Abstract

Many types of hyperspectral image processing can benefit from knowledge of noise levels in the data, which can be derived from sensor physics. Surprisingly, such information is rarely provided or exploited. Usually, the image data are represented as radiance values, but this representation can lead to suboptimal results, for example in spectral difference metrics. Also, radiance data do not provide an appropriate baseline for calculation of image compression ratios. This paper defines two alternative representations of hyperspectral image data, aiming to make sensor noise accessible to image processing. A “corrected raw data” representation is proportional to the photoelectron count and can be processed like radiance data, while also offering simpler estimation of noise and somewhat more compact storage. A variance-stabilized representation is obtained by square-root transformation of the photodetector signal to make the noise signal-independent and constant across all bands while also reducing data volume by almost a factor 2. Then the data size is comparable to the fundamental information capacity of the sensor, giving a more appropriate measure of uncompressed data size. It is noted that the variance-stabilized representation has parallels in other fields of imaging. The alternative data representations provide an opportunity to reformulate hyperspectral processing algorithms to take actual sensor noise into account.

© 2011 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Penna, T. Tillo, E. Magli, and G. Olmo, “Transform coding techniques for lossy hyperspectral data compression,” IEEE Trans. Geosci. Rem. Sens. 45(5), 1408–1421 (2007).
    [CrossRef]
  2. Q. Du and J. E. Fowler, “Hyperspectral image compression using JPEG2000 and principal component analysis,” IEEE Geosci. Remote Sens. Lett. 4(2), 201–205 (2007).
    [CrossRef]
  3. J. Wang and C. I. Chang, “Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis,” IEEE Trans. Geosci. Rem. Sens. 44(6), 1586–1600 (2006).
    [CrossRef]
  4. B. Penna, T. Tillo, E. Magli, and G. Olmo, “Progressive 3-D coding of hyperspectral images based on JPEG 2000,” IEEE Geosci. Remote Sens. Lett. 3(1), 125–129 (2006).
    [CrossRef]
  5. J. Mielikainen and P. Toivanen, “Clustered DPCM for the lossless compression of hyperspectral images,” IEEE Trans. Geosci. Rem. Sens. 41(12), 2943–2946 (2003).
    [CrossRef]
  6. B. Aiazzi, L. Alparone, and S. Baronti, “Near-lossless compression of 3-D optical data,” IEEE Trans. Geosci. Rem. Sens. 39(11), 2547–2557 (2001).
    [CrossRef]
  7. M. J. Ryan and J. F. Arnold, “Lossy compression of hyperspectral data using vector quantization,” Remote Sens. Environ. 61(3), 419–436 (1997).
    [CrossRef]
  8. M. J. Ryan and J. F. Arnold, “The lossless compression of AVIRIS images by vector quantization,” IEEE Trans. Geosci. Rem. Sens. 35(3), 546–550 (1997).
    [CrossRef]
  9. S. E. Qian, A. B. Hollinger, D. Williams, and D. Manak, “Fast three-dimensional data compression of hyperspectral imagery using vector quantization with spectral-feature-based binary coding,” Opt. Eng. 35(11), 3242–3249 (1996).
    [CrossRef]
  10. R. E. Roger and M. C. Cavenor, “Lossless compression of AVIRIS images,” IEEE Trans. Image Process. 5(5), 713–719 (1996).
    [CrossRef] [PubMed]
  11. G. P. Abouselman, M. W. Marcellin, and B. R. Hunt, “Compression of hyperspectral imagery using the 3-D DCT and hybrid DPCM/DCT,” IEEE Trans. Geosci. Rem. Sens. 33(1), 26–34 (1995).
    [CrossRef]
  12. Recent papers on hyperspectral compression were retrieved from the ISI Web of science database in January 2011, but not listed here for space reasons. References are available from the author.
  13. J. W. Boardman, “Using dark current data to estimate AVIRIS noise covariance and improve spectral processing” in Summaries of the Fifth Annual JPL Airborne Geoscience Workshop, Pasadena, CA 1995.
  14. T. Skauli, T. V. Haavardsholm, I. Kåsen, G. Arisholm, A. Kavara, T. O. Opsahl, and A. Skaugen, “An airborne real-time hyperspectral target detection system,” Proc. SPIE 7695, 76950A, 76950A-6 (2010).
    [CrossRef]
  15. A. S. Norsk Elektro Optikk, http://www.neo.no/products/hyperspectral.html .
  16. T. Skauli, “Sensor-informed representation of hyperspectral images,” Proc. SPIE 7334, 733418, 733418-8 (2009).
    [CrossRef]
  17. E. L. Dereniak and G. D. Boreman, Infrared Detectors and Systems (Wiley, New York 1996).
  18. P. C. D. Hobbs, Building Electro-Optical Systems: Making It All Work, 2nd ed. (Wiley, 2009).
  19. Spectral Imaging, Ltd., http://www.specim.fi .
  20. R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
    [CrossRef]
  21. J. Hynecek, “Impactron - A new solid state image intensifier,” IEEE Trans. Electron. Dev. 48(10), 2238–2241 (2001).
    [CrossRef]
  22. B. Fowler, C. Liu, S. Mims, J. Balicki, W. Li, H. Do, J. Appelbaum, and P. Vu, “A 5.5Mpixel 100 frames/sec wide dynamic range low noise CMOS image sensor for scientific applications,” Proc. SPIE 7536, 753607, 753607-12 (2010).
    [CrossRef]
  23. J. D. Beck, C.-F. Wan, M. A. Kinch, J. E. Robinson, P. Mitra, R. E. Scritchfield, F. Ma, and J. C. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
    [CrossRef]
  24. A. Martinez, “Capacity bounds for the Einstein radiation channel,” Proc. Int. Symp. Inf. Theory, ISIT 2006, 9–14 July 2006, Seattle (USA), pp. 366–370 (2006).
  25. F. J. Anscombe, “The transformation of Poisson, binomial and negative-binomial data,” Biometrika 35, 246–254 (1948) (Curiously, Anscombe credits the “Anscombe transform” to A. H. L. Johnson.).
  26. J. A. Rice, Mathematical Statistics and Data Analysis, (Duxbury press, 1995) p. 321.
  27. R. L. White and J. W. Percival, “Compression and progressive transmission of astronomical images,” Proc. SPIE 2199, 703–713 (1994).
    [CrossRef]
  28. M. A. Nieto-Santisteban, D. J. Fixsen, J. D. Offenberg, R. J. Hanisch, and H. S. Stockman, “Data compression for NGST” in Proceedings of Astronomical data analysis software and systems VIII, ASP Conference series 172, 137–140 (1999).
  29. R. A. Gowen and A. Smith, “Square root data compression,” Rev. Sci. Instrum. 74(8), 3853–3861 (2003).
    [CrossRef]
  30. R. L. Seaman, R. L. White, and W. D. Pence, “Optimal DN encoding for CCD detectors” in Proceedings of Astronomical Data Analysis Software and Systems XVII, ASP Conference Series, Vol. 411, 101 (2009).
  31. G. M. Bernstein, C. Bebek, J. Rhodes, C. Stoughton, R. A. Vanderveld, and P. Yeh, “Noise and bias in square-root compression schemes,” Proc. Astron. Soc. Pacific 122(889), 336–346 (2010).
    [CrossRef]
  32. F. Murtagh, J.-L. Starck, and A. Bijaoui, “Image restoration with noise suppression using a multiresolution support,” Astron. Astrophys. Suppl. Ser. 112, 179–189 (1995).
  33. J.-L. Starck and F. Murtagh, “Astronomical image and signal processing: looking at noise, information, and scale,” IEEE Signal Process. Mag. 18(2), 30–40 (2001).
    [CrossRef]
  34. B. Zhang, M. J. Fadili, J.-L. Starck, and J.-C. Olivo-Marin, “Multiscale variance-stabilizing transform for mixed-poisson-gaussian processes and its Applications in Bioimaging” in Proceedings of IEEE International conference on image processing (Institute of Electrical and Electronics Engineers, New York, 2007) pp. VI233–VI236.
  35. C. Poynton, A Technical Introduction to Digital Video (Wiley, 1996), Chap. 6.
  36. M. Stokes, M. Anderson, S. Chandrasekar, and R. Motta, “A standard default color space for the internet - sRGB”, http://www.w3.org/Graphics/Color/sRGB (1996).

2010

T. Skauli, T. V. Haavardsholm, I. Kåsen, G. Arisholm, A. Kavara, T. O. Opsahl, and A. Skaugen, “An airborne real-time hyperspectral target detection system,” Proc. SPIE 7695, 76950A, 76950A-6 (2010).
[CrossRef]

B. Fowler, C. Liu, S. Mims, J. Balicki, W. Li, H. Do, J. Appelbaum, and P. Vu, “A 5.5Mpixel 100 frames/sec wide dynamic range low noise CMOS image sensor for scientific applications,” Proc. SPIE 7536, 753607, 753607-12 (2010).
[CrossRef]

G. M. Bernstein, C. Bebek, J. Rhodes, C. Stoughton, R. A. Vanderveld, and P. Yeh, “Noise and bias in square-root compression schemes,” Proc. Astron. Soc. Pacific 122(889), 336–346 (2010).
[CrossRef]

2009

T. Skauli, “Sensor-informed representation of hyperspectral images,” Proc. SPIE 7334, 733418, 733418-8 (2009).
[CrossRef]

2007

B. Penna, T. Tillo, E. Magli, and G. Olmo, “Transform coding techniques for lossy hyperspectral data compression,” IEEE Trans. Geosci. Rem. Sens. 45(5), 1408–1421 (2007).
[CrossRef]

Q. Du and J. E. Fowler, “Hyperspectral image compression using JPEG2000 and principal component analysis,” IEEE Geosci. Remote Sens. Lett. 4(2), 201–205 (2007).
[CrossRef]

2006

J. Wang and C. I. Chang, “Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis,” IEEE Trans. Geosci. Rem. Sens. 44(6), 1586–1600 (2006).
[CrossRef]

B. Penna, T. Tillo, E. Magli, and G. Olmo, “Progressive 3-D coding of hyperspectral images based on JPEG 2000,” IEEE Geosci. Remote Sens. Lett. 3(1), 125–129 (2006).
[CrossRef]

J. D. Beck, C.-F. Wan, M. A. Kinch, J. E. Robinson, P. Mitra, R. E. Scritchfield, F. Ma, and J. C. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[CrossRef]

2003

J. Mielikainen and P. Toivanen, “Clustered DPCM for the lossless compression of hyperspectral images,” IEEE Trans. Geosci. Rem. Sens. 41(12), 2943–2946 (2003).
[CrossRef]

R. A. Gowen and A. Smith, “Square root data compression,” Rev. Sci. Instrum. 74(8), 3853–3861 (2003).
[CrossRef]

2001

J.-L. Starck and F. Murtagh, “Astronomical image and signal processing: looking at noise, information, and scale,” IEEE Signal Process. Mag. 18(2), 30–40 (2001).
[CrossRef]

B. Aiazzi, L. Alparone, and S. Baronti, “Near-lossless compression of 3-D optical data,” IEEE Trans. Geosci. Rem. Sens. 39(11), 2547–2557 (2001).
[CrossRef]

J. Hynecek, “Impactron - A new solid state image intensifier,” IEEE Trans. Electron. Dev. 48(10), 2238–2241 (2001).
[CrossRef]

1998

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[CrossRef]

1997

M. J. Ryan and J. F. Arnold, “Lossy compression of hyperspectral data using vector quantization,” Remote Sens. Environ. 61(3), 419–436 (1997).
[CrossRef]

M. J. Ryan and J. F. Arnold, “The lossless compression of AVIRIS images by vector quantization,” IEEE Trans. Geosci. Rem. Sens. 35(3), 546–550 (1997).
[CrossRef]

1996

S. E. Qian, A. B. Hollinger, D. Williams, and D. Manak, “Fast three-dimensional data compression of hyperspectral imagery using vector quantization with spectral-feature-based binary coding,” Opt. Eng. 35(11), 3242–3249 (1996).
[CrossRef]

R. E. Roger and M. C. Cavenor, “Lossless compression of AVIRIS images,” IEEE Trans. Image Process. 5(5), 713–719 (1996).
[CrossRef] [PubMed]

1995

G. P. Abouselman, M. W. Marcellin, and B. R. Hunt, “Compression of hyperspectral imagery using the 3-D DCT and hybrid DPCM/DCT,” IEEE Trans. Geosci. Rem. Sens. 33(1), 26–34 (1995).
[CrossRef]

F. Murtagh, J.-L. Starck, and A. Bijaoui, “Image restoration with noise suppression using a multiresolution support,” Astron. Astrophys. Suppl. Ser. 112, 179–189 (1995).

1994

R. L. White and J. W. Percival, “Compression and progressive transmission of astronomical images,” Proc. SPIE 2199, 703–713 (1994).
[CrossRef]

1948

F. J. Anscombe, “The transformation of Poisson, binomial and negative-binomial data,” Biometrika 35, 246–254 (1948) (Curiously, Anscombe credits the “Anscombe transform” to A. H. L. Johnson.).

Abouselman, G. P.

G. P. Abouselman, M. W. Marcellin, and B. R. Hunt, “Compression of hyperspectral imagery using the 3-D DCT and hybrid DPCM/DCT,” IEEE Trans. Geosci. Rem. Sens. 33(1), 26–34 (1995).
[CrossRef]

Aiazzi, B.

B. Aiazzi, L. Alparone, and S. Baronti, “Near-lossless compression of 3-D optical data,” IEEE Trans. Geosci. Rem. Sens. 39(11), 2547–2557 (2001).
[CrossRef]

Alparone, L.

B. Aiazzi, L. Alparone, and S. Baronti, “Near-lossless compression of 3-D optical data,” IEEE Trans. Geosci. Rem. Sens. 39(11), 2547–2557 (2001).
[CrossRef]

Anscombe, F. J.

F. J. Anscombe, “The transformation of Poisson, binomial and negative-binomial data,” Biometrika 35, 246–254 (1948) (Curiously, Anscombe credits the “Anscombe transform” to A. H. L. Johnson.).

Appelbaum, J.

B. Fowler, C. Liu, S. Mims, J. Balicki, W. Li, H. Do, J. Appelbaum, and P. Vu, “A 5.5Mpixel 100 frames/sec wide dynamic range low noise CMOS image sensor for scientific applications,” Proc. SPIE 7536, 753607, 753607-12 (2010).
[CrossRef]

Arisholm, G.

T. Skauli, T. V. Haavardsholm, I. Kåsen, G. Arisholm, A. Kavara, T. O. Opsahl, and A. Skaugen, “An airborne real-time hyperspectral target detection system,” Proc. SPIE 7695, 76950A, 76950A-6 (2010).
[CrossRef]

Arnold, J. F.

M. J. Ryan and J. F. Arnold, “The lossless compression of AVIRIS images by vector quantization,” IEEE Trans. Geosci. Rem. Sens. 35(3), 546–550 (1997).
[CrossRef]

M. J. Ryan and J. F. Arnold, “Lossy compression of hyperspectral data using vector quantization,” Remote Sens. Environ. 61(3), 419–436 (1997).
[CrossRef]

Aronsson, M.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[CrossRef]

Balicki, J.

B. Fowler, C. Liu, S. Mims, J. Balicki, W. Li, H. Do, J. Appelbaum, and P. Vu, “A 5.5Mpixel 100 frames/sec wide dynamic range low noise CMOS image sensor for scientific applications,” Proc. SPIE 7536, 753607, 753607-12 (2010).
[CrossRef]

Baronti, S.

B. Aiazzi, L. Alparone, and S. Baronti, “Near-lossless compression of 3-D optical data,” IEEE Trans. Geosci. Rem. Sens. 39(11), 2547–2557 (2001).
[CrossRef]

Bebek, C.

G. M. Bernstein, C. Bebek, J. Rhodes, C. Stoughton, R. A. Vanderveld, and P. Yeh, “Noise and bias in square-root compression schemes,” Proc. Astron. Soc. Pacific 122(889), 336–346 (2010).
[CrossRef]

Beck, J. D.

J. D. Beck, C.-F. Wan, M. A. Kinch, J. E. Robinson, P. Mitra, R. E. Scritchfield, F. Ma, and J. C. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[CrossRef]

Bernstein, G. M.

G. M. Bernstein, C. Bebek, J. Rhodes, C. Stoughton, R. A. Vanderveld, and P. Yeh, “Noise and bias in square-root compression schemes,” Proc. Astron. Soc. Pacific 122(889), 336–346 (2010).
[CrossRef]

Bijaoui, A.

F. Murtagh, J.-L. Starck, and A. Bijaoui, “Image restoration with noise suppression using a multiresolution support,” Astron. Astrophys. Suppl. Ser. 112, 179–189 (1995).

Campbell, J. C.

J. D. Beck, C.-F. Wan, M. A. Kinch, J. E. Robinson, P. Mitra, R. E. Scritchfield, F. Ma, and J. C. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[CrossRef]

Cavenor, M. C.

R. E. Roger and M. C. Cavenor, “Lossless compression of AVIRIS images,” IEEE Trans. Image Process. 5(5), 713–719 (1996).
[CrossRef] [PubMed]

Chang, C. I.

J. Wang and C. I. Chang, “Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis,” IEEE Trans. Geosci. Rem. Sens. 44(6), 1586–1600 (2006).
[CrossRef]

Chippendale, B. J.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[CrossRef]

Chovit, C. J.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[CrossRef]

Chrien, T. G.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[CrossRef]

Do, H.

B. Fowler, C. Liu, S. Mims, J. Balicki, W. Li, H. Do, J. Appelbaum, and P. Vu, “A 5.5Mpixel 100 frames/sec wide dynamic range low noise CMOS image sensor for scientific applications,” Proc. SPIE 7536, 753607, 753607-12 (2010).
[CrossRef]

Du, Q.

Q. Du and J. E. Fowler, “Hyperspectral image compression using JPEG2000 and principal component analysis,” IEEE Geosci. Remote Sens. Lett. 4(2), 201–205 (2007).
[CrossRef]

Eastwood, M. L.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[CrossRef]

Faust, J. A.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[CrossRef]

Fowler, B.

B. Fowler, C. Liu, S. Mims, J. Balicki, W. Li, H. Do, J. Appelbaum, and P. Vu, “A 5.5Mpixel 100 frames/sec wide dynamic range low noise CMOS image sensor for scientific applications,” Proc. SPIE 7536, 753607, 753607-12 (2010).
[CrossRef]

Fowler, J. E.

Q. Du and J. E. Fowler, “Hyperspectral image compression using JPEG2000 and principal component analysis,” IEEE Geosci. Remote Sens. Lett. 4(2), 201–205 (2007).
[CrossRef]

Gowen, R. A.

R. A. Gowen and A. Smith, “Square root data compression,” Rev. Sci. Instrum. 74(8), 3853–3861 (2003).
[CrossRef]

Green, R. O.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[CrossRef]

Haavardsholm, T. V.

T. Skauli, T. V. Haavardsholm, I. Kåsen, G. Arisholm, A. Kavara, T. O. Opsahl, and A. Skaugen, “An airborne real-time hyperspectral target detection system,” Proc. SPIE 7695, 76950A, 76950A-6 (2010).
[CrossRef]

Hollinger, A. B.

S. E. Qian, A. B. Hollinger, D. Williams, and D. Manak, “Fast three-dimensional data compression of hyperspectral imagery using vector quantization with spectral-feature-based binary coding,” Opt. Eng. 35(11), 3242–3249 (1996).
[CrossRef]

Hunt, B. R.

G. P. Abouselman, M. W. Marcellin, and B. R. Hunt, “Compression of hyperspectral imagery using the 3-D DCT and hybrid DPCM/DCT,” IEEE Trans. Geosci. Rem. Sens. 33(1), 26–34 (1995).
[CrossRef]

Hynecek, J.

J. Hynecek, “Impactron - A new solid state image intensifier,” IEEE Trans. Electron. Dev. 48(10), 2238–2241 (2001).
[CrossRef]

Kåsen, I.

T. Skauli, T. V. Haavardsholm, I. Kåsen, G. Arisholm, A. Kavara, T. O. Opsahl, and A. Skaugen, “An airborne real-time hyperspectral target detection system,” Proc. SPIE 7695, 76950A, 76950A-6 (2010).
[CrossRef]

Kavara, A.

T. Skauli, T. V. Haavardsholm, I. Kåsen, G. Arisholm, A. Kavara, T. O. Opsahl, and A. Skaugen, “An airborne real-time hyperspectral target detection system,” Proc. SPIE 7695, 76950A, 76950A-6 (2010).
[CrossRef]

Kinch, M. A.

J. D. Beck, C.-F. Wan, M. A. Kinch, J. E. Robinson, P. Mitra, R. E. Scritchfield, F. Ma, and J. C. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[CrossRef]

Li, W.

B. Fowler, C. Liu, S. Mims, J. Balicki, W. Li, H. Do, J. Appelbaum, and P. Vu, “A 5.5Mpixel 100 frames/sec wide dynamic range low noise CMOS image sensor for scientific applications,” Proc. SPIE 7536, 753607, 753607-12 (2010).
[CrossRef]

Liu, C.

B. Fowler, C. Liu, S. Mims, J. Balicki, W. Li, H. Do, J. Appelbaum, and P. Vu, “A 5.5Mpixel 100 frames/sec wide dynamic range low noise CMOS image sensor for scientific applications,” Proc. SPIE 7536, 753607, 753607-12 (2010).
[CrossRef]

Ma, F.

J. D. Beck, C.-F. Wan, M. A. Kinch, J. E. Robinson, P. Mitra, R. E. Scritchfield, F. Ma, and J. C. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[CrossRef]

Magli, E.

B. Penna, T. Tillo, E. Magli, and G. Olmo, “Transform coding techniques for lossy hyperspectral data compression,” IEEE Trans. Geosci. Rem. Sens. 45(5), 1408–1421 (2007).
[CrossRef]

B. Penna, T. Tillo, E. Magli, and G. Olmo, “Progressive 3-D coding of hyperspectral images based on JPEG 2000,” IEEE Geosci. Remote Sens. Lett. 3(1), 125–129 (2006).
[CrossRef]

Manak, D.

S. E. Qian, A. B. Hollinger, D. Williams, and D. Manak, “Fast three-dimensional data compression of hyperspectral imagery using vector quantization with spectral-feature-based binary coding,” Opt. Eng. 35(11), 3242–3249 (1996).
[CrossRef]

Marcellin, M. W.

G. P. Abouselman, M. W. Marcellin, and B. R. Hunt, “Compression of hyperspectral imagery using the 3-D DCT and hybrid DPCM/DCT,” IEEE Trans. Geosci. Rem. Sens. 33(1), 26–34 (1995).
[CrossRef]

Mielikainen, J.

J. Mielikainen and P. Toivanen, “Clustered DPCM for the lossless compression of hyperspectral images,” IEEE Trans. Geosci. Rem. Sens. 41(12), 2943–2946 (2003).
[CrossRef]

Mims, S.

B. Fowler, C. Liu, S. Mims, J. Balicki, W. Li, H. Do, J. Appelbaum, and P. Vu, “A 5.5Mpixel 100 frames/sec wide dynamic range low noise CMOS image sensor for scientific applications,” Proc. SPIE 7536, 753607, 753607-12 (2010).
[CrossRef]

Mitra, P.

J. D. Beck, C.-F. Wan, M. A. Kinch, J. E. Robinson, P. Mitra, R. E. Scritchfield, F. Ma, and J. C. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[CrossRef]

Murtagh, F.

J.-L. Starck and F. Murtagh, “Astronomical image and signal processing: looking at noise, information, and scale,” IEEE Signal Process. Mag. 18(2), 30–40 (2001).
[CrossRef]

F. Murtagh, J.-L. Starck, and A. Bijaoui, “Image restoration with noise suppression using a multiresolution support,” Astron. Astrophys. Suppl. Ser. 112, 179–189 (1995).

Olah, M. R.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[CrossRef]

Olmo, G.

B. Penna, T. Tillo, E. Magli, and G. Olmo, “Transform coding techniques for lossy hyperspectral data compression,” IEEE Trans. Geosci. Rem. Sens. 45(5), 1408–1421 (2007).
[CrossRef]

B. Penna, T. Tillo, E. Magli, and G. Olmo, “Progressive 3-D coding of hyperspectral images based on JPEG 2000,” IEEE Geosci. Remote Sens. Lett. 3(1), 125–129 (2006).
[CrossRef]

Opsahl, T. O.

T. Skauli, T. V. Haavardsholm, I. Kåsen, G. Arisholm, A. Kavara, T. O. Opsahl, and A. Skaugen, “An airborne real-time hyperspectral target detection system,” Proc. SPIE 7695, 76950A, 76950A-6 (2010).
[CrossRef]

Pavri, B. E.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[CrossRef]

Penna, B.

B. Penna, T. Tillo, E. Magli, and G. Olmo, “Transform coding techniques for lossy hyperspectral data compression,” IEEE Trans. Geosci. Rem. Sens. 45(5), 1408–1421 (2007).
[CrossRef]

B. Penna, T. Tillo, E. Magli, and G. Olmo, “Progressive 3-D coding of hyperspectral images based on JPEG 2000,” IEEE Geosci. Remote Sens. Lett. 3(1), 125–129 (2006).
[CrossRef]

Percival, J. W.

R. L. White and J. W. Percival, “Compression and progressive transmission of astronomical images,” Proc. SPIE 2199, 703–713 (1994).
[CrossRef]

Qian, S. E.

S. E. Qian, A. B. Hollinger, D. Williams, and D. Manak, “Fast three-dimensional data compression of hyperspectral imagery using vector quantization with spectral-feature-based binary coding,” Opt. Eng. 35(11), 3242–3249 (1996).
[CrossRef]

Rhodes, J.

G. M. Bernstein, C. Bebek, J. Rhodes, C. Stoughton, R. A. Vanderveld, and P. Yeh, “Noise and bias in square-root compression schemes,” Proc. Astron. Soc. Pacific 122(889), 336–346 (2010).
[CrossRef]

Robinson, J. E.

J. D. Beck, C.-F. Wan, M. A. Kinch, J. E. Robinson, P. Mitra, R. E. Scritchfield, F. Ma, and J. C. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[CrossRef]

Roger, R. E.

R. E. Roger and M. C. Cavenor, “Lossless compression of AVIRIS images,” IEEE Trans. Image Process. 5(5), 713–719 (1996).
[CrossRef] [PubMed]

Ryan, M. J.

M. J. Ryan and J. F. Arnold, “The lossless compression of AVIRIS images by vector quantization,” IEEE Trans. Geosci. Rem. Sens. 35(3), 546–550 (1997).
[CrossRef]

M. J. Ryan and J. F. Arnold, “Lossy compression of hyperspectral data using vector quantization,” Remote Sens. Environ. 61(3), 419–436 (1997).
[CrossRef]

Sarture, C. M.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[CrossRef]

Scritchfield, R. E.

J. D. Beck, C.-F. Wan, M. A. Kinch, J. E. Robinson, P. Mitra, R. E. Scritchfield, F. Ma, and J. C. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[CrossRef]

Skaugen, A.

T. Skauli, T. V. Haavardsholm, I. Kåsen, G. Arisholm, A. Kavara, T. O. Opsahl, and A. Skaugen, “An airborne real-time hyperspectral target detection system,” Proc. SPIE 7695, 76950A, 76950A-6 (2010).
[CrossRef]

Skauli, T.

T. Skauli, T. V. Haavardsholm, I. Kåsen, G. Arisholm, A. Kavara, T. O. Opsahl, and A. Skaugen, “An airborne real-time hyperspectral target detection system,” Proc. SPIE 7695, 76950A, 76950A-6 (2010).
[CrossRef]

T. Skauli, “Sensor-informed representation of hyperspectral images,” Proc. SPIE 7334, 733418, 733418-8 (2009).
[CrossRef]

Smith, A.

R. A. Gowen and A. Smith, “Square root data compression,” Rev. Sci. Instrum. 74(8), 3853–3861 (2003).
[CrossRef]

Solis, M.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[CrossRef]

Starck, J.-L.

J.-L. Starck and F. Murtagh, “Astronomical image and signal processing: looking at noise, information, and scale,” IEEE Signal Process. Mag. 18(2), 30–40 (2001).
[CrossRef]

F. Murtagh, J.-L. Starck, and A. Bijaoui, “Image restoration with noise suppression using a multiresolution support,” Astron. Astrophys. Suppl. Ser. 112, 179–189 (1995).

Stoughton, C.

G. M. Bernstein, C. Bebek, J. Rhodes, C. Stoughton, R. A. Vanderveld, and P. Yeh, “Noise and bias in square-root compression schemes,” Proc. Astron. Soc. Pacific 122(889), 336–346 (2010).
[CrossRef]

Tillo, T.

B. Penna, T. Tillo, E. Magli, and G. Olmo, “Transform coding techniques for lossy hyperspectral data compression,” IEEE Trans. Geosci. Rem. Sens. 45(5), 1408–1421 (2007).
[CrossRef]

B. Penna, T. Tillo, E. Magli, and G. Olmo, “Progressive 3-D coding of hyperspectral images based on JPEG 2000,” IEEE Geosci. Remote Sens. Lett. 3(1), 125–129 (2006).
[CrossRef]

Toivanen, P.

J. Mielikainen and P. Toivanen, “Clustered DPCM for the lossless compression of hyperspectral images,” IEEE Trans. Geosci. Rem. Sens. 41(12), 2943–2946 (2003).
[CrossRef]

Vanderveld, R. A.

G. M. Bernstein, C. Bebek, J. Rhodes, C. Stoughton, R. A. Vanderveld, and P. Yeh, “Noise and bias in square-root compression schemes,” Proc. Astron. Soc. Pacific 122(889), 336–346 (2010).
[CrossRef]

Vu, P.

B. Fowler, C. Liu, S. Mims, J. Balicki, W. Li, H. Do, J. Appelbaum, and P. Vu, “A 5.5Mpixel 100 frames/sec wide dynamic range low noise CMOS image sensor for scientific applications,” Proc. SPIE 7536, 753607, 753607-12 (2010).
[CrossRef]

Wan, C.-F.

J. D. Beck, C.-F. Wan, M. A. Kinch, J. E. Robinson, P. Mitra, R. E. Scritchfield, F. Ma, and J. C. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[CrossRef]

Wang, J.

J. Wang and C. I. Chang, “Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis,” IEEE Trans. Geosci. Rem. Sens. 44(6), 1586–1600 (2006).
[CrossRef]

White, R. L.

R. L. White and J. W. Percival, “Compression and progressive transmission of astronomical images,” Proc. SPIE 2199, 703–713 (1994).
[CrossRef]

Williams, D.

S. E. Qian, A. B. Hollinger, D. Williams, and D. Manak, “Fast three-dimensional data compression of hyperspectral imagery using vector quantization with spectral-feature-based binary coding,” Opt. Eng. 35(11), 3242–3249 (1996).
[CrossRef]

Williams, O.

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[CrossRef]

Yeh, P.

G. M. Bernstein, C. Bebek, J. Rhodes, C. Stoughton, R. A. Vanderveld, and P. Yeh, “Noise and bias in square-root compression schemes,” Proc. Astron. Soc. Pacific 122(889), 336–346 (2010).
[CrossRef]

Astron. Astrophys. Suppl. Ser.

F. Murtagh, J.-L. Starck, and A. Bijaoui, “Image restoration with noise suppression using a multiresolution support,” Astron. Astrophys. Suppl. Ser. 112, 179–189 (1995).

Biometrika

F. J. Anscombe, “The transformation of Poisson, binomial and negative-binomial data,” Biometrika 35, 246–254 (1948) (Curiously, Anscombe credits the “Anscombe transform” to A. H. L. Johnson.).

IEEE Geosci. Remote Sens. Lett.

B. Penna, T. Tillo, E. Magli, and G. Olmo, “Progressive 3-D coding of hyperspectral images based on JPEG 2000,” IEEE Geosci. Remote Sens. Lett. 3(1), 125–129 (2006).
[CrossRef]

Q. Du and J. E. Fowler, “Hyperspectral image compression using JPEG2000 and principal component analysis,” IEEE Geosci. Remote Sens. Lett. 4(2), 201–205 (2007).
[CrossRef]

IEEE Signal Process. Mag.

J.-L. Starck and F. Murtagh, “Astronomical image and signal processing: looking at noise, information, and scale,” IEEE Signal Process. Mag. 18(2), 30–40 (2001).
[CrossRef]

IEEE Trans. Electron. Dev.

J. Hynecek, “Impactron - A new solid state image intensifier,” IEEE Trans. Electron. Dev. 48(10), 2238–2241 (2001).
[CrossRef]

IEEE Trans. Geosci. Rem. Sens.

J. Wang and C. I. Chang, “Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis,” IEEE Trans. Geosci. Rem. Sens. 44(6), 1586–1600 (2006).
[CrossRef]

M. J. Ryan and J. F. Arnold, “The lossless compression of AVIRIS images by vector quantization,” IEEE Trans. Geosci. Rem. Sens. 35(3), 546–550 (1997).
[CrossRef]

J. Mielikainen and P. Toivanen, “Clustered DPCM for the lossless compression of hyperspectral images,” IEEE Trans. Geosci. Rem. Sens. 41(12), 2943–2946 (2003).
[CrossRef]

B. Aiazzi, L. Alparone, and S. Baronti, “Near-lossless compression of 3-D optical data,” IEEE Trans. Geosci. Rem. Sens. 39(11), 2547–2557 (2001).
[CrossRef]

B. Penna, T. Tillo, E. Magli, and G. Olmo, “Transform coding techniques for lossy hyperspectral data compression,” IEEE Trans. Geosci. Rem. Sens. 45(5), 1408–1421 (2007).
[CrossRef]

G. P. Abouselman, M. W. Marcellin, and B. R. Hunt, “Compression of hyperspectral imagery using the 3-D DCT and hybrid DPCM/DCT,” IEEE Trans. Geosci. Rem. Sens. 33(1), 26–34 (1995).
[CrossRef]

IEEE Trans. Image Process.

R. E. Roger and M. C. Cavenor, “Lossless compression of AVIRIS images,” IEEE Trans. Image Process. 5(5), 713–719 (1996).
[CrossRef] [PubMed]

J. Electron. Mater.

J. D. Beck, C.-F. Wan, M. A. Kinch, J. E. Robinson, P. Mitra, R. E. Scritchfield, F. Ma, and J. C. Campbell, “The HgCdTe electron avalanche photodiode,” J. Electron. Mater. 35(6), 1166–1173 (2006).
[CrossRef]

Opt. Eng.

S. E. Qian, A. B. Hollinger, D. Williams, and D. Manak, “Fast three-dimensional data compression of hyperspectral imagery using vector quantization with spectral-feature-based binary coding,” Opt. Eng. 35(11), 3242–3249 (1996).
[CrossRef]

Proc. Astron. Soc. Pacific

G. M. Bernstein, C. Bebek, J. Rhodes, C. Stoughton, R. A. Vanderveld, and P. Yeh, “Noise and bias in square-root compression schemes,” Proc. Astron. Soc. Pacific 122(889), 336–346 (2010).
[CrossRef]

Proc. SPIE

T. Skauli, “Sensor-informed representation of hyperspectral images,” Proc. SPIE 7334, 733418, 733418-8 (2009).
[CrossRef]

B. Fowler, C. Liu, S. Mims, J. Balicki, W. Li, H. Do, J. Appelbaum, and P. Vu, “A 5.5Mpixel 100 frames/sec wide dynamic range low noise CMOS image sensor for scientific applications,” Proc. SPIE 7536, 753607, 753607-12 (2010).
[CrossRef]

T. Skauli, T. V. Haavardsholm, I. Kåsen, G. Arisholm, A. Kavara, T. O. Opsahl, and A. Skaugen, “An airborne real-time hyperspectral target detection system,” Proc. SPIE 7695, 76950A, 76950A-6 (2010).
[CrossRef]

R. L. White and J. W. Percival, “Compression and progressive transmission of astronomical images,” Proc. SPIE 2199, 703–713 (1994).
[CrossRef]

Remote Sens. Environ.

M. J. Ryan and J. F. Arnold, “Lossy compression of hyperspectral data using vector quantization,” Remote Sens. Environ. 61(3), 419–436 (1997).
[CrossRef]

R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale, J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams, “Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” Remote Sens. Environ. 65(3), 227–248 (1998).
[CrossRef]

Rev. Sci. Instrum.

R. A. Gowen and A. Smith, “Square root data compression,” Rev. Sci. Instrum. 74(8), 3853–3861 (2003).
[CrossRef]

Other

R. L. Seaman, R. L. White, and W. D. Pence, “Optimal DN encoding for CCD detectors” in Proceedings of Astronomical Data Analysis Software and Systems XVII, ASP Conference Series, Vol. 411, 101 (2009).

M. A. Nieto-Santisteban, D. J. Fixsen, J. D. Offenberg, R. J. Hanisch, and H. S. Stockman, “Data compression for NGST” in Proceedings of Astronomical data analysis software and systems VIII, ASP Conference series 172, 137–140 (1999).

B. Zhang, M. J. Fadili, J.-L. Starck, and J.-C. Olivo-Marin, “Multiscale variance-stabilizing transform for mixed-poisson-gaussian processes and its Applications in Bioimaging” in Proceedings of IEEE International conference on image processing (Institute of Electrical and Electronics Engineers, New York, 2007) pp. VI233–VI236.

C. Poynton, A Technical Introduction to Digital Video (Wiley, 1996), Chap. 6.

M. Stokes, M. Anderson, S. Chandrasekar, and R. Motta, “A standard default color space for the internet - sRGB”, http://www.w3.org/Graphics/Color/sRGB (1996).

A. S. Norsk Elektro Optikk, http://www.neo.no/products/hyperspectral.html .

A. Martinez, “Capacity bounds for the Einstein radiation channel,” Proc. Int. Symp. Inf. Theory, ISIT 2006, 9–14 July 2006, Seattle (USA), pp. 366–370 (2006).

J. A. Rice, Mathematical Statistics and Data Analysis, (Duxbury press, 1995) p. 321.

E. L. Dereniak and G. D. Boreman, Infrared Detectors and Systems (Wiley, New York 1996).

P. C. D. Hobbs, Building Electro-Optical Systems: Making It All Work, 2nd ed. (Wiley, 2009).

Spectral Imaging, Ltd., http://www.specim.fi .

Recent papers on hyperspectral compression were retrieved from the ISI Web of science database in January 2011, but not listed here for space reasons. References are available from the author.

J. W. Boardman, “Using dark current data to estimate AVIRIS noise covariance and improve spectral processing” in Summaries of the Fifth Annual JPL Airborne Geoscience Workshop, Pasadena, CA 1995.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics