Abstract

The output power and efficiency of linearly polarized high power Nd:YAG lasers is limited by depolarization and bifocusing. Both effects degrade the beam quality and decrease the output power. In a single pass configuration, [100]- and [110]-cut crystals can be used to reduce the depolarization. Here, we compare [100]-, [110]- and [111]-cut crystals in an oscillator configuration. As expected it was possible to reduce the depolarization loss by using [100]-cut crystals in our configuration, while the depolarization loss was higher for [110]-cut crystals. The thermal lens establishing in these crystals is not circular, which can degrade beam quality in high power operation.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. 6(9), 557–566 (1970).
    [CrossRef]
  2. M. P. Murdough and C. A. Denman, “Mode-volume and pump-power limitations in injection-locked TEM00 Nd:YAG rod lasers,” Appl. Opt. 35(30), 5925–5936 (1996).
    [CrossRef] [PubMed]
  3. Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd: YAG rods,” Opt. Quantum Electron. 28(1), 57–69 (1996).
    [CrossRef]
  4. W. Koechner and D. K. Rice, “Birefringence of YAG:Nd laser rods as a function of growth direction,” J. Opt. Soc. Am. 61(6), 758–766 (1971).
    [CrossRef]
  5. L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “Problem of depolarization of linearly polarized light by a YAG:Nd3+ laser-active element under thermally induced birefringence conditions,” Sov. J. Quantum Electron. 10(3), 350–351 (1980).
    [CrossRef]
  6. I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80(17), 3048–3050 (2002).
    [CrossRef]
  7. I. Mukhin, O. Palashov, and E. Khazanov, “Reduction of thermally induced depolarization of laser radiation in [110] oriented cubic crystals,” Opt. Express 17(7), 5496–5501 (2009).
    [CrossRef] [PubMed]
  8. O. Puncken, H. Tünnermann, J. J. Morehead, P. Weßels, M. Frede, J. Neumann, and D. Kracht, “Intrinsic reduction of the depolarization in Nd:YAG crystals,” Opt. Express 18(19), 20461–20474 (2010).
    [CrossRef] [PubMed]
  9. W. Koechner, “Thermal lensing in a Nd:YAG laser rod,” Appl. Opt. 9(11), 2548–2553 (1970).
    [CrossRef] [PubMed]
  10. W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state lasers,” J. Phys. D Appl. Phys. 34(16), 2381–2395 (2001).
    [CrossRef]
  11. L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102(3), 529–538 (2011).
    [CrossRef]

2011 (1)

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102(3), 529–538 (2011).
[CrossRef]

2010 (1)

2009 (1)

2002 (1)

I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80(17), 3048–3050 (2002).
[CrossRef]

2001 (1)

W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state lasers,” J. Phys. D Appl. Phys. 34(16), 2381–2395 (2001).
[CrossRef]

1996 (2)

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd: YAG rods,” Opt. Quantum Electron. 28(1), 57–69 (1996).
[CrossRef]

M. P. Murdough and C. A. Denman, “Mode-volume and pump-power limitations in injection-locked TEM00 Nd:YAG rod lasers,” Appl. Opt. 35(30), 5925–5936 (1996).
[CrossRef] [PubMed]

1980 (1)

L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “Problem of depolarization of linearly polarized light by a YAG:Nd3+ laser-active element under thermally induced birefringence conditions,” Sov. J. Quantum Electron. 10(3), 350–351 (1980).
[CrossRef]

1971 (1)

1970 (2)

W. Koechner, “Thermal lensing in a Nd:YAG laser rod,” Appl. Opt. 9(11), 2548–2553 (1970).
[CrossRef] [PubMed]

W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. 6(9), 557–566 (1970).
[CrossRef]

Bogan, C.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102(3), 529–538 (2011).
[CrossRef]

Clarkson, W. A.

W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state lasers,” J. Phys. D Appl. Phys. 34(16), 2381–2395 (2001).
[CrossRef]

Denman, C. A.

Dong, S.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd: YAG rods,” Opt. Quantum Electron. 28(1), 57–69 (1996).
[CrossRef]

Frede, M.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102(3), 529–538 (2011).
[CrossRef]

O. Puncken, H. Tünnermann, J. J. Morehead, P. Weßels, M. Frede, J. Neumann, and D. Kracht, “Intrinsic reduction of the depolarization in Nd:YAG crystals,” Opt. Express 18(19), 20461–20474 (2010).
[CrossRef] [PubMed]

Khazanov, E.

Kluzik, R.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102(3), 529–538 (2011).
[CrossRef]

Koechner, W.

Kracht, D.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102(3), 529–538 (2011).
[CrossRef]

O. Puncken, H. Tünnermann, J. J. Morehead, P. Weßels, M. Frede, J. Neumann, and D. Kracht, “Intrinsic reduction of the depolarization in Nd:YAG crystals,” Opt. Express 18(19), 20461–20474 (2010).
[CrossRef] [PubMed]

Kugler, N.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd: YAG rods,” Opt. Quantum Electron. 28(1), 57–69 (1996).
[CrossRef]

Kwee, P.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102(3), 529–538 (2011).
[CrossRef]

Lü, Q.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd: YAG rods,” Opt. Quantum Electron. 28(1), 57–69 (1996).
[CrossRef]

Morehead, J. J.

Mukhin, I.

Müller, N.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd: YAG rods,” Opt. Quantum Electron. 28(1), 57–69 (1996).
[CrossRef]

Murdough, M. P.

Neumann, J.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102(3), 529–538 (2011).
[CrossRef]

O. Puncken, H. Tünnermann, J. J. Morehead, P. Weßels, M. Frede, J. Neumann, and D. Kracht, “Intrinsic reduction of the depolarization in Nd:YAG crystals,” Opt. Express 18(19), 20461–20474 (2010).
[CrossRef] [PubMed]

Palashov, O.

Poeld, J.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102(3), 529–538 (2011).
[CrossRef]

Puncken, O.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102(3), 529–538 (2011).
[CrossRef]

O. Puncken, H. Tünnermann, J. J. Morehead, P. Weßels, M. Frede, J. Neumann, and D. Kracht, “Intrinsic reduction of the depolarization in Nd:YAG crystals,” Opt. Express 18(19), 20461–20474 (2010).
[CrossRef] [PubMed]

Rice, D. K.

W. Koechner and D. K. Rice, “Birefringence of YAG:Nd laser rods as a function of growth direction,” J. Opt. Soc. Am. 61(6), 758–766 (1971).
[CrossRef]

W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. 6(9), 557–566 (1970).
[CrossRef]

Shashkin, V. V.

L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “Problem of depolarization of linearly polarized light by a YAG:Nd3+ laser-active element under thermally induced birefringence conditions,” Sov. J. Quantum Electron. 10(3), 350–351 (1980).
[CrossRef]

Shoji, I.

I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80(17), 3048–3050 (2002).
[CrossRef]

Soms, L. N.

L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “Problem of depolarization of linearly polarized light by a YAG:Nd3+ laser-active element under thermally induced birefringence conditions,” Sov. J. Quantum Electron. 10(3), 350–351 (1980).
[CrossRef]

Taira, T.

I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80(17), 3048–3050 (2002).
[CrossRef]

Tarasov, A. A.

L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “Problem of depolarization of linearly polarized light by a YAG:Nd3+ laser-active element under thermally induced birefringence conditions,” Sov. J. Quantum Electron. 10(3), 350–351 (1980).
[CrossRef]

Tünnermann, H.

Veltkamp, C.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102(3), 529–538 (2011).
[CrossRef]

Weber, H.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd: YAG rods,” Opt. Quantum Electron. 28(1), 57–69 (1996).
[CrossRef]

Wessels, P.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102(3), 529–538 (2011).
[CrossRef]

Weßels, P.

Willke, B.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102(3), 529–538 (2011).
[CrossRef]

Winkelmann, L.

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102(3), 529–538 (2011).
[CrossRef]

Wittrock, U.

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd: YAG rods,” Opt. Quantum Electron. 28(1), 57–69 (1996).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

L. Winkelmann, O. Puncken, R. Kluzik, C. Veltkamp, P. Kwee, J. Poeld, C. Bogan, B. Willke, M. Frede, J. Neumann, P. Wessels, and D. Kracht, “Injection-locked single-frequency laser with an output power of 220 W,” Appl. Phys. B 102(3), 529–538 (2011).
[CrossRef]

Appl. Phys. Lett. (1)

I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80(17), 3048–3050 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. Koechner and D. K. Rice, “Effect of birefringence on the performance of linearly polarized YAG:Nd lasers,” IEEE J. Quantum Electron. 6(9), 557–566 (1970).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. D Appl. Phys. (1)

W. A. Clarkson, “Thermal effects and their mitigation in end-pumped solid-state lasers,” J. Phys. D Appl. Phys. 34(16), 2381–2395 (2001).
[CrossRef]

Opt. Express (2)

Opt. Quantum Electron. (1)

Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, “A novel approach for compensation of birefringence in cylindrical Nd: YAG rods,” Opt. Quantum Electron. 28(1), 57–69 (1996).
[CrossRef]

Sov. J. Quantum Electron. (1)

L. N. Soms, A. A. Tarasov, and V. V. Shashkin, “Problem of depolarization of linearly polarized light by a YAG:Nd3+ laser-active element under thermally induced birefringence conditions,” Sov. J. Quantum Electron. 10(3), 350–351 (1980).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Contribution of the stress lens to the optical path length at 120 W pump power and a pump beam radius of 1 mm. Top to bottom: [111]-, [100]-, [110]-cut crystal. Left: local orientation of principal axes; middle and right: optical path difference for axis 1 and axis 2 (radial and tangential in case of the [111]-cut crystal). Orientation of the x-y axes is the same as in Ref. [8].

Fig. 2
Fig. 2

Setup of the single crystal standing wave resonator (HR: high reflection coating, AR: anti reflection coating, T: transmission).

Fig. 3
Fig. 3

Comparison of the different beam profiles emitted by the laser without an intracavity Brewster plate. Left to right: Using [111]-, [100]- and [110]-cut crystals. Top: Fundamental mode, bottom: next higher order mode.

Fig. 4
Fig. 4

Single sided Brewster plate losses and laser power depending on crystal orientation. The angles are arbitrary.

Fig. 5
Fig. 5

Power levels in S- and P- polarization using a [110]-cut crystal without intracavity Brewster plate (red/black). As the crystal was rotated the orientation of the output polarization was adapted to the axes of the extra cavity polarizer with a half wave plate (blue curve).

Fig. 6
Fig. 6

Two crystal standing wave resonator with birefringence compensation. For some experiments we omitted the quartz rotator. Typical output curves are shown in the diagram. Fundamental mode operation can be found at 140 W pump power per crystal.

Fig. 7
Fig. 7

Beam profile and M2-factors in an asymmetric standing wave two-crystal resonator. (a) [111]-cut crystals with quartz rotator, (b) [111]-cut crystals without quartz rotator, (c) [100]-cut crystals without quartz rotator, (d) [110]-cut crystals without quartz rotator.

Metrics