Abstract

We report on single photon frequency downconversion from the red part of the spectrum (738nm) to the telecommunications C-band. By mixing attenuated laser pulses with an average photon number per pulse < 1 with a strong continuous light field at 1403nm in a periodically poled Zn:LiNbO3 ridge waveguide an internal conversion efficiency of ∼ 73% is achieved. We further investigate the noise properties of the process by measuring the output spectrum. Our results indicate that by narrow spectral filtering a quantum interface should be feasible which bridges the wavelength gap between quantum emitters like color centers in diamond emitting in the red part of the spectrum and low-loss fiber-optic telecommunications wavelengths.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Kimble, “The quantum internet,” Nature (London) 453, 1023–1030 (2008).
    [CrossRef]
  2. J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68, 2153–2156 (1992).
    [CrossRef] [PubMed]
  3. M. A. Albota and F. N. C. Wong, “Efficient single-photon counting at 1.55 μm by means of frequency upconversion,” Opt. Lett. 29, 1449–1451 (2004).
    [CrossRef] [PubMed]
  4. A. P. VanDevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433–1445 (2004).
  5. R. V. Roussev, C. Langrock, J. R. Kurz, and M. M. Fejer, “Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths,” Opt. Lett. 29, 1518–1520 (2004).
    [CrossRef] [PubMed]
  6. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett. 30, 1725–1727 (2005).
    [CrossRef] [PubMed]
  7. S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature (London) 437, 116–120 (2005).
    [CrossRef]
  8. M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunicationsband single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
    [CrossRef]
  9. Z. Y. Ou, “Efficient conversion between photons and between photon and atom by stimulated emission,” Phys. Rev. A 78, 023819 (2008).
    [CrossRef]
  10. M. W. McCutcheon, D. E. Chang, Y. Zhang, M. D. Lukin, and M. Loncar, “Broadband frequency conversion and shaping of single photons emitted from a nonlinear cavity,” Opt. Express 17, 22689–22703 (2009).
    [CrossRef]
  11. Y. Ding and Z. Y. Ou, “Frequency downconversion for a quantum network,” Opt. Lett. 35, 2591–2593 (2010).
    [CrossRef] [PubMed]
  12. H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A 82, 013833 (2010).
    [CrossRef]
  13. J. S. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, “Efficient down-conversion of single photons for quantum communication,” in Nonlinear Optics: Materials, Fundamentals and Applications , OSA Technical Digest (CD) (Optical Society of America, 2009), paper NTuB1.
  14. J. S. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, “Influence of domain disorder on parametric noise in quasi-phase-matched quantum frequency converters,” Opt. Lett. 35, 2804–2806 (2010).
    [CrossRef] [PubMed]
  15. N. Curtz, R. Thew, C. Simon, N. Gisin, and H. Zbinden, “Coherent frequency-down-conversion interface for quantum repeaters,” Opt. Express 18, 22099–22104 (2010).
    [CrossRef] [PubMed]
  16. A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894–899 (2010).
    [CrossRef]
  17. E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy centres in CVD-nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
    [CrossRef]
  18. C. Warschburger, Fachrichtung 7.2 (Experimentalphysik), Universität des Saarlandes, Campus E2.6, 66123 Saarbrücken, Germany, et al. are preparing a manuscript to be called “Analysis on frequency noise properties of a CW optical parametric oscillator using an optical frequency comb.”
  19. I. Aharonovich, S. Castelletto, B. C. Johnson, J. C. McCallum, and S. Prawer, “Engineering chromium-related single photon emitters in single crystal diamonds,” New. J. Phys. 13, 045015 (2011).
    [CrossRef]
  20. M. Reischle, C. Kessler, W.-M. Schulz, M. Eichfelder, R. Roßbach, M. Jetter, and P. Michler, “Triggered single-photon emission from electrically excited quantum dots in the red spectral range,” Appl. Phys. Lett. 97, 143513 (2010).
    [CrossRef]
  21. Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39, 609–611 (2003).
    [CrossRef]
  22. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic Press, 1974).
  23. U. T. Schwarz and M. Maier, “Asymmetric Raman lines caused by an anharmonic lattice potential in lithium niobate,” Phys. Rev. B 55, 11041–11044 (1997).
    [CrossRef]
  24. Y. Repelin, E. Husson, F. Bennani, and C. Proust, “Raman spectroscopy of lithium niobate and lithium tantalate. Force field calculations,” J. Phys. Chem. Solids 60, 819–825 (1999).
    [CrossRef]
  25. N. V. Sidorov, A. A. Yanichev, P. G. Chufyrev, M. N. Palatnikov, and B. N. Mavrin, “Raman spectra of photorefractive lithium niobate single crystals,” J. Appl. Spectrosc. 77, 110–114 (2010).
    [CrossRef]
  26. M. Malyj and J. E. Griffiths, “Stokes/anti-stokes Raman vibrational temperatures: reference materials, standard lamps, and spectrophotometric calibrations,” Appl. Spectrosc. 37, 315–333 (1983).
    [CrossRef]
  27. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
    [CrossRef]
  28. C.-H. Su, A. D. Greentree, and L. C. L. Hollenberg, “Towards a picosecond transform-limited nitrogen-vacancy based single photon source,” Opt. Express 16, 6240–6250 (2008).
    [CrossRef] [PubMed]
  29. A. Faraon, P. E. Barclay, C. Santori, K. M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5, 301–305 (2011).
    [CrossRef]
  30. G. Ribordy, N. Gisin, O. Guinnard, D. Stucki, M. Wegmuller, and H. Zbinden, “Photon counting at telecom wavelengths with commercial InGaAs/InP avalanche photodiodes: current performance,” J. Mod. Opt. 51, 1381–1398 (2004).
  31. F. R. Nash, G. D. Boyd, M. Sargent, and P. M. Bridenbaugh, “Effect of optical inhomogeneities on phase matching in nonlinear crystals,” J. Appl. Phys. 41, 2564–2576 (1970).
    [CrossRef]
  32. H. Jiang, G. Li, and X. Xu, “Highly efficient single-pass second harmonic generation in a periodically poled MgO:LiNbO3 waveguide pumped by a fiber laser at 1111.6 nm,” Opt. Express 17, 16073–16080 (2009).
    [CrossRef] [PubMed]
  33. T. Nishikawa, A. Ozawa, Y. Nishida, M. Asobe, F.-L. Hong, and T. W. Hänsch, “Efficient 494 mW sum-frequency generation of sodium resonance radiation at 589 nm by using a periodically poled Zn:LiNbO3 ridge waveguide,” Opt. Express 17, 17792–17800 (2009).
    [CrossRef] [PubMed]
  34. K.-D. F. Büchter, H. Herrmann, C. Langrock, M. M. Fejer, and W. Sohler, “All-optical Ti:PPLN wavelength conversion modules for free-space optical transmission links in the mid-infrared,” Opt. Lett. 34, 470–472 (2009).
    [CrossRef] [PubMed]
  35. M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3, 253–255 (2007).
    [CrossRef]

2011 (3)

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy centres in CVD-nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
[CrossRef]

I. Aharonovich, S. Castelletto, B. C. Johnson, J. C. McCallum, and S. Prawer, “Engineering chromium-related single photon emitters in single crystal diamonds,” New. J. Phys. 13, 045015 (2011).
[CrossRef]

A. Faraon, P. E. Barclay, C. Santori, K. M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5, 301–305 (2011).
[CrossRef]

2010 (8)

N. V. Sidorov, A. A. Yanichev, P. G. Chufyrev, M. N. Palatnikov, and B. N. Mavrin, “Raman spectra of photorefractive lithium niobate single crystals,” J. Appl. Spectrosc. 77, 110–114 (2010).
[CrossRef]

H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A 82, 013833 (2010).
[CrossRef]

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunicationsband single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
[CrossRef]

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894–899 (2010).
[CrossRef]

M. Reischle, C. Kessler, W.-M. Schulz, M. Eichfelder, R. Roßbach, M. Jetter, and P. Michler, “Triggered single-photon emission from electrically excited quantum dots in the red spectral range,” Appl. Phys. Lett. 97, 143513 (2010).
[CrossRef]

Y. Ding and Z. Y. Ou, “Frequency downconversion for a quantum network,” Opt. Lett. 35, 2591–2593 (2010).
[CrossRef] [PubMed]

J. S. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, “Influence of domain disorder on parametric noise in quasi-phase-matched quantum frequency converters,” Opt. Lett. 35, 2804–2806 (2010).
[CrossRef] [PubMed]

N. Curtz, R. Thew, C. Simon, N. Gisin, and H. Zbinden, “Coherent frequency-down-conversion interface for quantum repeaters,” Opt. Express 18, 22099–22104 (2010).
[CrossRef] [PubMed]

2009 (4)

2008 (3)

C.-H. Su, A. D. Greentree, and L. C. L. Hollenberg, “Towards a picosecond transform-limited nitrogen-vacancy based single photon source,” Opt. Express 16, 6240–6250 (2008).
[CrossRef] [PubMed]

H. J. Kimble, “The quantum internet,” Nature (London) 453, 1023–1030 (2008).
[CrossRef]

Z. Y. Ou, “Efficient conversion between photons and between photon and atom by stimulated emission,” Phys. Rev. A 78, 023819 (2008).
[CrossRef]

2007 (1)

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3, 253–255 (2007).
[CrossRef]

2005 (2)

2004 (4)

A. P. VanDevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433–1445 (2004).

G. Ribordy, N. Gisin, O. Guinnard, D. Stucki, M. Wegmuller, and H. Zbinden, “Photon counting at telecom wavelengths with commercial InGaAs/InP avalanche photodiodes: current performance,” J. Mod. Opt. 51, 1381–1398 (2004).

M. A. Albota and F. N. C. Wong, “Efficient single-photon counting at 1.55 μm by means of frequency upconversion,” Opt. Lett. 29, 1449–1451 (2004).
[CrossRef] [PubMed]

R. V. Roussev, C. Langrock, J. R. Kurz, and M. M. Fejer, “Periodically poled lithium niobate waveguide sum-frequency generator for efficient single-photon detection at communication wavelengths,” Opt. Lett. 29, 1518–1520 (2004).
[CrossRef] [PubMed]

2003 (1)

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39, 609–611 (2003).
[CrossRef]

1999 (1)

Y. Repelin, E. Husson, F. Bennani, and C. Proust, “Raman spectroscopy of lithium niobate and lithium tantalate. Force field calculations,” J. Phys. Chem. Solids 60, 819–825 (1999).
[CrossRef]

1997 (1)

U. T. Schwarz and M. Maier, “Asymmetric Raman lines caused by an anharmonic lattice potential in lithium niobate,” Phys. Rev. B 55, 11041–11044 (1997).
[CrossRef]

1992 (2)

J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68, 2153–2156 (1992).
[CrossRef] [PubMed]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

1983 (1)

1970 (1)

F. R. Nash, G. D. Boyd, M. Sargent, and P. M. Bridenbaugh, “Effect of optical inhomogeneities on phase matching in nonlinear crystals,” J. Appl. Phys. 41, 2564–2576 (1970).
[CrossRef]

Aharonovich, I.

I. Aharonovich, S. Castelletto, B. C. Johnson, J. C. McCallum, and S. Prawer, “Engineering chromium-related single photon emitters in single crystal diamonds,” New. J. Phys. 13, 045015 (2011).
[CrossRef]

Albota, M. A.

Alibart, O.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature (London) 437, 116–120 (2005).
[CrossRef]

Asobe, M.

Baldi, P.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature (London) 437, 116–120 (2005).
[CrossRef]

Barclay, P. E.

A. Faraon, P. E. Barclay, C. Santori, K. M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5, 301–305 (2011).
[CrossRef]

Beausoleil, R. G.

A. Faraon, P. E. Barclay, C. Santori, K. M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5, 301–305 (2011).
[CrossRef]

Becher, C.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy centres in CVD-nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
[CrossRef]

Bennani, F.

Y. Repelin, E. Husson, F. Bennani, and C. Proust, “Raman spectroscopy of lithium niobate and lithium tantalate. Force field calculations,” J. Phys. Chem. Solids 60, 819–825 (1999).
[CrossRef]

Boyd, G. D.

F. R. Nash, G. D. Boyd, M. Sargent, and P. M. Bridenbaugh, “Effect of optical inhomogeneities on phase matching in nonlinear crystals,” J. Appl. Phys. 41, 2564–2576 (1970).
[CrossRef]

Bridenbaugh, P. M.

F. R. Nash, G. D. Boyd, M. Sargent, and P. M. Bridenbaugh, “Effect of optical inhomogeneities on phase matching in nonlinear crystals,” J. Appl. Phys. 41, 2564–2576 (1970).
[CrossRef]

Büchter, K.-D. F.

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Castelletto, S.

I. Aharonovich, S. Castelletto, B. C. Johnson, J. C. McCallum, and S. Prawer, “Engineering chromium-related single photon emitters in single crystal diamonds,” New. J. Phys. 13, 045015 (2011).
[CrossRef]

Chang, D. E.

Chufyrev, P. G.

N. V. Sidorov, A. A. Yanichev, P. G. Chufyrev, M. N. Palatnikov, and B. N. Mavrin, “Raman spectra of photorefractive lithium niobate single crystals,” J. Appl. Spectrosc. 77, 110–114 (2010).
[CrossRef]

Curtz, N.

Diamanti, E.

Ding, Y.

Dudin, Y. O.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894–899 (2010).
[CrossRef]

Eichfelder, M.

M. Reischle, C. Kessler, W.-M. Schulz, M. Eichfelder, R. Roßbach, M. Jetter, and P. Michler, “Triggered single-photon emission from electrically excited quantum dots in the red spectral range,” Appl. Phys. Lett. 97, 143513 (2010).
[CrossRef]

Faraon, A.

A. Faraon, P. E. Barclay, C. Santori, K. M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5, 301–305 (2011).
[CrossRef]

Fejer, M. M.

Fischer, M.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy centres in CVD-nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
[CrossRef]

Fu, K. M. C.

A. Faraon, P. E. Barclay, C. Santori, K. M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5, 301–305 (2011).
[CrossRef]

Gisin, N.

N. Curtz, R. Thew, C. Simon, N. Gisin, and H. Zbinden, “Coherent frequency-down-conversion interface for quantum repeaters,” Opt. Express 18, 22099–22104 (2010).
[CrossRef] [PubMed]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature (London) 437, 116–120 (2005).
[CrossRef]

G. Ribordy, N. Gisin, O. Guinnard, D. Stucki, M. Wegmuller, and H. Zbinden, “Photon counting at telecom wavelengths with commercial InGaAs/InP avalanche photodiodes: current performance,” J. Mod. Opt. 51, 1381–1398 (2004).

Greentree, A. D.

Griffiths, J. E.

Gsell, S.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy centres in CVD-nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
[CrossRef]

Guinnard, O.

G. Ribordy, N. Gisin, O. Guinnard, D. Stucki, M. Wegmuller, and H. Zbinden, “Photon counting at telecom wavelengths with commercial InGaAs/InP avalanche photodiodes: current performance,” J. Mod. Opt. 51, 1381–1398 (2004).

Halder, M.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature (London) 437, 116–120 (2005).
[CrossRef]

Hänsch, T. W.

Herrmann, H.

Hijlkema, M.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3, 253–255 (2007).
[CrossRef]

Hollenberg, L. C. L.

Hong, F.-L.

Huang, J.

J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68, 2153–2156 (1992).
[CrossRef] [PubMed]

Husson, E.

Y. Repelin, E. Husson, F. Bennani, and C. Proust, “Raman spectroscopy of lithium niobate and lithium tantalate. Force field calculations,” J. Phys. Chem. Solids 60, 819–825 (1999).
[CrossRef]

Jen, H. H.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894–899 (2010).
[CrossRef]

Jenkins, S. D.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894–899 (2010).
[CrossRef]

Jetter, M.

M. Reischle, C. Kessler, W.-M. Schulz, M. Eichfelder, R. Roßbach, M. Jetter, and P. Michler, “Triggered single-photon emission from electrically excited quantum dots in the red spectral range,” Appl. Phys. Lett. 97, 143513 (2010).
[CrossRef]

Jiang, H.

Johnson, B. C.

I. Aharonovich, S. Castelletto, B. C. Johnson, J. C. McCallum, and S. Prawer, “Engineering chromium-related single photon emitters in single crystal diamonds,” New. J. Phys. 13, 045015 (2011).
[CrossRef]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Kennedy, T. A. B.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894–899 (2010).
[CrossRef]

Kessler, C.

M. Reischle, C. Kessler, W.-M. Schulz, M. Eichfelder, R. Roßbach, M. Jetter, and P. Michler, “Triggered single-photon emission from electrically excited quantum dots in the red spectral range,” Appl. Phys. Lett. 97, 143513 (2010).
[CrossRef]

Kimble, H. J.

H. J. Kimble, “The quantum internet,” Nature (London) 453, 1023–1030 (2008).
[CrossRef]

Kuhn, A.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3, 253–255 (2007).
[CrossRef]

Kumar, P.

J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68, 2153–2156 (1992).
[CrossRef] [PubMed]

Kurz, J. R.

Kuzmich, A.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894–899 (2010).
[CrossRef]

Kwiat, P. G.

A. P. VanDevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433–1445 (2004).

Langrock, C.

Li, G.

Loncar, M.

Lukin, M. D.

Ma, L.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunicationsband single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Maier, M.

U. T. Schwarz and M. Maier, “Asymmetric Raman lines caused by an anharmonic lattice potential in lithium niobate,” Phys. Rev. B 55, 11041–11044 (1997).
[CrossRef]

Malyj, M.

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic Press, 1974).

Mavrin, B. N.

N. V. Sidorov, A. A. Yanichev, P. G. Chufyrev, M. N. Palatnikov, and B. N. Mavrin, “Raman spectra of photorefractive lithium niobate single crystals,” J. Appl. Spectrosc. 77, 110–114 (2010).
[CrossRef]

McCallum, J. C.

I. Aharonovich, S. Castelletto, B. C. Johnson, J. C. McCallum, and S. Prawer, “Engineering chromium-related single photon emitters in single crystal diamonds,” New. J. Phys. 13, 045015 (2011).
[CrossRef]

McCutcheon, M. W.

Michler, P.

M. Reischle, C. Kessler, W.-M. Schulz, M. Eichfelder, R. Roßbach, M. Jetter, and P. Michler, “Triggered single-photon emission from electrically excited quantum dots in the red spectral range,” Appl. Phys. Lett. 97, 143513 (2010).
[CrossRef]

Miyazawa, H.

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39, 609–611 (2003).
[CrossRef]

Nash, F. R.

F. R. Nash, G. D. Boyd, M. Sargent, and P. M. Bridenbaugh, “Effect of optical inhomogeneities on phase matching in nonlinear crystals,” J. Appl. Phys. 41, 2564–2576 (1970).
[CrossRef]

Neu, E.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy centres in CVD-nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
[CrossRef]

Nishida, Y.

Nishikawa, T.

Ou, Z. Y.

Y. Ding and Z. Y. Ou, “Frequency downconversion for a quantum network,” Opt. Lett. 35, 2591–2593 (2010).
[CrossRef] [PubMed]

Z. Y. Ou, “Efficient conversion between photons and between photon and atom by stimulated emission,” Phys. Rev. A 78, 023819 (2008).
[CrossRef]

Ozawa, A.

Palatnikov, M. N.

N. V. Sidorov, A. A. Yanichev, P. G. Chufyrev, M. N. Palatnikov, and B. N. Mavrin, “Raman spectra of photorefractive lithium niobate single crystals,” J. Appl. Spectrosc. 77, 110–114 (2010).
[CrossRef]

Pelc, J. S.

J. S. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, “Influence of domain disorder on parametric noise in quasi-phase-matched quantum frequency converters,” Opt. Lett. 35, 2804–2806 (2010).
[CrossRef] [PubMed]

J. S. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, “Efficient down-conversion of single photons for quantum communication,” in Nonlinear Optics: Materials, Fundamentals and Applications , OSA Technical Digest (CD) (Optical Society of America, 2009), paper NTuB1.

Prawer, S.

I. Aharonovich, S. Castelletto, B. C. Johnson, J. C. McCallum, and S. Prawer, “Engineering chromium-related single photon emitters in single crystal diamonds,” New. J. Phys. 13, 045015 (2011).
[CrossRef]

Proust, C.

Y. Repelin, E. Husson, F. Bennani, and C. Proust, “Raman spectroscopy of lithium niobate and lithium tantalate. Force field calculations,” J. Phys. Chem. Solids 60, 819–825 (1999).
[CrossRef]

Radnaev, A. G.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894–899 (2010).
[CrossRef]

Rakher, M. T.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunicationsband single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
[CrossRef]

Reischle, M.

M. Reischle, C. Kessler, W.-M. Schulz, M. Eichfelder, R. Roßbach, M. Jetter, and P. Michler, “Triggered single-photon emission from electrically excited quantum dots in the red spectral range,” Appl. Phys. Lett. 97, 143513 (2010).
[CrossRef]

Rempe, G.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3, 253–255 (2007).
[CrossRef]

Repelin, Y.

Y. Repelin, E. Husson, F. Bennani, and C. Proust, “Raman spectroscopy of lithium niobate and lithium tantalate. Force field calculations,” J. Phys. Chem. Solids 60, 819–825 (1999).
[CrossRef]

Ribordy, G.

G. Ribordy, N. Gisin, O. Guinnard, D. Stucki, M. Wegmuller, and H. Zbinden, “Photon counting at telecom wavelengths with commercial InGaAs/InP avalanche photodiodes: current performance,” J. Mod. Opt. 51, 1381–1398 (2004).

Riedrich-Möller, J.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy centres in CVD-nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
[CrossRef]

Roßbach, R.

M. Reischle, C. Kessler, W.-M. Schulz, M. Eichfelder, R. Roßbach, M. Jetter, and P. Michler, “Triggered single-photon emission from electrically excited quantum dots in the red spectral range,” Appl. Phys. Lett. 97, 143513 (2010).
[CrossRef]

Roussev, R. V.

Santori, C.

A. Faraon, P. E. Barclay, C. Santori, K. M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5, 301–305 (2011).
[CrossRef]

Sargent, M.

F. R. Nash, G. D. Boyd, M. Sargent, and P. M. Bridenbaugh, “Effect of optical inhomogeneities on phase matching in nonlinear crystals,” J. Appl. Phys. 41, 2564–2576 (1970).
[CrossRef]

Schreck, M.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy centres in CVD-nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
[CrossRef]

Schulz, W.-M.

M. Reischle, C. Kessler, W.-M. Schulz, M. Eichfelder, R. Roßbach, M. Jetter, and P. Michler, “Triggered single-photon emission from electrically excited quantum dots in the red spectral range,” Appl. Phys. Lett. 97, 143513 (2010).
[CrossRef]

Schwarz, U. T.

U. T. Schwarz and M. Maier, “Asymmetric Raman lines caused by an anharmonic lattice potential in lithium niobate,” Phys. Rev. B 55, 11041–11044 (1997).
[CrossRef]

Sidorov, N. V.

N. V. Sidorov, A. A. Yanichev, P. G. Chufyrev, M. N. Palatnikov, and B. N. Mavrin, “Raman spectra of photorefractive lithium niobate single crystals,” J. Appl. Spectrosc. 77, 110–114 (2010).
[CrossRef]

Simon, C.

Slattery, O.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunicationsband single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
[CrossRef]

Sohler, W.

Specht, H. P.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3, 253–255 (2007).
[CrossRef]

Srinivasan, K.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunicationsband single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
[CrossRef]

Steinmetz, D.

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy centres in CVD-nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
[CrossRef]

Stucki, D.

G. Ribordy, N. Gisin, O. Guinnard, D. Stucki, M. Wegmuller, and H. Zbinden, “Photon counting at telecom wavelengths with commercial InGaAs/InP avalanche photodiodes: current performance,” J. Mod. Opt. 51, 1381–1398 (2004).

Su, C.-H.

Suzuki, H.

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39, 609–611 (2003).
[CrossRef]

Tadanaga, O.

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39, 609–611 (2003).
[CrossRef]

Takesue, H.

Tang, X.

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunicationsband single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
[CrossRef]

Tanzilli, S.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature (London) 437, 116–120 (2005).
[CrossRef]

Thew, R.

Tittel, W.

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature (London) 437, 116–120 (2005).
[CrossRef]

VanDevender, A. P.

A. P. VanDevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433–1445 (2004).

Weber, B.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3, 253–255 (2007).
[CrossRef]

Webster, S. C.

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3, 253–255 (2007).
[CrossRef]

Wegmuller, M.

G. Ribordy, N. Gisin, O. Guinnard, D. Stucki, M. Wegmuller, and H. Zbinden, “Photon counting at telecom wavelengths with commercial InGaAs/InP avalanche photodiodes: current performance,” J. Mod. Opt. 51, 1381–1398 (2004).

Wong, F. N. C.

Xu, X.

Yamamoto, Y.

Yanichev, A. A.

N. V. Sidorov, A. A. Yanichev, P. G. Chufyrev, M. N. Palatnikov, and B. N. Mavrin, “Raman spectra of photorefractive lithium niobate single crystals,” J. Appl. Spectrosc. 77, 110–114 (2010).
[CrossRef]

Zbinden, H.

N. Curtz, R. Thew, C. Simon, N. Gisin, and H. Zbinden, “Coherent frequency-down-conversion interface for quantum repeaters,” Opt. Express 18, 22099–22104 (2010).
[CrossRef] [PubMed]

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature (London) 437, 116–120 (2005).
[CrossRef]

G. Ribordy, N. Gisin, O. Guinnard, D. Stucki, M. Wegmuller, and H. Zbinden, “Photon counting at telecom wavelengths with commercial InGaAs/InP avalanche photodiodes: current performance,” J. Mod. Opt. 51, 1381–1398 (2004).

Zhang, Q.

J. S. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, “Influence of domain disorder on parametric noise in quasi-phase-matched quantum frequency converters,” Opt. Lett. 35, 2804–2806 (2010).
[CrossRef] [PubMed]

J. S. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, “Efficient down-conversion of single photons for quantum communication,” in Nonlinear Optics: Materials, Fundamentals and Applications , OSA Technical Digest (CD) (Optical Society of America, 2009), paper NTuB1.

Zhang, Y.

Zhao, R.

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894–899 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

M. Reischle, C. Kessler, W.-M. Schulz, M. Eichfelder, R. Roßbach, M. Jetter, and P. Michler, “Triggered single-photon emission from electrically excited quantum dots in the red spectral range,” Appl. Phys. Lett. 97, 143513 (2010).
[CrossRef]

Appl. Spectrosc. (1)

Electron. Lett. (1)

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “Direct-bonded QPM-LN ridge waveguide with high damage resistance at room temperature,” Electron. Lett. 39, 609–611 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

J. Appl. Phys. (1)

F. R. Nash, G. D. Boyd, M. Sargent, and P. M. Bridenbaugh, “Effect of optical inhomogeneities on phase matching in nonlinear crystals,” J. Appl. Phys. 41, 2564–2576 (1970).
[CrossRef]

J. Appl. Spectrosc. (1)

N. V. Sidorov, A. A. Yanichev, P. G. Chufyrev, M. N. Palatnikov, and B. N. Mavrin, “Raman spectra of photorefractive lithium niobate single crystals,” J. Appl. Spectrosc. 77, 110–114 (2010).
[CrossRef]

J. Mod. Opt. (2)

G. Ribordy, N. Gisin, O. Guinnard, D. Stucki, M. Wegmuller, and H. Zbinden, “Photon counting at telecom wavelengths with commercial InGaAs/InP avalanche photodiodes: current performance,” J. Mod. Opt. 51, 1381–1398 (2004).

A. P. VanDevender and P. G. Kwiat, “High efficiency single photon detection via frequency up-conversion,” J. Mod. Opt. 51, 1433–1445 (2004).

J. Phys. Chem. Solids (1)

Y. Repelin, E. Husson, F. Bennani, and C. Proust, “Raman spectroscopy of lithium niobate and lithium tantalate. Force field calculations,” J. Phys. Chem. Solids 60, 819–825 (1999).
[CrossRef]

Nat. Photonics (2)

A. Faraon, P. E. Barclay, C. Santori, K. M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Photonics 5, 301–305 (2011).
[CrossRef]

M. T. Rakher, L. Ma, O. Slattery, X. Tang, and K. Srinivasan, “Quantum transduction of telecommunicationsband single photons from a quantum dot by frequency upconversion,” Nat. Photonics 4, 786–791 (2010).
[CrossRef]

Nat. Phys. (2)

A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, “A quantum memory with telecom-wavelength conversion,” Nat. Phys. 6, 894–899 (2010).
[CrossRef]

M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and G. Rempe, “A single-photon server with just one atom,” Nat. Phys. 3, 253–255 (2007).
[CrossRef]

Nature (London) (2)

S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin, and H. Zbinden, “A photonic quantum information interface,” Nature (London) 437, 116–120 (2005).
[CrossRef]

H. J. Kimble, “The quantum internet,” Nature (London) 453, 1023–1030 (2008).
[CrossRef]

New J. Phys. (1)

E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, and C. Becher, “Single photon emission from silicon-vacancy centres in CVD-nano-diamonds on iridium,” New J. Phys. 13, 025012 (2011).
[CrossRef]

New. J. Phys. (1)

I. Aharonovich, S. Castelletto, B. C. Johnson, J. C. McCallum, and S. Prawer, “Engineering chromium-related single photon emitters in single crystal diamonds,” New. J. Phys. 13, 045015 (2011).
[CrossRef]

Opt. Express (5)

Opt. Lett. (6)

Phys. Rev. A (2)

Z. Y. Ou, “Efficient conversion between photons and between photon and atom by stimulated emission,” Phys. Rev. A 78, 023819 (2008).
[CrossRef]

H. Takesue, “Single-photon frequency down-conversion experiment,” Phys. Rev. A 82, 013833 (2010).
[CrossRef]

Phys. Rev. B (1)

U. T. Schwarz and M. Maier, “Asymmetric Raman lines caused by an anharmonic lattice potential in lithium niobate,” Phys. Rev. B 55, 11041–11044 (1997).
[CrossRef]

Phys. Rev. Lett. (1)

J. Huang and P. Kumar, “Observation of quantum frequency conversion,” Phys. Rev. Lett. 68, 2153–2156 (1992).
[CrossRef] [PubMed]

Other (3)

J. S. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, “Efficient down-conversion of single photons for quantum communication,” in Nonlinear Optics: Materials, Fundamentals and Applications , OSA Technical Digest (CD) (Optical Society of America, 2009), paper NTuB1.

C. Warschburger, Fachrichtung 7.2 (Experimentalphysik), Universität des Saarlandes, Campus E2.6, 66123 Saarbrücken, Germany, et al. are preparing a manuscript to be called “Analysis on frequency noise properties of a CW optical parametric oscillator using an optical frequency comb.”

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic Press, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Experimental setup for frequency downconversion (PP: pulse picker, PC: polarization control, HWP: half wave plate, PBS: polarizing beam splitter, Att.: attenuator, Asph.: aspheric lens, BD: beam dump, LP: longpass filter, Circ.: fiber-optic circulator, FBG: fiber Bragg grating). (b) CCD image of the mode profile of the collimated 738nm beam behind the WG. (c) Calculated intensity distribution of the 738nm mode inside the waveguide.

Fig. 2
Fig. 2

(a) Raman spectrum generated in the frequency converter by 100mW of coupled power at 1398.2nm (green) and 1403.5nm respectively (red). The black line represents the dark count level of the spectrometer’s InGaAs array. Lines at 1556.8nm and 1569.3nm are generated by DFG and are shown by way of illustration. (b) Comparison between Raman shifts obtained using the Zn:PPLN WG (green and red) and a bulk MgO:PPLN-Sample (blue). The offset for the blue curve is lower because it was measured with the Si-CCD camera of the spectrometer which has a lower dark count level.

Fig. 3
Fig. 3

Spectrum of the anti-Stokes Raman light behind the WG. For excitation a power of 185mW at 1536nm was inserted into the device. The interval from −1178cm−1 to −152cm−1 corresponds to a wavelength range of 1300–1500nm in this case. Dark counts were substracted.

Fig. 4
Fig. 4

Spectra of the light leaving port 2 (rejected spectrum) and port 3 (detected spectrum) of the circulator-FBG arrangement.

Fig. 5
Fig. 5

(a) Spectral acceptance bandwidth of the 40mm long WG. (b) Temporal shape of the pulses at 738nm recorded with a Si-photodetector (1 ns rise time).

Fig. 6
Fig. 6

(a) Count rates with only pump light (black squares) and with pump + signal light (red dots) coupled into the WG. Green triangles represent the net count rate. (b) Internal conversion efficiency and signal to noise ratio of our setup vs. pump power.

Tables (1)

Tables Icon

Table 1 Comparison Between Selected Frequency Downconversion Experiments Reported Recently *

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

exp ( h c ν ¯ / k T ) = I as ( ν ¯ ) / ( μ ¯ + ν ¯ ) 4 I s ( ν ¯ ) / ( μ ¯ ν ¯ ) 4 ,

Metrics