Abstract

We report the first experimental demonstration of 10 Gb/s modulation in a photonic crystal silicon optical modulator. The device consists of a 200 μm-long SiO2-clad photonic crystal waveguide, with an embedded p-n junction, incorporated into an asymmetric Mach-Zehnder interferometer. The device is integrated on a SOI chip and fabricated by CMOS-compatible processes. With the bias voltage set at 0 V, we measure a V π L < 0.056 V∙cm. Optical modulation is demonstrated by electrically driving the device with a 231 − 1 bit non-return-to-zero pseudo-random bit sequence signal. An open eye pattern is observed at bitrates of 10 Gb/s and 2 Gb/s, with and without pre-emphasis of the drive signal, respectively.

©2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compact and fast photonic crystal 
silicon optical modulators

Hong C. Nguyen, Satoshi Hashimoto, Mizuki Shinkawa, and Toshihiko Baba
Opt. Express 20(20) 22465-22474 (2012)

12.5-Gb/s operation with 0.29-V·cm VπL using silicon Mach-Zehnder modulator based-on forward-biased pin diode

Suguru Akiyama, Takeshi Baba, Masahiko Imai, Takeshi Akagawa, Masashi Takahashi, Naoki Hirayama, Hiroyuki Takahashi, Yoshiji Noguchi, Hideaki Okayama, Tsuyoshi Horikawa, and Tatsuya Usuki
Opt. Express 20(3) 2911-2923 (2012)

25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning

Guoliang Li, Xuezhe Zheng, Jin Yao, Hiren Thacker, Ivan Shubin, Ying Luo, Kannan Raj, John E. Cunningham, and Ashok V. Krishnamoorthy
Opt. Express 19(21) 20435-20443 (2011)

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
    [Crossref]
  2. T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17(25), 22505–22513 (2009).
    [Crossref] [PubMed]
  3. X. N. Chen, Y. S. Chen, Y. Zhao, W. Jiang, and R. T. Chen, “Capacitor-embedded 0.54 pJ/bit silicon-slot photonic crystal waveguide modulator,” Opt. Lett. 34(5), 602–604 (2009).
    [Crossref] [PubMed]
  4. X. L. Wang, C. Y. Lin, S. Chakravarty, J. D. Luo, A. K. Y. Jen, and R. T. Chen, “Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides,” Opt. Lett. 36(6), 882–884 (2011).
    [Crossref] [PubMed]
  5. G. Shambat, B. Ellis, M. A. Mayer, A. Majumdar, E. E. Haller, and J. Vučković, “Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator,” Opt. Express 19(8), 7530–7536 (2011).
    [Crossref] [PubMed]
  6. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
    [Crossref] [PubMed]
  7. A. S. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
    [Crossref] [PubMed]
  8. G. Rasigade, M. Ziebell, D. Marris-Morini, J. M. Fédéli, F. Milesi, P. Grosse, D. Bouville, E. Cassan, and L. Vivien, “High extinction ratio 10 Gbit/s silicon optical modulator,” Opt. Express 19(7), 5827–5832 (2011).
    [Crossref] [PubMed]
  9. Q. F. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
    [Crossref] [PubMed]
  10. T. P. White, L. O’Faolain, J. T. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express 16(21), 17076–17081 (2008).
    [Crossref] [PubMed]
  11. A. Berrier, M. Mulot, G. Malm, M. Östling, and S. Anand, “Carrier transport through a dry-etched InP-based two-dimensional photonic crystal,” J. Appl. Phys. 101(12), 123101 (2007).
    [Crossref]
  12. D. Mori, S. Kubo, H. Sasaki, and T. Baba, “Experimental demonstration of wideband dispersion-compensated slow light by a chirped photonic crystal directional coupler,” Opt. Express 15(9), 5264–5270 (2007).
    [Crossref] [PubMed]
  13. E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008).
    [Crossref] [PubMed]
  14. C. Y. Lin, X. L. Wang, S. Chakravarty, B. S. Lee, W. C. Lai, J. D. Luo, A. K. Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
    [Crossref]

2011 (3)

2010 (2)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

C. Y. Lin, X. L. Wang, S. Chakravarty, B. S. Lee, W. C. Lai, J. D. Luo, A. K. Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
[Crossref]

2009 (2)

2008 (2)

2007 (5)

Anand, S.

A. Berrier, M. Mulot, G. Malm, M. Östling, and S. Anand, “Carrier transport through a dry-etched InP-based two-dimensional photonic crystal,” J. Appl. Phys. 101(12), 123101 (2007).
[Crossref]

Andreani, L. C.

Baba, T.

Barros, D. J. F.

Berrier, A.

A. Berrier, M. Mulot, G. Malm, M. Östling, and S. Anand, “Carrier transport through a dry-etched InP-based two-dimensional photonic crystal,” J. Appl. Phys. 101(12), 123101 (2007).
[Crossref]

Bouville, D.

Cassan, E.

Chakravarty, S.

X. L. Wang, C. Y. Lin, S. Chakravarty, J. D. Luo, A. K. Y. Jen, and R. T. Chen, “Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides,” Opt. Lett. 36(6), 882–884 (2011).
[Crossref] [PubMed]

C. Y. Lin, X. L. Wang, S. Chakravarty, B. S. Lee, W. C. Lai, J. D. Luo, A. K. Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
[Crossref]

Chen, R. T.

Chen, X. N.

Chen, Y. S.

Chetrit, Y.

Ciftcioglu, B.

Ellis, B.

Fédéli, J. M.

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Green, W. M. J.

Grosse, P.

Haller, E. E.

Ip, E.

Izhaky, N.

Jen, A. K. Y.

X. L. Wang, C. Y. Lin, S. Chakravarty, J. D. Luo, A. K. Y. Jen, and R. T. Chen, “Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides,” Opt. Lett. 36(6), 882–884 (2011).
[Crossref] [PubMed]

C. Y. Lin, X. L. Wang, S. Chakravarty, B. S. Lee, W. C. Lai, J. D. Luo, A. K. Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
[Crossref]

Jiang, W.

Kahn, J. M.

Krauss, T. F.

Kubo, S.

Kuramochi, E.

Lai, W. C.

C. Y. Lin, X. L. Wang, S. Chakravarty, B. S. Lee, W. C. Lai, J. D. Luo, A. K. Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
[Crossref]

Lau, A. P. T.

Lee, B. S.

C. Y. Lin, X. L. Wang, S. Chakravarty, B. S. Lee, W. C. Lai, J. D. Luo, A. K. Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
[Crossref]

Li, J. T.

Liao, L.

Lin, C. Y.

X. L. Wang, C. Y. Lin, S. Chakravarty, J. D. Luo, A. K. Y. Jen, and R. T. Chen, “Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides,” Opt. Lett. 36(6), 882–884 (2011).
[Crossref] [PubMed]

C. Y. Lin, X. L. Wang, S. Chakravarty, B. S. Lee, W. C. Lai, J. D. Luo, A. K. Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
[Crossref]

Lipson, M.

Liu, A. S.

Luo, J. D.

X. L. Wang, C. Y. Lin, S. Chakravarty, J. D. Luo, A. K. Y. Jen, and R. T. Chen, “Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides,” Opt. Lett. 36(6), 882–884 (2011).
[Crossref] [PubMed]

C. Y. Lin, X. L. Wang, S. Chakravarty, B. S. Lee, W. C. Lai, J. D. Luo, A. K. Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
[Crossref]

Majumdar, A.

Malm, G.

A. Berrier, M. Mulot, G. Malm, M. Östling, and S. Anand, “Carrier transport through a dry-etched InP-based two-dimensional photonic crystal,” J. Appl. Phys. 101(12), 123101 (2007).
[Crossref]

Manipatruni, S.

Marris-Morini, D.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Mayer, M. A.

Milesi, F.

Mori, D.

Mulot, M.

A. Berrier, M. Mulot, G. Malm, M. Östling, and S. Anand, “Carrier transport through a dry-etched InP-based two-dimensional photonic crystal,” J. Appl. Phys. 101(12), 123101 (2007).
[Crossref]

Nguyen, H.

Nishiguchi, K.

Notomi, M.

O’Faolain, L.

Östling, M.

A. Berrier, M. Mulot, G. Malm, M. Östling, and S. Anand, “Carrier transport through a dry-etched InP-based two-dimensional photonic crystal,” J. Appl. Phys. 101(12), 123101 (2007).
[Crossref]

Paniccia, M.

Rasigade, G.

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Rooks, M. J.

Rubin, D.

Sasaki, H.

Schmidt, B.

Sekaric, L.

Shakya, J.

Shambat, G.

Tanabe, T.

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Vivien, L.

Vlasov, Y. A.

Vuckovic, J.

Wang, X. L.

X. L. Wang, C. Y. Lin, S. Chakravarty, J. D. Luo, A. K. Y. Jen, and R. T. Chen, “Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides,” Opt. Lett. 36(6), 882–884 (2011).
[Crossref] [PubMed]

C. Y. Lin, X. L. Wang, S. Chakravarty, B. S. Lee, W. C. Lai, J. D. Luo, A. K. Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
[Crossref]

White, T. P.

Xu, Q. F.

Zhao, Y.

Ziebell, M.

Appl. Phys. Lett. (1)

C. Y. Lin, X. L. Wang, S. Chakravarty, B. S. Lee, W. C. Lai, J. D. Luo, A. K. Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97(9), 093304 (2010).
[Crossref]

J. Appl. Phys. (1)

A. Berrier, M. Mulot, G. Malm, M. Östling, and S. Anand, “Carrier transport through a dry-etched InP-based two-dimensional photonic crystal,” J. Appl. Phys. 101(12), 123101 (2007).
[Crossref]

Nat. Photonics (1)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Opt. Express (9)

T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17(25), 22505–22513 (2009).
[Crossref] [PubMed]

G. Shambat, B. Ellis, M. A. Mayer, A. Majumdar, E. E. Haller, and J. Vučković, “Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator,” Opt. Express 19(8), 7530–7536 (2011).
[Crossref] [PubMed]

W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
[Crossref] [PubMed]

A. S. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
[Crossref] [PubMed]

G. Rasigade, M. Ziebell, D. Marris-Morini, J. M. Fédéli, F. Milesi, P. Grosse, D. Bouville, E. Cassan, and L. Vivien, “High extinction ratio 10 Gbit/s silicon optical modulator,” Opt. Express 19(7), 5827–5832 (2011).
[Crossref] [PubMed]

Q. F. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007).
[Crossref] [PubMed]

T. P. White, L. O’Faolain, J. T. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express 16(21), 17076–17081 (2008).
[Crossref] [PubMed]

D. Mori, S. Kubo, H. Sasaki, and T. Baba, “Experimental demonstration of wideband dispersion-compensated slow light by a chirped photonic crystal directional coupler,” Opt. Express 15(9), 5264–5270 (2007).
[Crossref] [PubMed]

E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008).
[Crossref] [PubMed]

Opt. Lett. (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of PCW-MZI modulator. (b) SEM image of a typical PCW with SiO2 cladding removed, overlaid with schematic of p/n doping regions, with d i = 0 in this case.
Fig. 2
Fig. 2 I-V curves for (a) 2r/a = 0.54 and varying d i and d +; (b) d + = 4 μm and varying 2r/a. Inset shows a schematic of PCW holes (white) surrounded by carrier-depleted (light-gray, defined by δ) and undamaged (dark gray) regions of the doped silicon.
Fig. 3
Fig. 3 (a) Transmission and n g spectra of the PCW-MZI device. (b) Oscilloscope traces of the optical signal modulated by a 10 MHz sinusoidal electrical signal, with a peak-to-peak drive voltage corresponding to V π., at different V DC.
Fig. 4
Fig. 4 Small-signal frequency response of the PCW-MZI modulator.
Fig. 5
Fig. 5 Eye diagrams of the optical modulation signal without pre-emphasis, at (a) 2 Gb/s, (b) 5 Gb/s and (c) 10 Gb/s. Inset in (c) shows the eye diagram of the 10 Gb/s drive signal.
Fig. 6
Fig. 6 Eye diagrams for 10 Gb/s modulation with pre-emphasis: (a) drive signal after 20 dB attenuation; (b) modulated optical signal.

Tables (1)

Tables Icon

Table 1 Measured And Estimated Values of resistance and normalized hole-diameter.

Metrics