Abstract

We investigate the transmission performance of 224Gbit/s polarization-division-multiplexed 16-state quadrature amplitude modulation (PDM-16QAM) for systems employing standard single mode fiber (SSMF) and erbium doped fiber amplifiers (EDFAs). We consider the effectiveness of return-to-zero (RZ) data pulses with varying duty cycles and digital backpropagation (DBP) in reducing nonlinear distortion in wavelength-division- multiplexed (WDM) links with 3, 5, 7 and 9 channels. Similar improvement in transmission reach of 18-25% was achieved either by pulse-carving at the transmitter or by DBP, yielding maximum transmission distances of up to 1760km for RZ-pulse-shapes and 1280km for NRZ.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “10 x 224-Gb/s WDM transmission of 28Gbaud PDM 16-QAM on a 50GHz grid over 1,200 km on fiber,” Proc. OFC/NFOEC 2010, paper PDPB8, San Diego, USA, (2010).
  2. M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “Transmission of 11x224-Gb/s POLMUX-RZ-16QAM over 1500 km of longline and pure-silica SMF,” Proc. ECOC 2010, paper We.8.C.2., Turin, Italy, (2010).
  3. M. Nolle, J. Hilt, L. Molle, M. Seimetz, and R. Freund, “8x224 Gbit/s PDM 16QAM WDM transmission with real-time signal processing at the transmitter,” Proc. ECOC2010, paper We.8.C.4., Turin, Italy, (2010).
  4. C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Nonlinear transmission performance of higher order modulation formats,” IEEE Photon. Technol. Lett. (accepted for publication).
  5. G. Goldfarb, M. G. Taylor, and G. Li, “Experimental demonstration of fiber impairment compensation using the split-step finite-impulse-response filtering method,” IEEE Photon. Technol. Lett. 20(22), 1887–1889 (2008).
    [CrossRef]
  6. D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
    [CrossRef]
  7. Y.-H. Wang and I. Lyubomirsky, “Impact of DP-QPSK pulse shape in nonlinear 100G transmission,” J. Lightwave Technol. 28(18), 2750–2756 (2010).
    [CrossRef]
  8. C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Nonlinear distortion in transmission of higher order modulation formats,” IEEE Photon. Technol. Lett. 22(15), 1111–1113 (2010).
    [CrossRef]
  9. S. Makovejs, E. Torrengo, D. S. Millar, R. I. Killey, S. J. Savory, and P. Bayvel, “Comparison of pulse shapes in a 224Gbit/s (28Gbaud) PDM-QAM16 long-haul transmission experiment,” Proc. of OFC 2011, paper OMR5, San Diego, USA, (2011).
  10. S. Makovejs, D. S. Millar, D. Lavery, C. Behrens, R. I. Killey, S. J. Savory, and P. Bayvel, “Characterization of long-haul 112Gbit/s PDM-QAM-16 transmission with and without digital nonlinearity compensation,” Opt. Express 18(12), 12939–12947 (2010).
    [CrossRef] [PubMed]
  11. E. Ip, “Nonlinear compensation using backpropagation for polarization-multiplexed transmission,” J. Lightwave Technol. 28(6), 939–951 (2010).
    [CrossRef]

2010 (5)

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
[CrossRef]

Y.-H. Wang and I. Lyubomirsky, “Impact of DP-QPSK pulse shape in nonlinear 100G transmission,” J. Lightwave Technol. 28(18), 2750–2756 (2010).
[CrossRef]

C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Nonlinear distortion in transmission of higher order modulation formats,” IEEE Photon. Technol. Lett. 22(15), 1111–1113 (2010).
[CrossRef]

S. Makovejs, D. S. Millar, D. Lavery, C. Behrens, R. I. Killey, S. J. Savory, and P. Bayvel, “Characterization of long-haul 112Gbit/s PDM-QAM-16 transmission with and without digital nonlinearity compensation,” Opt. Express 18(12), 12939–12947 (2010).
[CrossRef] [PubMed]

E. Ip, “Nonlinear compensation using backpropagation for polarization-multiplexed transmission,” J. Lightwave Technol. 28(6), 939–951 (2010).
[CrossRef]

2008 (1)

G. Goldfarb, M. G. Taylor, and G. Li, “Experimental demonstration of fiber impairment compensation using the split-step finite-impulse-response filtering method,” IEEE Photon. Technol. Lett. 20(22), 1887–1889 (2008).
[CrossRef]

Bayvel, P.

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
[CrossRef]

C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Nonlinear distortion in transmission of higher order modulation formats,” IEEE Photon. Technol. Lett. 22(15), 1111–1113 (2010).
[CrossRef]

S. Makovejs, D. S. Millar, D. Lavery, C. Behrens, R. I. Killey, S. J. Savory, and P. Bayvel, “Characterization of long-haul 112Gbit/s PDM-QAM-16 transmission with and without digital nonlinearity compensation,” Opt. Express 18(12), 12939–12947 (2010).
[CrossRef] [PubMed]

C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Nonlinear transmission performance of higher order modulation formats,” IEEE Photon. Technol. Lett. (accepted for publication).

Behrens, C.

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
[CrossRef]

C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Nonlinear distortion in transmission of higher order modulation formats,” IEEE Photon. Technol. Lett. 22(15), 1111–1113 (2010).
[CrossRef]

S. Makovejs, D. S. Millar, D. Lavery, C. Behrens, R. I. Killey, S. J. Savory, and P. Bayvel, “Characterization of long-haul 112Gbit/s PDM-QAM-16 transmission with and without digital nonlinearity compensation,” Opt. Express 18(12), 12939–12947 (2010).
[CrossRef] [PubMed]

C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Nonlinear transmission performance of higher order modulation formats,” IEEE Photon. Technol. Lett. (accepted for publication).

Chen, M.

C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Nonlinear distortion in transmission of higher order modulation formats,” IEEE Photon. Technol. Lett. 22(15), 1111–1113 (2010).
[CrossRef]

C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Nonlinear transmission performance of higher order modulation formats,” IEEE Photon. Technol. Lett. (accepted for publication).

Goldfarb, G.

G. Goldfarb, M. G. Taylor, and G. Li, “Experimental demonstration of fiber impairment compensation using the split-step finite-impulse-response filtering method,” IEEE Photon. Technol. Lett. 20(22), 1887–1889 (2008).
[CrossRef]

Hellerbrand, S.

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
[CrossRef]

Ip, E.

Killey, R. I.

S. Makovejs, D. S. Millar, D. Lavery, C. Behrens, R. I. Killey, S. J. Savory, and P. Bayvel, “Characterization of long-haul 112Gbit/s PDM-QAM-16 transmission with and without digital nonlinearity compensation,” Opt. Express 18(12), 12939–12947 (2010).
[CrossRef] [PubMed]

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
[CrossRef]

C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Nonlinear distortion in transmission of higher order modulation formats,” IEEE Photon. Technol. Lett. 22(15), 1111–1113 (2010).
[CrossRef]

C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Nonlinear transmission performance of higher order modulation formats,” IEEE Photon. Technol. Lett. (accepted for publication).

Lavery, D.

Li, G.

G. Goldfarb, M. G. Taylor, and G. Li, “Experimental demonstration of fiber impairment compensation using the split-step finite-impulse-response filtering method,” IEEE Photon. Technol. Lett. 20(22), 1887–1889 (2008).
[CrossRef]

Lyubomirsky, I.

Makovejs, S.

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
[CrossRef]

S. Makovejs, D. S. Millar, D. Lavery, C. Behrens, R. I. Killey, S. J. Savory, and P. Bayvel, “Characterization of long-haul 112Gbit/s PDM-QAM-16 transmission with and without digital nonlinearity compensation,” Opt. Express 18(12), 12939–12947 (2010).
[CrossRef] [PubMed]

Millar, D. S.

S. Makovejs, D. S. Millar, D. Lavery, C. Behrens, R. I. Killey, S. J. Savory, and P. Bayvel, “Characterization of long-haul 112Gbit/s PDM-QAM-16 transmission with and without digital nonlinearity compensation,” Opt. Express 18(12), 12939–12947 (2010).
[CrossRef] [PubMed]

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
[CrossRef]

Savory, S. J.

C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Nonlinear distortion in transmission of higher order modulation formats,” IEEE Photon. Technol. Lett. 22(15), 1111–1113 (2010).
[CrossRef]

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
[CrossRef]

S. Makovejs, D. S. Millar, D. Lavery, C. Behrens, R. I. Killey, S. J. Savory, and P. Bayvel, “Characterization of long-haul 112Gbit/s PDM-QAM-16 transmission with and without digital nonlinearity compensation,” Opt. Express 18(12), 12939–12947 (2010).
[CrossRef] [PubMed]

C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Nonlinear transmission performance of higher order modulation formats,” IEEE Photon. Technol. Lett. (accepted for publication).

Taylor, M. G.

G. Goldfarb, M. G. Taylor, and G. Li, “Experimental demonstration of fiber impairment compensation using the split-step finite-impulse-response filtering method,” IEEE Photon. Technol. Lett. 20(22), 1887–1889 (2008).
[CrossRef]

Wang, Y.-H.

IEEE J. Sel. Top. Quantum Electron. (1)

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. I. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber nonlinearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1217–1226 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Nonlinear distortion in transmission of higher order modulation formats,” IEEE Photon. Technol. Lett. 22(15), 1111–1113 (2010).
[CrossRef]

C. Behrens, R. I. Killey, S. J. Savory, M. Chen, and P. Bayvel, “Nonlinear transmission performance of higher order modulation formats,” IEEE Photon. Technol. Lett. (accepted for publication).

G. Goldfarb, M. G. Taylor, and G. Li, “Experimental demonstration of fiber impairment compensation using the split-step finite-impulse-response filtering method,” IEEE Photon. Technol. Lett. 20(22), 1887–1889 (2008).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (1)

Other (4)

S. Makovejs, E. Torrengo, D. S. Millar, R. I. Killey, S. J. Savory, and P. Bayvel, “Comparison of pulse shapes in a 224Gbit/s (28Gbaud) PDM-QAM16 long-haul transmission experiment,” Proc. of OFC 2011, paper OMR5, San Diego, USA, (2011).

A. H. Gnauck, P. J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, and D. W. Peckham, “10 x 224-Gb/s WDM transmission of 28Gbaud PDM 16-QAM on a 50GHz grid over 1,200 km on fiber,” Proc. OFC/NFOEC 2010, paper PDPB8, San Diego, USA, (2010).

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “Transmission of 11x224-Gb/s POLMUX-RZ-16QAM over 1500 km of longline and pure-silica SMF,” Proc. ECOC 2010, paper We.8.C.2., Turin, Italy, (2010).

M. Nolle, J. Hilt, L. Molle, M. Seimetz, and R. Freund, “8x224 Gbit/s PDM 16QAM WDM transmission with real-time signal processing at the transmitter,” Proc. ECOC2010, paper We.8.C.4., Turin, Italy, (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup of PDM-16QAM transmission. Inset figures show channel-alignment according to the free spectral range of the fiber interferometer and eye-diagrams for 28GBd NRZ- and RZ-50-16QAM.

Fig. 2
Fig. 2

(a) Measured amplitude-frequency response of the four channels of Tektronix scope. Inset figure shows the eye-diagram of a single polarization 28GBd 16QAM signal, black traces are simulation and green experimental data. (b) shows the back-to-back performance for the single channel setup without optical interleaver for a variety of pulse shapes. Note- very close agreement between experiment and simulation.

Fig. 3
Fig. 3

Optical Reach at BER ≤3 × 10−3 for (a) single channel transmission and (b) 3 channel WDM transmission for NRZ and RZ-50 pulse-shapes. Simulation results show good agreement in both investigated scenarios.

Fig. 4
Fig. 4

Maximum reach at BER = 3 × 10−3 for NRZ, RZ-67, RZ-50 and RZ-33 pulse shapes for systems with multiple WDM channels. Shaded bars show the maximum reach in case of digitally backpropagating the central channel.

Tables (1)

Tables Icon

Table 1 Fiber and Link Parameters

Metrics