Abstract

Mass sensing and time keeping applications require high frequency integrated micromechanical oscillators. To overcome the increasing mechanical stiffness of these structures sensitive optical vibration detection and efficient actuation is required. Therefore we have implemented an active feedback system, where the feedback signal is provided by the optical gradient force that is present between nanophotonic waveguides on a silicon-on-insulator chip. We found that access to the parametric instability regime can be easily controlled by tuning the wavelength.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
    [CrossRef] [PubMed]
  2. D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444, 75–78 (2006).
    [CrossRef] [PubMed]
  3. A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
    [CrossRef] [PubMed]
  4. M. Hossein and K. J. Vahala, “An optomechanical oscillator on a silicon chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 276–287 (2010).
    [CrossRef]
  5. A. Vidic, D. Then, and C. Ziegler, “A new cantilever system for gas and liquid sensing,” Ultramicroscopy 97, 407–416 (2003).
    [CrossRef] [PubMed]
  6. J. Tamayo, A. D. L. Humphris, A. M. Malloy, and M. J. Miles, “Chemical sensors and biosensors in liquid environment based on microcantilevers with amplified quality factor,” Ultramicroscopy 86, 167–173 (2001).
    [CrossRef] [PubMed]
  7. D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4(4), 211–217 (2010).
    [CrossRef]
  8. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
    [CrossRef] [PubMed]
  9. J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol. 4(8), 510–513 (2009).
    [CrossRef] [PubMed]
  10. M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
    [CrossRef]
  11. M. L. Povinelli, M. Loncar, M. Ibanescu, E. J. Smythe, J. Erich, S. G. Johnson, F. Capasso, and J. D. Joannopoulos, “Evanescent-wave bonding between optical waveguides,” Opt. Lett. 30, 3042–3044 (2005).
    [CrossRef] [PubMed]
  12. A. Mizrahi and L. Schachter, “Mirror manipulation by attractive and repulsive forces of guided waves,” Opt. Express 13, 9804–9811 (2005).
    [CrossRef] [PubMed]
  13. S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography,” J. Lightwave Technol. 27(18), 4076–4083 (2009).
    [CrossRef]
  14. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29, 2749–2751 (2004).
    [CrossRef] [PubMed]
  15. R. Kubo, “The fluctuation dissipation theorem,” Rep. Prog. Phys. 29, 255–284 (1966).
    [CrossRef]
  16. I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007).
    [CrossRef]
  17. H. Nyquist, “Thermal agitation of electric charge in conductors,” Phys. Rev. 32(1), 110–113 (1928).
    [CrossRef]
  18. G. P. Agrawal, Fiber Optic Communication System (Wiley, 2002), Chap. 6.
    [CrossRef]
  19. E. Säckinger, Broadband Circuits for Optical Fiber Communication (Wiley, 2005), Chap. 3.
    [CrossRef]

2010

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[CrossRef] [PubMed]

M. Hossein and K. J. Vahala, “An optomechanical oscillator on a silicon chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 276–287 (2010).
[CrossRef]

D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4(4), 211–217 (2010).
[CrossRef]

2009

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol. 4(8), 510–513 (2009).
[CrossRef] [PubMed]

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[CrossRef]

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography,” J. Lightwave Technol. 27(18), 4076–4083 (2009).
[CrossRef]

2008

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[CrossRef] [PubMed]

2007

I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007).
[CrossRef]

2006

D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444, 75–78 (2006).
[CrossRef] [PubMed]

2005

2004

2003

A. Vidic, D. Then, and C. Ziegler, “A new cantilever system for gas and liquid sensing,” Ultramicroscopy 97, 407–416 (2003).
[CrossRef] [PubMed]

2001

J. Tamayo, A. D. L. Humphris, A. M. Malloy, and M. J. Miles, “Chemical sensors and biosensors in liquid environment based on microcantilevers with amplified quality factor,” Ultramicroscopy 86, 167–173 (2001).
[CrossRef] [PubMed]

1966

R. Kubo, “The fluctuation dissipation theorem,” Rep. Prog. Phys. 29, 255–284 (1966).
[CrossRef]

1928

H. Nyquist, “Thermal agitation of electric charge in conductors,” Phys. Rev. 32(1), 110–113 (1928).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Fiber Optic Communication System (Wiley, 2002), Chap. 6.
[CrossRef]

Ansmann, M.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[CrossRef] [PubMed]

Baehr-Jones, T.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Baets, R.

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol. 4(8), 510–513 (2009).
[CrossRef] [PubMed]

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography,” J. Lightwave Technol. 27(18), 4076–4083 (2009).
[CrossRef]

I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007).
[CrossRef]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29, 2749–2751 (2004).
[CrossRef] [PubMed]

Bialczak, R. C.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[CrossRef] [PubMed]

Bienstman, P.

Bogaerts, W.

Borghs, G.

I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007).
[CrossRef]

Bouwmeester, D.

D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444, 75–78 (2006).
[CrossRef] [PubMed]

Capasso, F.

Cleland, A. N.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[CrossRef] [PubMed]

De Vlaminck, I.

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol. 4(8), 510–513 (2009).
[CrossRef] [PubMed]

I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007).
[CrossRef]

Dumon, P.

Erich, J.

Hochberg, M.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Hofheinz, M.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[CrossRef] [PubMed]

Hossein, M.

M. Hossein and K. J. Vahala, “An optomechanical oscillator on a silicon chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 276–287 (2010).
[CrossRef]

Humphris, A. D. L.

J. Tamayo, A. D. L. Humphris, A. M. Malloy, and M. J. Miles, “Chemical sensors and biosensors in liquid environment based on microcantilevers with amplified quality factor,” Ultramicroscopy 86, 167–173 (2001).
[CrossRef] [PubMed]

Ibanescu, M.

Jaenen, P.

Joannopoulos, J. D.

Johnson, S. G.

Kippenberg, T. J.

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[CrossRef] [PubMed]

Kleckner, D.

D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444, 75–78 (2006).
[CrossRef] [PubMed]

Kubo, R.

R. Kubo, “The fluctuation dissipation theorem,” Rep. Prog. Phys. 29, 255–284 (1966).
[CrossRef]

Lagae, L.

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol. 4(8), 510–513 (2009).
[CrossRef] [PubMed]

I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007).
[CrossRef]

Lenander, M.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[CrossRef] [PubMed]

Li, M.

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[CrossRef]

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Loncar, M.

Lucero, E.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[CrossRef] [PubMed]

Maes, B.

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol. 4(8), 510–513 (2009).
[CrossRef] [PubMed]

Malloy, A. M.

J. Tamayo, A. D. L. Humphris, A. M. Malloy, and M. J. Miles, “Chemical sensors and biosensors in liquid environment based on microcantilevers with amplified quality factor,” Ultramicroscopy 86, 167–173 (2001).
[CrossRef] [PubMed]

Martinis, J. M.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[CrossRef] [PubMed]

Miles, M. J.

J. Tamayo, A. D. L. Humphris, A. M. Malloy, and M. J. Miles, “Chemical sensors and biosensors in liquid environment based on microcantilevers with amplified quality factor,” Ultramicroscopy 86, 167–173 (2001).
[CrossRef] [PubMed]

Mizrahi, A.

Neeley, M.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[CrossRef] [PubMed]

Nyquist, H.

H. Nyquist, “Thermal agitation of electric charge in conductors,” Phys. Rev. 32(1), 110–113 (1928).
[CrossRef]

O’Connell, A. D.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[CrossRef] [PubMed]

Pernice, W. H. P.

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[CrossRef]

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Povinelli, M. L.

Roels, J.

D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4(4), 211–217 (2010).
[CrossRef]

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol. 4(8), 510–513 (2009).
[CrossRef] [PubMed]

I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007).
[CrossRef]

Säckinger, E.

E. Säckinger, Broadband Circuits for Optical Fiber Communication (Wiley, 2005), Chap. 3.
[CrossRef]

Sank, D.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[CrossRef] [PubMed]

Schachter, L.

Selvaraja, S. K.

Smythe, E. J.

Taillaert, D.

I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007).
[CrossRef]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29, 2749–2751 (2004).
[CrossRef] [PubMed]

Tamayo, J.

J. Tamayo, A. D. L. Humphris, A. M. Malloy, and M. J. Miles, “Chemical sensors and biosensors in liquid environment based on microcantilevers with amplified quality factor,” Ultramicroscopy 86, 167–173 (2001).
[CrossRef] [PubMed]

Tang, H. X.

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[CrossRef]

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Then, D.

A. Vidic, D. Then, and C. Ziegler, “A new cantilever system for gas and liquid sensing,” Ultramicroscopy 97, 407–416 (2003).
[CrossRef] [PubMed]

Vahala, K. J.

M. Hossein and K. J. Vahala, “An optomechanical oscillator on a silicon chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 276–287 (2010).
[CrossRef]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[CrossRef] [PubMed]

Van Thourhout, D.

D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4(4), 211–217 (2010).
[CrossRef]

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol. 4(8), 510–513 (2009).
[CrossRef] [PubMed]

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193-nm optical lithography,” J. Lightwave Technol. 27(18), 4076–4083 (2009).
[CrossRef]

I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007).
[CrossRef]

Vidic, A.

A. Vidic, D. Then, and C. Ziegler, “A new cantilever system for gas and liquid sensing,” Ultramicroscopy 97, 407–416 (2003).
[CrossRef] [PubMed]

Wang, H.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[CrossRef] [PubMed]

Weides, M.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[CrossRef] [PubMed]

Wenner, J.

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[CrossRef] [PubMed]

Xiong, C.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

Ziegler, C.

A. Vidic, D. Then, and C. Ziegler, “A new cantilever system for gas and liquid sensing,” Ultramicroscopy 97, 407–416 (2003).
[CrossRef] [PubMed]

Appl. Phys. Lett.

I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90, 233116 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Hossein and K. J. Vahala, “An optomechanical oscillator on a silicon chip,” IEEE J. Sel. Top. Quantum Electron. 16(1), 276–287 (2010).
[CrossRef]

J. Lightwave Technol.

Nat. Nanotechnol.

J. Roels, I. De Vlaminck, L. Lagae, B. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol. 4(8), 510–513 (2009).
[CrossRef] [PubMed]

Nat. Photonics

M. Li, W. H. P. Pernice, and H. X. Tang, “Tunable bipolar optical interactions between guided lightwaves,” Nat. Photonics 3(8), 464–468 (2009).
[CrossRef]

D. Van Thourhout and J. Roels, “Optomechanical device actuation through the optical gradient force,” Nat. Photonics 4(4), 211–217 (2010).
[CrossRef]

Nature

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008).
[CrossRef] [PubMed]

D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444, 75–78 (2006).
[CrossRef] [PubMed]

A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev.

H. Nyquist, “Thermal agitation of electric charge in conductors,” Phys. Rev. 32(1), 110–113 (1928).
[CrossRef]

Rep. Prog. Phys.

R. Kubo, “The fluctuation dissipation theorem,” Rep. Prog. Phys. 29, 255–284 (1966).
[CrossRef]

Science

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[CrossRef] [PubMed]

Ultramicroscopy

A. Vidic, D. Then, and C. Ziegler, “A new cantilever system for gas and liquid sensing,” Ultramicroscopy 97, 407–416 (2003).
[CrossRef] [PubMed]

J. Tamayo, A. D. L. Humphris, A. M. Malloy, and M. J. Miles, “Chemical sensors and biosensors in liquid environment based on microcantilevers with amplified quality factor,” Ultramicroscopy 86, 167–173 (2001).
[CrossRef] [PubMed]

Other

G. P. Agrawal, Fiber Optic Communication System (Wiley, 2002), Chap. 6.
[CrossRef]

E. Säckinger, Broadband Circuits for Optical Fiber Communication (Wiley, 2005), Chap. 3.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Tunable force device [9]. (a), Mach-Zehnder interferometer with arms of unequal length, one coupler is a Multi-Mode interferometer (MMI) 3dB-splitter/combiner, the other is a freestanding parallel waveguide coupler. It is also shown where the pump and probe laser light enter the device. (b), Cross-section of a nanophotonic wire in silicon-on-insulator. (c), Cross-section of the freestanding parallel waveguides. (d), Transmission spectrum of the MZI with freestanding waveguide coupler. Also the transduction spectrum (taken by measuring the brownian mechanical response at different probe wavelengths and no pump signal) is plotted, showing that maximum optomechanical transduction can be found at the local maxima and minima of the transmission spectrum. (e), Measured force when sweeping the pump length. For the feedback experiments we use for the pump settings the purely attractive force (1542.2 nm) or the repulsive force (1544.1 nm), and set the probe wavelength to 1549.5 nm (dashed line in (d))

Fig. 2
Fig. 2

The blue trace (labeled ‘no preamp’) is the recorded thermal vibration power spectral density (PSD) without optical preamplifier. The noise floor is set by Johnson-Nyquist noise in the optical detector. The red trace (labeled ‘preamp, no filter’) was obtained by preamplifying the signal with an EDFA. The noise floor is set by spontaneous-spontaneous beat noise. The green trace (labeled ‘preamp with filter’) was obtained by inserting a 2.4 nm optical bandpass filter after the EDFA. The noise floor is set by signal-spontaneous beat noise. The EDFA and filter provide a 16 dB improvement of the displacement sensitivity.

Fig. 3
Fig. 3

Experimental pump-probe set-up with feedback loop and enhanced detection scheme. The devices are placed in a vacuum chamber to reduce air damping.

Fig. 4
Fig. 4

Feedback experiments for different optical pump powers (estimated power inside the device). The lowest (purple) trace (labeled ‘no fb’) origins from the thermal brownian vibration without any optical feedback force. When inserting −14dBm in the device, then the damping is more than halved and the apparent mechanical Q increases from 4760 to 10300 (values obtained through fits to a Lorentzian model). For higher optical feedback powers we observe strong, coherent oscillations. The measured responses are not Lorentzian for they are strongly influenced by the Gaussian filter shape of the electrical spectrum analyzer. The black solid lines are fits to a Lorentzian model that allows extraction of the Q’s.

Fig. 5
Fig. 5

Feedback experiments for different delay lengths in the feedback loop. The length of the feedback loop was set to achieve maximum damping for λattr =1542.2 nm (Q≈180, curve labeled ‘85 ns delay’). The damping increased with a factor of 16 compared to the case without feedback (initial Q=2900). Shortening the feedback loop with 85 ns retrieved strongly amplified motion (curve labeled ‘negative damping’).

Fig. 6
Fig. 6

Pump wavelength tuning allows to switch from the damped regime (curve labeled ‘λattr =1542.2 nm’) to the self-pulsating regime (curve labeled ‘λrep =1544.1 nm’).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

kx ( t ) + Γ x ˙ ( t ) + m x ¨ ( t ) = F brown ( t ) + F fb , opt ( t )
σ 2 = σ sig sp 2 + σ sp sp 2 σ sig sp 2 = 4 R 2 S sp Δ f elec GP s σ sp sp 2 = 4 R 2 S sp Δ f elec S sp Δ ν opt

Metrics