Abstract

A long-period waveguide grating (LPWG) with a tunable index contrast is proposed. The design features a simple configuration that consists of a two-mode waveguide formed on periodically poled lithium niobate with an angle with respect to its domain wall and a traveling-wave electrode. In the design, the electrical traveling wave introduces a periodic change in the refractive index of waveguide, which functions as a long-period waveguide grating that couples between symmetric and anti-symmetric core modes. The index contrast of grating can be controlled by the traveling-wave intensity. For application to ultrafast device, structural parameters satisfying velocity and impedance matching conditions are numerically calculated.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Jeong, B. Yang, B. Lee, H. S. Seo, S. Choi, and K. Oh, “Electrically controllable long-period liquid crystal fiber gratings,” IEEE Photon. Technol. Lett. 12(5), 519–521 (2000).
    [CrossRef]
  2. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
    [CrossRef]
  3. Y. W. Koh, S. H. Yun, and B. Y. Kim, “Strain effects on two-mode fiber gratings,” Opt. Lett. 18(7), 497–499 (1993).
    [CrossRef] [PubMed]
  4. C. Zhao, L. Xiao, J. Ju, M. S. Demokan, and W. Jin, “Strain and temperature characteristics of a long-period grating written in a photonic crystal fiber and its application as a temperature-insensitive strain sensor,” J. Lightwave Technol. 26(2), 220–227 (2008).
    [CrossRef]
  5. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
    [CrossRef]
  6. Y. L. Lee, C. Jung, Y. C. Noh, I. Choi, D. K. Ko, J. Lee, H. Y. Lee, and H. Suche, “Wavelength selective single and dual-channel dropping in a periodically poled Ti:LiNbO3 waveguide,” Opt. Express 12(4), 701–707 (2004).
    [CrossRef] [PubMed]
  7. K. Kubota, J. Noda, and O. Mikami, “Traveling wave optical modulator using a directional coupler LiNbO3 waveguide,” IEEE J. Quantum Electron. 16(7), 754–760 (1980).
    [CrossRef]
  8. K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modulators,” J. Lightwave Technol. 16(4), 615–619 (1998).
    [CrossRef]
  9. H. G. Park, S. Y. Huang, and B. Y. Kim, “All optical intermodal switch using periodic coupling in a two-mode waveguide,” Opt. Lett. 14(16), 877–878 (1989).
    [CrossRef] [PubMed]
  10. J. N. Blake, B. Y. Kim, and H. J. Shaw, “Fiber-optic modal coupler using periodic microbending,” Opt. Lett. 11(3), 177–179 (1986).
    [CrossRef] [PubMed]
  11. B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, “All-fiber acousto-optic frequency shifter,” Opt. Lett. 11(6), 389–391 (1986).
    [CrossRef] [PubMed]
  12. R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
    [CrossRef]
  13. E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
    [CrossRef]
  14. R.-C. Twu, C.-Y. Chang, and W.-S. Wang, “A Zn-diffused Mach–Zehnder modulator on lithium niobate at 1.55-μm wavelength,” Microw. Opt. Technol. Lett. 43(2), 142–144 (2004).
    [CrossRef]
  15. W. K. Burns, M. M. Howerton, R. P. Moeller, R. Krähenbühl, R. W. McElhanon, and A. S. Greenblatt, “Low drive voltage, broad-band LiNbO3 modulators with and without etched ridges,” J. Lightwave Technol. 17(12), 2551–2555 (1999).
    [CrossRef]
  16. K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fiber using externally written gratings,” Electron. Lett. 26(16), 1270–1272 (1990).
    [CrossRef]
  17. D. Őstling and H. E. Engan, “Narrow-band acousto-optic tunable filtering in a two-mode fiber,” Opt. Lett. 20(11), 1247–1249 (1995).
    [CrossRef] [PubMed]
  18. H. S. Park, K. Y. Song, S. H. Yun, and B. Y. Kim, “All-fiber wavelength-tunable acoustooptic switches based on intermodal coupling in fibers,” J. Lightwave Technol. 20(10), 1864–1868 (2002).
    [CrossRef]
  19. K. Kawano, T. Kitoh, O. Mitomi, T. Nozawa, and H. Jumonji, “A wide-band and low-driving-power phase modulator employing a Ti:LiNbO3 optical waveguide at 1.5 μm wavelength,” IEEE Photon. Technol. Lett. 1(2), 33–34 (1989).
    [CrossRef]

2008

2004

Y. L. Lee, C. Jung, Y. C. Noh, I. Choi, D. K. Ko, J. Lee, H. Y. Lee, and H. Suche, “Wavelength selective single and dual-channel dropping in a periodically poled Ti:LiNbO3 waveguide,” Opt. Express 12(4), 701–707 (2004).
[CrossRef] [PubMed]

R.-C. Twu, C.-Y. Chang, and W.-S. Wang, “A Zn-diffused Mach–Zehnder modulator on lithium niobate at 1.55-μm wavelength,” Microw. Opt. Technol. Lett. 43(2), 142–144 (2004).
[CrossRef]

2002

2000

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[CrossRef]

Y. Jeong, B. Yang, B. Lee, H. S. Seo, S. Choi, and K. Oh, “Electrically controllable long-period liquid crystal fiber gratings,” IEEE Photon. Technol. Lett. 12(5), 519–521 (2000).
[CrossRef]

1999

1998

1996

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[CrossRef]

1995

1993

Y. W. Koh, S. H. Yun, and B. Y. Kim, “Strain effects on two-mode fiber gratings,” Opt. Lett. 18(7), 497–499 (1993).
[CrossRef] [PubMed]

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[CrossRef]

1990

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fiber using externally written gratings,” Electron. Lett. 26(16), 1270–1272 (1990).
[CrossRef]

1989

K. Kawano, T. Kitoh, O. Mitomi, T. Nozawa, and H. Jumonji, “A wide-band and low-driving-power phase modulator employing a Ti:LiNbO3 optical waveguide at 1.5 μm wavelength,” IEEE Photon. Technol. Lett. 1(2), 33–34 (1989).
[CrossRef]

H. G. Park, S. Y. Huang, and B. Y. Kim, “All optical intermodal switch using periodic coupling in a two-mode waveguide,” Opt. Lett. 14(16), 877–878 (1989).
[CrossRef] [PubMed]

1986

1985

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[CrossRef]

1980

K. Kubota, J. Noda, and O. Mikami, “Traveling wave optical modulator using a directional coupler LiNbO3 waveguide,” IEEE J. Quantum Electron. 16(7), 754–760 (1980).
[CrossRef]

Attanasio, D.

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[CrossRef]

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[CrossRef]

Bilodeau, F.

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fiber using externally written gratings,” Electron. Lett. 26(16), 1270–1272 (1990).
[CrossRef]

Blake, J. N.

Bossi, D.

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[CrossRef]

Burns, W. K.

Chang, C.-Y.

R.-C. Twu, C.-Y. Chang, and W.-S. Wang, “A Zn-diffused Mach–Zehnder modulator on lithium niobate at 1.55-μm wavelength,” Microw. Opt. Technol. Lett. 43(2), 142–144 (2004).
[CrossRef]

Choi, I.

Choi, S.

Y. Jeong, B. Yang, B. Lee, H. S. Seo, S. Choi, and K. Oh, “Electrically controllable long-period liquid crystal fiber gratings,” IEEE Photon. Technol. Lett. 12(5), 519–521 (2000).
[CrossRef]

Demokan, M. S.

Engan, H. E.

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[CrossRef]

Fritz, D.

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[CrossRef]

Gaylord, T. K.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[CrossRef]

Greenblatt, A. S.

Hallemeier, P.

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[CrossRef]

Hill, K. O.

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fiber using externally written gratings,” Electron. Lett. 26(16), 1270–1272 (1990).
[CrossRef]

Howerton, M. M.

Huang, S. Y.

Jeong, Y.

Y. Jeong, B. Yang, B. Lee, H. S. Seo, S. Choi, and K. Oh, “Electrically controllable long-period liquid crystal fiber gratings,” IEEE Photon. Technol. Lett. 12(5), 519–521 (2000).
[CrossRef]

Jin, W.

Johnson, D. C.

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fiber using externally written gratings,” Electron. Lett. 26(16), 1270–1272 (1990).
[CrossRef]

Ju, J.

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[CrossRef]

Jumonji, H.

K. Kawano, T. Kitoh, O. Mitomi, T. Nozawa, and H. Jumonji, “A wide-band and low-driving-power phase modulator employing a Ti:LiNbO3 optical waveguide at 1.5 μm wavelength,” IEEE Photon. Technol. Lett. 1(2), 33–34 (1989).
[CrossRef]

Jung, C.

Kawano, K.

K. Kawano, T. Kitoh, O. Mitomi, T. Nozawa, and H. Jumonji, “A wide-band and low-driving-power phase modulator employing a Ti:LiNbO3 optical waveguide at 1.5 μm wavelength,” IEEE Photon. Technol. Lett. 1(2), 33–34 (1989).
[CrossRef]

Kim, B. Y.

Kissa, K.

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[CrossRef]

Kitoh, T.

K. Kawano, T. Kitoh, O. Mitomi, T. Nozawa, and H. Jumonji, “A wide-band and low-driving-power phase modulator employing a Ti:LiNbO3 optical waveguide at 1.5 μm wavelength,” IEEE Photon. Technol. Lett. 1(2), 33–34 (1989).
[CrossRef]

Ko, D. K.

Koh, Y. W.

Krähenbühl, R.

Kubota, K.

K. Kubota, J. Noda, and O. Mikami, “Traveling wave optical modulator using a directional coupler LiNbO3 waveguide,” IEEE J. Quantum Electron. 16(7), 754–760 (1980).
[CrossRef]

Lafaw, D.

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[CrossRef]

Lee, B.

Y. Jeong, B. Yang, B. Lee, H. S. Seo, S. Choi, and K. Oh, “Electrically controllable long-period liquid crystal fiber gratings,” IEEE Photon. Technol. Lett. 12(5), 519–521 (2000).
[CrossRef]

Lee, H. Y.

Lee, J.

Lee, Y. L.

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[CrossRef]

Maack, D.

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[CrossRef]

Malo, B.

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fiber using externally written gratings,” Electron. Lett. 26(16), 1270–1272 (1990).
[CrossRef]

McBrien, G.

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[CrossRef]

McElhanon, R. W.

Mikami, O.

K. Kubota, J. Noda, and O. Mikami, “Traveling wave optical modulator using a directional coupler LiNbO3 waveguide,” IEEE J. Quantum Electron. 16(7), 754–760 (1980).
[CrossRef]

Mitomi, O.

K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modulators,” J. Lightwave Technol. 16(4), 615–619 (1998).
[CrossRef]

K. Kawano, T. Kitoh, O. Mitomi, T. Nozawa, and H. Jumonji, “A wide-band and low-driving-power phase modulator employing a Ti:LiNbO3 optical waveguide at 1.5 μm wavelength,” IEEE Photon. Technol. Lett. 1(2), 33–34 (1989).
[CrossRef]

Miyazawa, H.

Moeller, R. P.

Murphy, E.

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[CrossRef]

Nada, N.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[CrossRef]

Noda, J.

K. Kubota, J. Noda, and O. Mikami, “Traveling wave optical modulator using a directional coupler LiNbO3 waveguide,” IEEE J. Quantum Electron. 16(7), 754–760 (1980).
[CrossRef]

Noguchi, K.

Noh, Y. C.

Nozawa, T.

K. Kawano, T. Kitoh, O. Mitomi, T. Nozawa, and H. Jumonji, “A wide-band and low-driving-power phase modulator employing a Ti:LiNbO3 optical waveguide at 1.5 μm wavelength,” IEEE Photon. Technol. Lett. 1(2), 33–34 (1989).
[CrossRef]

Oh, K.

Y. Jeong, B. Yang, B. Lee, H. S. Seo, S. Choi, and K. Oh, “Electrically controllable long-period liquid crystal fiber gratings,” IEEE Photon. Technol. Lett. 12(5), 519–521 (2000).
[CrossRef]

Ostling, D.

Park, H. G.

Park, H. S.

Saitoh, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[CrossRef]

Seo, H. S.

Y. Jeong, B. Yang, B. Lee, H. S. Seo, S. Choi, and K. Oh, “Electrically controllable long-period liquid crystal fiber gratings,” IEEE Photon. Technol. Lett. 12(5), 519–521 (2000).
[CrossRef]

Shaw, H. J.

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[CrossRef]

Skinner, I.

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fiber using externally written gratings,” Electron. Lett. 26(16), 1270–1272 (1990).
[CrossRef]

Song, K. Y.

Suche, H.

Twu, R.-C.

R.-C. Twu, C.-Y. Chang, and W.-S. Wang, “A Zn-diffused Mach–Zehnder modulator on lithium niobate at 1.55-μm wavelength,” Microw. Opt. Technol. Lett. 43(2), 142–144 (2004).
[CrossRef]

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14(1), 58–65 (1996).
[CrossRef]

Vineberg, K. A.

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fiber using externally written gratings,” Electron. Lett. 26(16), 1270–1272 (1990).
[CrossRef]

Wang, W.-S.

R.-C. Twu, C.-Y. Chang, and W.-S. Wang, “A Zn-diffused Mach–Zehnder modulator on lithium niobate at 1.55-μm wavelength,” Microw. Opt. Technol. Lett. 43(2), 142–144 (2004).
[CrossRef]

Watanabe, K.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[CrossRef]

Weis, R. S.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[CrossRef]

Wooten, E.

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[CrossRef]

Xiao, L.

Yamada, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[CrossRef]

Yang, B.

Y. Jeong, B. Yang, B. Lee, H. S. Seo, S. Choi, and K. Oh, “Electrically controllable long-period liquid crystal fiber gratings,” IEEE Photon. Technol. Lett. 12(5), 519–521 (2000).
[CrossRef]

Yi-Yan, A.

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[CrossRef]

Yun, S. H.

Zhao, C.

Appl. Phys. Lett.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[CrossRef]

Electron. Lett.

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fiber using externally written gratings,” Electron. Lett. 26(16), 1270–1272 (1990).
[CrossRef]

IEEE J. Quantum Electron.

K. Kubota, J. Noda, and O. Mikami, “Traveling wave optical modulator using a directional coupler LiNbO3 waveguide,” IEEE J. Quantum Electron. 16(7), 754–760 (1980).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

E. Wooten, K. Kissa, A. Yi-Yan, E. Murphy, D. Lafaw, P. Hallemeier, D. Maack, D. Attanasio, D. Fritz, G. McBrien, and D. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. Jeong, B. Yang, B. Lee, H. S. Seo, S. Choi, and K. Oh, “Electrically controllable long-period liquid crystal fiber gratings,” IEEE Photon. Technol. Lett. 12(5), 519–521 (2000).
[CrossRef]

K. Kawano, T. Kitoh, O. Mitomi, T. Nozawa, and H. Jumonji, “A wide-band and low-driving-power phase modulator employing a Ti:LiNbO3 optical waveguide at 1.5 μm wavelength,” IEEE Photon. Technol. Lett. 1(2), 33–34 (1989).
[CrossRef]

J. Lightwave Technol.

Microw. Opt. Technol. Lett.

R.-C. Twu, C.-Y. Chang, and W.-S. Wang, “A Zn-diffused Mach–Zehnder modulator on lithium niobate at 1.55-μm wavelength,” Microw. Opt. Technol. Lett. 43(2), 142–144 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Waveguide with a periodic change in refractive-index distribution in a tilted form.

Fig. 2
Fig. 2

Simplified model of the waveguide (Fig. 1) with spatially asymmetric phase grating; A symmetric mode (fundamental mode) couples to an anti-symmetric mode (second-order mode) by the grating. Arrows in the field profiles represent polarization of propagating light.

Fig. 3
Fig. 3

Stages of fabrication process, 1. A waveguide fabricated on a LiNbO3 substrate. 2. Periodically poling process of the LiNbO3. 3. A buffer layer on the substrate. 4. Traveling-wave electrodes. (1 and 2 processes can be switched.)

Fig. 4
Fig. 4

Top view of the proposed design of switchable grating (Here, z direction corresponds to the extraordinary-axis direction of LiNbO3 and periodic poling is marked by color change).

Fig. 5
Fig. 5

Cross-sectional configuration of the proposed grating (left). The mode field profiles of the fundamental and the second-order modes are appeared (right).

Fig. 6
Fig. 6

The waveguides with the same period of grating but the different amount of phase shift. The amount of phase shift in case of (a) is larger than that in case of (b).

Fig. 7
Fig. 7

The beatlength dispersion relation (the required grating period) and the corresponding angle of α for different Δn (Δn = (nwaveguide-nLiNbO3)/ nwaveguide).

Fig. 8
Fig. 8

3-dB bandwidth of proposed LPWG as a function of optical wavelength for different Δn.

Fig. 9
Fig. 9

Cross-sectional configuration of proposed grating structure (The width of center electrode is fixed to be 8 μm, the height of ridge structure 3 μm, the width of ground electrodes 30 μm).

Fig. 10
Fig. 10

Effective index of electrical wave as a function of the thickness of buffer layer for different thickness of electrodes and gap between them (Middle lines indicate 2.15).

Fig. 11
Fig. 11

Impedance calculations as a function of the thickness of buffer layer for different thickness of electrodes and gap between them (line is set as 50 ohm).

Fig. 12
Fig. 12

Optimized parameters for thickness of buffer layer and electrodes satisfying impedance and velocity matching condition.

Tables (1)

Tables Icon

Table 1 Parameters for Simulation

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Λ = 2 d / sin α .
Δ n z = 1 2 n e 3 r 33 E z .
N e f f = ( C m / C 0 ) 1 / 2 .
Z c = 1 / ( c ( C m / C 0 ) 1 / 2 ) .

Metrics