.

J. H. Niess, S. Brand, X. Gu, L. Landsman, S. Jung, B. A. McCormick, J. M. Vyas, M. Boes, H. L. Ploegh, J. G. Fox, D. R. Littman, and H. C. Reinecker, “CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance,” Science 307(5707), 254–258 (2005).
[CrossRef] [PubMed]

Bryan, B.

A. D. Aguirre, Y. Chen, B. Bryan, H. Mashimo, Q. Huang, J. L. Connolly, and J. G. Fujimoto, “Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy,” J. Biomed. Opt. 15(1), 016025 (2010).
[CrossRef] [PubMed]

Chen, Y.

A. D. Aguirre, Y. Chen, B. Bryan, H. Mashimo, Q. Huang, J. L. Connolly, and J. G. Fujimoto, “Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy,” J. Biomed. Opt. 15(1), 016025 (2010).
[CrossRef] [PubMed]

Chen, Y. Y.

S. Yazdanfar, Y. Y. Chen, P. T. C. So, and L. H. Laiho, “Multifunctional imaging of endogenous contrast by simultaneous nonlinear and optical coherence microscopy of thick tissues,” Microsc. Res. Tech. 70(7), 628–633 (2007).
[CrossRef] [PubMed]

Chen, Z.

S. Tang, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Combined multiphoton microscopy and optical coherence tomography using a 12-fs broadband source,” J. Biomed. Opt. 11(2), 020502 (2006).
[CrossRef] [PubMed]

A. T. Yeh, B. Kao, W. G. Jung, Z. Chen, J. S. Nelson, and B. J. Tromberg, “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model,” J. Biomed. Opt. 9(2), 248–253 (2004).
[CrossRef] [PubMed]

Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27(4), 243–245 (2002), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-27-4-243 .
[CrossRef] [PubMed]

Connolly, J. L.

A. D. Aguirre, Y. Chen, B. Bryan, H. Mashimo, Q. Huang, J. L. Connolly, and J. G. Fujimoto, “Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy,” J. Biomed. Opt. 15(1), 016025 (2010).
[CrossRef] [PubMed]

de Boer, J. F.

Ding, Z.

Fox, J. G.

J. H. Niess, S. Brand, X. Gu, L. Landsman, S. Jung, B. A. McCormick, J. M. Vyas, M. Boes, H. L. Ploegh, J. G. Fox, D. R. Littman, and H. C. Reinecker, “CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance,” Science 307(5707), 254–258 (2005).
[CrossRef] [PubMed]

Fujimoto, J. G.

A. D. Aguirre, Y. Chen, B. Bryan, H. Mashimo, Q. Huang, J. L. Connolly, and J. G. Fujimoto, “Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy,” J. Biomed. Opt. 15(1), 016025 (2010).
[CrossRef] [PubMed]

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21(11), 1361–1367 (2003).
[CrossRef] [PubMed]

Graf, B. W.

B. W. Graf, Z. Jiang, H. Tu, and S. A. Boppart, “Dual-spectrum laser source based on fiber continuum generation for integrated optical coherence and multiphoton microscopy,” J. Biomed. Opt. 14(3), 034019 (2009).
[CrossRef] [PubMed]

Gu, X.

J. H. Niess, S. Brand, X. Gu, L. Landsman, S. Jung, B. A. McCormick, J. M. Vyas, M. Boes, H. L. Ploegh, J. G. Fox, D. R. Littman, and H. C. Reinecker, “CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance,” Science 307(5707), 254–258 (2005).
[CrossRef] [PubMed]

Hasan, T.

Huang, Q.

A. D. Aguirre, Y. Chen, B. Bryan, H. Mashimo, Q. Huang, J. L. Connolly, and J. G. Fujimoto, “Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy,” J. Biomed. Opt. 15(1), 016025 (2010).
[CrossRef] [PubMed]

Ji, N.

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[CrossRef] [PubMed]

Jiang, Z.

B. W. Graf, Z. Jiang, H. Tu, and S. A. Boppart, “Dual-spectrum laser source based on fiber continuum generation for integrated optical coherence and multiphoton microscopy,” J. Biomed. Opt. 14(3), 034019 (2009).
[CrossRef] [PubMed]

Jung, S.

J. H. Niess, S. Brand, X. Gu, L. Landsman, S. Jung, B. A. McCormick, J. M. Vyas, M. Boes, H. L. Ploegh, J. G. Fox, D. R. Littman, and H. C. Reinecker, “CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance,” Science 307(5707), 254–258 (2005).
[CrossRef] [PubMed]

Jung, W. G.

A. T. Yeh, B. Kao, W. G. Jung, Z. Chen, J. S. Nelson, and B. J. Tromberg, “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model,” J. Biomed. Opt. 9(2), 248–253 (2004).
[CrossRef] [PubMed]

Kao, B.

A. T. Yeh, B. Kao, W. G. Jung, Z. Chen, J. S. Nelson, and B. J. Tromberg, “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model,” J. Biomed. Opt. 9(2), 248–253 (2004).
[CrossRef] [PubMed]

Kim, K. H.

Krasieva, T. B.

S. Tang, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Combined multiphoton microscopy and optical coherence tomography using a 12-fs broadband source,” J. Biomed. Opt. 11(2), 020502 (2006).
[CrossRef] [PubMed]

Laiho, L. H.

S. Yazdanfar, Y. Y. Chen, P. T. C. So, and L. H. Laiho, “Multifunctional imaging of endogenous contrast by simultaneous nonlinear and optical coherence microscopy of thick tissues,” Microsc. Res. Tech. 70(7), 628–633 (2007).
[CrossRef] [PubMed]

Landsman, L.

J. H. Niess, S. Brand, X. Gu, L. Landsman, S. Jung, B. A. McCormick, J. M. Vyas, M. Boes, H. L. Ploegh, J. G. Fox, D. R. Littman, and H. C. Reinecker, “CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance,” Science 307(5707), 254–258 (2005).
[CrossRef] [PubMed]

Lee, B.

Li, J.

Littman, D. R.

J. H. Niess, S. Brand, X. Gu, L. Landsman, S. Jung, B. A. McCormick, J. M. Vyas, M. Boes, H. L. Ploegh, J. G. Fox, D. R. Littman, and H. C. Reinecker, “CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance,” Science 307(5707), 254–258 (2005).
[CrossRef] [PubMed]

Luo, W.

C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, “Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy,” Appl. Phys. Lett. 88(5), 053901 (2006).
[CrossRef]

Marks, D. L.

T. S. Ralston, D. L. Marks, P. Scott Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[CrossRef]

C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, “Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy,” Appl. Phys. Lett. 88(5), 053901 (2006).
[CrossRef]

Mashimo, H.

A. D. Aguirre, Y. Chen, B. Bryan, H. Mashimo, Q. Huang, J. L. Connolly, and J. G. Fujimoto, “Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy,” J. Biomed. Opt. 15(1), 016025 (2010).
[CrossRef] [PubMed]

McCormick, B. A.

J. H. Niess, S. Brand, X. Gu, L. Landsman, S. Jung, B. A. McCormick, J. M. Vyas, M. Boes, H. L. Ploegh, J. G. Fox, D. R. Littman, and H. C. Reinecker, “CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance,” Science 307(5707), 254–258 (2005).
[CrossRef] [PubMed]

Mertz, J.

Milkie, D. E.

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[CrossRef] [PubMed]

Moreaux, L.

Nelson, J. S.

A. T. Yeh, B. Kao, W. G. Jung, Z. Chen, J. S. Nelson, and B. J. Tromberg, “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model,” J. Biomed. Opt. 9(2), 248–253 (2004).
[CrossRef] [PubMed]

Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27(4), 243–245 (2002), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-27-4-243 .
[CrossRef] [PubMed]

Niess, J. H.

J. H. Niess, S. Brand, X. Gu, L. Landsman, S. Jung, B. A. McCormick, J. M. Vyas, M. Boes, H. L. Ploegh, J. G. Fox, D. R. Littman, and H. C. Reinecker, “CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance,” Science 307(5707), 254–258 (2005).
[CrossRef] [PubMed]

Park, B. H.

Ploegh, H. L.

J. H. Niess, S. Brand, X. Gu, L. Landsman, S. Jung, B. A. McCormick, J. M. Vyas, M. Boes, H. L. Ploegh, J. G. Fox, D. R. Littman, and H. C. Reinecker, “CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance,” Science 307(5707), 254–258 (2005).
[CrossRef] [PubMed]

Ralston, T.

C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, “Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy,” Appl. Phys. Lett. 88(5), 053901 (2006).
[CrossRef]

Ralston, T. S.

T. S. Ralston, D. L. Marks, P. Scott Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[CrossRef]

Reinecker, H. C.

J. H. Niess, S. Brand, X. Gu, L. Landsman, S. Jung, B. A. McCormick, J. M. Vyas, M. Boes, H. L. Ploegh, J. G. Fox, D. R. Littman, and H. C. Reinecker, “CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance,” Science 307(5707), 254–258 (2005).
[CrossRef] [PubMed]

Ren, H.

Scott Carney, P.

T. S. Ralston, D. L. Marks, P. Scott Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[CrossRef]

So, P. T. C.

S. Yazdanfar, Y. Y. Chen, P. T. C. So, and L. H. Laiho, “Multifunctional imaging of endogenous contrast by simultaneous nonlinear and optical coherence microscopy of thick tissues,” Microsc. Res. Tech. 70(7), 628–633 (2007).
[CrossRef] [PubMed]

Tan, W.

C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, “Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy,” Appl. Phys. Lett. 88(5), 053901 (2006).
[CrossRef]

Tang, S.

S. Tang, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Combined multiphoton microscopy and optical coherence tomography using a 12-fs broadband source,” J. Biomed. Opt. 11(2), 020502 (2006).
[CrossRef] [PubMed]

Tearney, G. J.

Tromberg, B. J.

S. Tang, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Combined multiphoton microscopy and optical coherence tomography using a 12-fs broadband source,” J. Biomed. Opt. 11(2), 020502 (2006).
[CrossRef] [PubMed]

A. T. Yeh, B. Kao, W. G. Jung, Z. Chen, J. S. Nelson, and B. J. Tromberg, “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model,” J. Biomed. Opt. 9(2), 248–253 (2004).
[CrossRef] [PubMed]

Tu, H.

B. W. Graf, Z. Jiang, H. Tu, and S. A. Boppart, “Dual-spectrum laser source based on fiber continuum generation for integrated optical coherence and multiphoton microscopy,” J. Biomed. Opt. 14(3), 034019 (2009).
[CrossRef] [PubMed]

Tu, Y.

Vinegoni, C.

C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, “Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy,” Appl. Phys. Lett. 88(5), 053901 (2006).
[CrossRef]

Vyas, J. M.

J. H. Niess, S. Brand, X. Gu, L. Landsman, S. Jung, B. A. McCormick, J. M. Vyas, M. Boes, H. L. Ploegh, J. G. Fox, D. R. Littman, and H. C. Reinecker, “CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance,” Science 307(5707), 254–258 (2005).
[CrossRef] [PubMed]

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Yazdanfar, S.

S. Yazdanfar, Y. Y. Chen, P. T. C. So, and L. H. Laiho, “Multifunctional imaging of endogenous contrast by simultaneous nonlinear and optical coherence microscopy of thick tissues,” Microsc. Res. Tech. 70(7), 628–633 (2007).
[CrossRef] [PubMed]

Yeh, A. T.

A. T. Yeh, B. Kao, W. G. Jung, Z. Chen, J. S. Nelson, and B. J. Tromberg, “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model,” J. Biomed. Opt. 9(2), 248–253 (2004).
[CrossRef] [PubMed]

Yun, S. H.

Zhao, Y.

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Appl. Phys. Lett.

C. Vinegoni, T. Ralston, W. Tan, W. Luo, D. L. Marks, and S. A. Boppart, “Integrated structural and functional optical imaging combining spectral-domain optical coherence and multiphoton microscopy,” Appl. Phys. Lett. 88(5), 053901 (2006).
[CrossRef]

J. Biomed. Opt.

S. Tang, T. B. Krasieva, Z. Chen, and B. J. Tromberg, “Combined multiphoton microscopy and optical coherence tomography using a 12-fs broadband source,” J. Biomed. Opt. 11(2), 020502 (2006).
[CrossRef] [PubMed]

B. W. Graf, Z. Jiang, H. Tu, and S. A. Boppart, “Dual-spectrum laser source based on fiber continuum generation for integrated optical coherence and multiphoton microscopy,” J. Biomed. Opt. 14(3), 034019 (2009).
[CrossRef] [PubMed]

A. T. Yeh, B. Kao, W. G. Jung, Z. Chen, J. S. Nelson, and B. J. Tromberg, “Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model,” J. Biomed. Opt. 9(2), 248–253 (2004).
[CrossRef] [PubMed]

A. D. Aguirre, Y. Chen, B. Bryan, H. Mashimo, Q. Huang, J. L. Connolly, and J. G. Fujimoto, “Cellular resolution ex vivo imaging of gastrointestinal tissues with optical coherence microscopy,” J. Biomed. Opt. 15(1), 016025 (2010).
[CrossRef] [PubMed]

Microsc. Res. Tech.

S. Yazdanfar, Y. Y. Chen, P. T. C. So, and L. H. Laiho, “Multifunctional imaging of endogenous contrast by simultaneous nonlinear and optical coherence microscopy of thick tissues,” Microsc. Res. Tech. 70(7), 628–633 (2007).
[CrossRef] [PubMed]

Nat. Biotechnol.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21(11), 1361–1367 (2003).
[CrossRef] [PubMed]

Nat. Methods

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[CrossRef] [PubMed]

Nat. Phys.

T. S. Ralston, D. L. Marks, P. Scott Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Science

J. H. Niess, S. Brand, X. Gu, L. Landsman, S. Jung, B. A. McCormick, J. M. Vyas, M. Boes, H. L. Ploegh, J. G. Fox, D. R. Littman, and H. C. Reinecker, “CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance,” Science 307(5707), 254–258 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

System configuration of combined TPM and OCT. SM: scanning mirror, PDBD: polarization-diverse balanced detection, PMT: photomultiplier tube, HWP: half-wave plate, PL: polarizer, SL: scan lens, TL: tube lens, OL: objective lens, SP: sample, TS: translation stage, DM: dichroic mirror. TPM excitation and emission beams were depicted in red and green respectively, and OCT beam was depicted in gray.

Fig. 2
Fig. 2

2D TPM and OCT images of mixed fluorescent microspheres of 2 μm and 10 μm in diameter (a-c) and a 3D image of fluorescent microspheres of 6 μm in diameter (d). (a) Combined image, (b) TPM image, and (c) OCT image in the FOV of TPM. The scale bar is 100 μm.

Fig. 3
Fig. 3

TPM and OCT images of the ex-vivo small intestine of a mouse model. (a) 3D reconstruction of TPM and OCT images, (b) histology, (c) x-y plane image of GFP TPM, (d) OCT, (e) CMTMR TPM, and (f) Overlay of GFP TPM, OCT, and CMTMR TPM image at 100 micron deep from the surface. The scale bar is 100 μm.

Fig. 4
Fig. 4

TPM and OCT images of the ex-vivo ear tissue of a mouse model. (a) 3D reconstructed TPM and OCT images and an OCT cross-sectional image, (b-d) x-y plane images of GFP TPM, OCT, and overlay respectively in the epithelium, (e-g) x-y plane images in the dermis, (h-j) x-y plane images in the cartilage. The scale bar is 100 um.

Metrics