Abstract

A path-folded infrared image spectrometer with five sub-gratings and five linear-array detectors was applied to a broadband optical monitoring (BOM) system for thin film deposition. Through in situ BOM, we can simultaneously acquire the thickness and refractive index of each layer in real time by fitting the measured spectra, and modify the deposition parameters during deposition process according to the fitting results. An effective data processing method was proposed and applied in the BOM process, and it shortened the data processing time and improved the monitoring efficiency greatly. For demonstration, a narrow band-pass filter (NBF) at 1540 nm with ~10 nm full width at half-maximum (FWHM) had been manufactured using the developed BOM system, and the results showed that this BOM method was satisfying for monitoring deposition of thin film devices.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Macleod, “Monitoring of optical coatings,” Appl. Opt. 20(1), 82–89 (1981).
    [CrossRef] [PubMed]
  2. H. A. Macleod, Thin-Film Optical Filters, 3rd ed.(Institute of Physics, 2001).
  3. B. Vidal, A. Fornier, and E. Pelletier, “Optical monitoring of nonquarterwave multilayer filters,” Appl. Opt. 17(7), 1038–1047 (1978).
    [CrossRef] [PubMed]
  4. C. C. Lee, K. Wu, C. C. Kuo, and S. H. Chen, “Improvement of the optical coating process by cutting layers with sensitive monitoring wavelengths,” Opt. Express 13(13), 4854–4861 (2005).
    [CrossRef] [PubMed]
  5. C. C. Lee and K. Wu, “In situ sensitive optical monitoring with proper error compensation,” Opt. Lett. 32(15), 2118–2120 (2007).
    [CrossRef] [PubMed]
  6. C. C. Lee and Y. J. Chen, “Multilayer coatings monitoring using admittance diagram,” Opt. Express 16(9), 6119–6124 (2008).
    [CrossRef] [PubMed]
  7. F. Lai, X. Wu, B. Zhuang, Q. Yan, and Z. Huang, “Dual wavelengths monitoring for optical coatings,” Opt. Express 16(13), 9436–9442 (2008).
    [CrossRef] [PubMed]
  8. A. V. Tikhonravov, M. K. Trubetskov, and T. V. Amotchkina, “Statistical approach to choosing a strategy of monochromatic monitoring of optical coating production,” Appl. Opt. 45(30), 7863–7870 (2006).
    [CrossRef] [PubMed]
  9. B. Vidal, A. Fornier, and E. Pelletier, “Wideband optical monitoring of nonquarterwave multilayer filters,” Appl. Opt. 18(22), 3851–3856 (1979).
    [PubMed]
  10. L. Li and Y. H. Yen, “Wideband monitoring and measuring system for optical coatings,” Appl. Opt. 28(14), 2889–2894 (1989).
    [CrossRef] [PubMed]
  11. B. Badoil, F. Lemarchand, M. Cathelinaud, and M. Lequime, “Interest of broadband optical monitoring for thin-film filter manufacturing,” Appl. Opt. 46(20), 4294–4303 (2007).
    [CrossRef] [PubMed]
  12. T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, P. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multi-grating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
    [CrossRef]
  13. Y. R. Chen, B. Sun, T. Han, Y. F. Kong, C. H. Xu, P. Zhou, X. F. Li, S. Y. Wang, Y. X. Zheng, and L. Y. Chen, “Densely folded spectral images of the CCD spectrometer working in the full 200-1000nm wavelength range with high resolution,” Opt. Express 13(25), 10049–10054 (2005).
    [CrossRef] [PubMed]
  14. M. H. Liu, S. X. Pan, Y. R. Chen, Y. F. Wu, Q. Y. Cai, P. H. Mao, Y. X. Zheng, and L. Y. Chen, “Path-folded infrared spectrometer consisting of 10 sub-gratings and a two-dimensional InGaAs detector,” Opt. Express 17(17), 14956–14966 (2009).
    [CrossRef] [PubMed]
  15. G. Overton, “Spectrometry: CCD spectrometer folds spectral images from 200 to 1000 nm”, Laser Focus World, World News, 42–43, Feb. 2006 edition, www.lfw-digital.com .
  16. R. Gaughan, “Folded Spectrometer offers Range, Resolution and Speed,” Photonics Spectra, Photonics Technology World, 20–22, Mar. 2006 edition, www.photonics.com .
  17. W. Kern and D. A. Puotinen, “Cleaning solution based on hydrogen peroxide for use in semiconductor technology,” RCA Rev. 31, 187–206 (1970).
  18. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).

2009 (1)

2008 (2)

2007 (2)

2006 (1)

2005 (3)

1989 (1)

1981 (1)

1979 (1)

1978 (1)

1970 (1)

W. Kern and D. A. Puotinen, “Cleaning solution based on hydrogen peroxide for use in semiconductor technology,” RCA Rev. 31, 187–206 (1970).

Amotchkina, T. V.

Badoil, B.

Cai, Q. Y.

Cathelinaud, M.

Chen, J. K.

T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, P. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multi-grating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
[CrossRef]

Chen, L. Y.

Chen, S. H.

Chen, Y. J.

Chen, Y. R.

Fornier, A.

Han, T.

T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, P. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multi-grating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
[CrossRef]

Y. R. Chen, B. Sun, T. Han, Y. F. Kong, C. H. Xu, P. Zhou, X. F. Li, S. Y. Wang, Y. X. Zheng, and L. Y. Chen, “Densely folded spectral images of the CCD spectrometer working in the full 200-1000nm wavelength range with high resolution,” Opt. Express 13(25), 10049–10054 (2005).
[CrossRef] [PubMed]

Huang, Z.

Kern, W.

W. Kern and D. A. Puotinen, “Cleaning solution based on hydrogen peroxide for use in semiconductor technology,” RCA Rev. 31, 187–206 (1970).

Kong, Y. F.

T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, P. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multi-grating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
[CrossRef]

Y. R. Chen, B. Sun, T. Han, Y. F. Kong, C. H. Xu, P. Zhou, X. F. Li, S. Y. Wang, Y. X. Zheng, and L. Y. Chen, “Densely folded spectral images of the CCD spectrometer working in the full 200-1000nm wavelength range with high resolution,” Opt. Express 13(25), 10049–10054 (2005).
[CrossRef] [PubMed]

Kuo, C. C.

Lai, F.

Lee, C. C.

Lemarchand, F.

Lequime, M.

Li, L.

Li, X. F.

Liu, M. H.

Macleod, H. A.

Mao, P. H.

Miao, J.

T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, P. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multi-grating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
[CrossRef]

Pan, S. X.

Pelletier, E.

Puotinen, D. A.

W. Kern and D. A. Puotinen, “Cleaning solution based on hydrogen peroxide for use in semiconductor technology,” RCA Rev. 31, 187–206 (1970).

Qiu, J. H.

T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, P. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multi-grating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
[CrossRef]

Sun, B.

T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, P. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multi-grating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
[CrossRef]

Y. R. Chen, B. Sun, T. Han, Y. F. Kong, C. H. Xu, P. Zhou, X. F. Li, S. Y. Wang, Y. X. Zheng, and L. Y. Chen, “Densely folded spectral images of the CCD spectrometer working in the full 200-1000nm wavelength range with high resolution,” Opt. Express 13(25), 10049–10054 (2005).
[CrossRef] [PubMed]

Tikhonravov, A. V.

Trubetskov, M. K.

Vidal, B.

Wang, S. Y.

Wu, K.

Wu, X.

Wu, Y. F.

Wu, Y. H.

T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, P. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multi-grating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
[CrossRef]

Xu, C. H.

T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, P. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multi-grating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
[CrossRef]

Y. R. Chen, B. Sun, T. Han, Y. F. Kong, C. H. Xu, P. Zhou, X. F. Li, S. Y. Wang, Y. X. Zheng, and L. Y. Chen, “Densely folded spectral images of the CCD spectrometer working in the full 200-1000nm wavelength range with high resolution,” Opt. Express 13(25), 10049–10054 (2005).
[CrossRef] [PubMed]

Yan, Q.

Yen, Y. H.

Zheng, Y. X.

Zhou, P.

T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, P. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multi-grating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
[CrossRef]

Y. R. Chen, B. Sun, T. Han, Y. F. Kong, C. H. Xu, P. Zhou, X. F. Li, S. Y. Wang, Y. X. Zheng, and L. Y. Chen, “Densely folded spectral images of the CCD spectrometer working in the full 200-1000nm wavelength range with high resolution,” Opt. Express 13(25), 10049–10054 (2005).
[CrossRef] [PubMed]

Zhuang, B.

Appl. Opt. (6)

Opt. Express (5)

Opt. Lett. (1)

RCA Rev. (1)

W. Kern and D. A. Puotinen, “Cleaning solution based on hydrogen peroxide for use in semiconductor technology,” RCA Rev. 31, 187–206 (1970).

Rev. Sci. Instrum. (1)

T. Han, Y. H. Wu, J. K. Chen, Y. F. Kong, Y. R. Chen, B. Sun, C. H. Xu, P. Zhou, J. H. Qiu, Y. X. Zheng, J. Miao, and L. Y. Chen, “Study of the high resolution infrared spectrometer by using an integrated multi-grating structure,” Rev. Sci. Instrum. 76(8), 083118 (2005).
[CrossRef]

Other (4)

H. A. Macleod, Thin-Film Optical Filters, 3rd ed.(Institute of Physics, 2001).

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).

G. Overton, “Spectrometry: CCD spectrometer folds spectral images from 200 to 1000 nm”, Laser Focus World, World News, 42–43, Feb. 2006 edition, www.lfw-digital.com .

R. Gaughan, “Folded Spectrometer offers Range, Resolution and Speed,” Photonics Spectra, Photonics Technology World, 20–22, Mar. 2006 edition, www.photonics.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the infrared BOM system

Fig. 2
Fig. 2

Extreme point wavelengths of the spectrum of transmittance in 1430-1630 nm at different optical thickness in Si/L9(HL)5H2(LH)5/Air film system.

Fig. 3
Fig. 3

Real time spectrum of transmittance during deposition process

Fig. 4
Fig. 4

Comparison between the measured spectra and the pre-designed spectra. The black lines show the pre-designed spectra, and the red lines show the experimental spectra.

Fig. 5
Fig. 5

Transmittance at wavelength 1540 nm during deposition process

Fig. 6
Fig. 6

Comparison between the experimental transmittance spectra and the revised design transmittance spectra. The black lines show the revised design spectra, and the red lines show the experimental spectra. (a)-(d) show the results for the cases that the 5th to 2nd layers countdown of the filter had been deposited, respectively.

Fig. 7
Fig. 7

The final transmittance spectrum of the optical thin film filter.

Tables (1)

Tables Icon

Table 1 The data compiled before deposition include all extreme-point wavelengths of the simulated spectrum of transmittance at different thicknesses.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T r e a ( λ N , d ) = S r e a ( λ N , d ) S b g ( λ N ) S 0 ( λ N ) S b g ( λ N ) T 0 ( λ N )
T 0 ( λ N ) = 1 ( n ( λ N ) 1 ) 2 ( n ( λ N ) + 1 ) 2
R E ( d ) = 1 N p x l s N = 1 N p x l s [ T r e a ( λ N , d ) T t h e ( λ N , d 0 ) ] 2
R E ( n t e s , d t e s ) = 1 N p x l s N = 1 N p x l s [ T t h e ( n t e s , λ N , d t e s ) T r e a ( λ N , d ) ] 2
R E ( d t e s ) = 1 C N = 1 C [ λ N , t h e ( d t e s ) λ N , r e a ( d ) ] 2

Metrics