Abstract

We illustrate the benefits of a thin, low pressure helium cell for efficient and safe heat removal in cryogenically-cooled active mirror laser amplifiers operating in the [100 J-1 kJ] / [1-10 Hz] range. A homogeneous gain medium temperature distribution averaging 160 K is obtained with a sub-mm helium-filled gap between the gain medium and a copper plate at 77 K. A significant degree of flexibility for tuning the temperature in the amplifier can be achieved by varying the pressure of the helium gas in the 102 to 105 Pa range.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Y. Fan, “Heat-generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
    [CrossRef]
  2. S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
    [CrossRef]
  3. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
    [CrossRef]
  4. M. Siebold, S. Bock, U. Schramm, B. Xu, J. L. Doualan, P. Camy, and R. Moncorgé, “Yb:CaF2- a new old laser crystal,” Appl. Phys. B 97(2), 327–338 (2009).
    [CrossRef]
  5. D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
    [CrossRef]
  6. D. C. Brown, J. M. Singley, K. Kowalewski, J. Guelzow, and V. Vitali, “High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser,” Opt. Express 18(24), 24770–24792 (2010).
    [CrossRef] [PubMed]
  7. J. C. Manni, J. D. Hybl, D. Rand, D. T. Ripin, J. R. Ochoa, and T. Y. Fan, “100-W Q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46(1), 95–98 (2010).
    [CrossRef]
  8. A. Bayramian, J. Armstrong, G. Beer, R. Campbell, B. Chai, R. Cross, A. Erlandson, Y. Fei, B. Freitas, R. Kent, J. Menapace, W. Molander, K. Schaffers, C. Siders, S. Sutton, J. Tassano, S. Telford, C. Ebbers, J. Caird, and C. Barty, “High-average-power femto-petawatt laser pumped by the mercury laser facility,” J. Opt. Soc. Am. B 25(7), B57–B61 (2008).
    [CrossRef]
  9. R. Yasuhara, T. Kawashima, T. Sekine, T. Kurita, T. Ikegawa, O. Matsumoto, M. Miyamoto, H. Kan, H. Yoshida, J. Kawanaka, M. Nakatsuka, N. Miyanaga, Y. Izawa, and T. Kanabe, “213 W average power of 2.4 GW pulsed thermally controlled Nd:glass zigzag slab laser with a stimulated Brillouin scattering mirror,” Opt. Lett. 33(15), 1711–1713 (2008).
    [CrossRef] [PubMed]
  10. M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, J. Hein, and M. C. Kaluza, “Temporal pulse control of a multi-10 TW diode-pumped Yb:glass laser,” Appl. Phys. B 101(1-2), 93–102 (2010).
    [CrossRef]
  11. D. Albach, J.-C. Chanteloup, T. Novo, and B. Vincent, “Lucia Yb3+:YAG Diode-Pumped Amplifier Head Characterization and First Activation at 6.6 J / 2 Hz”, 4th EPS-QEOD Europhoton Conference, Aug 29th-Sept 3rd, 2010, Hamburg, Germany.
  12. J.-C. Chanteloup and D. Albach, “Current status on high average power and energy diode pumped solid state lasers,” IEEE Photon. J. 3, 245–248 (2011).
  13. M. Dunne, “A high-power laser fusion facility for Europe,” Nat. Phys. 2(1), 2–5 (2006).
    [CrossRef]
  14. A. Bayramian, “LIFE laser system update,” 6th International workshop on High Energy Class Diode Pumped Solid State Laser (HEC-DPSSL 2010), Versailles, France, September 8th-10th 2010.
  15. A. J. Bayramian, R. W. Campbell, C. A. Ebbers, B. L. Freitas, J. Latkowski, W. A. Molander, S. B. Sutton, S. Telford, and J. A. Caird, “A laser technology test facility for laser inertial fusion energy (LIFE),” J. .Phys.: Conf. Ser. 244(3), 032016 (2010).
    [CrossRef]
  16. http://www.extreme-light-infrastructure.eu/
  17. H. Furuse, J. Kawanaka, K. Takeshita, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, and S. Ishii, “Total-reflection active-mirror laser with cryogenic Yb:YAG ceramics,” Opt. Lett. 34(21), 3439–3441 (2009).
    [CrossRef] [PubMed]
  18. J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically cooled Yb:YAG laser,” Laser Phys. 20(5), 1079–1084 (2010).
    [CrossRef]
  19. J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, J. Hein, M. Wolf, J. Körner, and B. J. L. Garrec, “Multi KJ level laser concepts for HiPER facility,” J. Phys.: Conf. Ser. 244(1), 012010 (2010).
    [CrossRef]
  20. K. Ertel, S. Banerjee, C. Hernandez-Gomez, P. D. Mason, P. J. Philipps, and J. L. Collier, “Performance Modeling of a 1 kJ DPSSL System,” in Proceedings of Advanced Solid-State Photonics (ASSP, Istanbul, Turkey), Feb. 13–18th), paper HThE3 2011.
  21. L. M. Jiji, Heat Conduction (Springer-Verlag, 2009).
  22. R.J. Corruccini, “Gaseous heat conduction at low pressures and temperatures,” Vacuum7&8, 19–29 (1959).
    [CrossRef]
  23. I. Yasumoto, “Accommodation coefficients of helium, neon, argon, hydrogen, and deuterium on graphitized carbon,” J. Phys. Chem. 91(16), 4298–4301 (1987).
    [CrossRef]
  24. B. Raines, “The accommodation coefficient of helium on nickel,” Phys. Rev. 56(7), 691–695 (1939).
    [CrossRef]
  25. Y. Demirel and S. C. Saxena, “Heat transfer through a low-pressure gas enclosure as a thermal insulator: design considerations,” Int. J. Energy Res. 20(4), 327–338 (1996).
    [CrossRef]
  26. D. Albach, J.-C. Chanteloup, and G. Touzé, “Influence of ASE on the gain distribution in large size, high gain Yb3+:YAG slabs,” Opt. Express 17(5), 3792–3801 (2009).
    [CrossRef] [PubMed]
  27. D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb: YAG lasers,” IEEE J. Quantum Electron. 33(5), 861–873 (1997).
    [CrossRef]

2011 (1)

J.-C. Chanteloup and D. Albach, “Current status on high average power and energy diode pumped solid state lasers,” IEEE Photon. J. 3, 245–248 (2011).

2010 (6)

M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, J. Hein, and M. C. Kaluza, “Temporal pulse control of a multi-10 TW diode-pumped Yb:glass laser,” Appl. Phys. B 101(1-2), 93–102 (2010).
[CrossRef]

A. J. Bayramian, R. W. Campbell, C. A. Ebbers, B. L. Freitas, J. Latkowski, W. A. Molander, S. B. Sutton, S. Telford, and J. A. Caird, “A laser technology test facility for laser inertial fusion energy (LIFE),” J. .Phys.: Conf. Ser. 244(3), 032016 (2010).
[CrossRef]

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically cooled Yb:YAG laser,” Laser Phys. 20(5), 1079–1084 (2010).
[CrossRef]

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, J. Hein, M. Wolf, J. Körner, and B. J. L. Garrec, “Multi KJ level laser concepts for HiPER facility,” J. Phys.: Conf. Ser. 244(1), 012010 (2010).
[CrossRef]

J. C. Manni, J. D. Hybl, D. Rand, D. T. Ripin, J. R. Ochoa, and T. Y. Fan, “100-W Q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46(1), 95–98 (2010).
[CrossRef]

D. C. Brown, J. M. Singley, K. Kowalewski, J. Guelzow, and V. Vitali, “High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser,” Opt. Express 18(24), 24770–24792 (2010).
[CrossRef] [PubMed]

2009 (3)

2008 (2)

2007 (1)

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

2006 (2)

M. Dunne, “A high-power laser fusion facility for Europe,” Nat. Phys. 2(1), 2–5 (2006).
[CrossRef]

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

2005 (1)

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[CrossRef]

1997 (1)

D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb: YAG lasers,” IEEE J. Quantum Electron. 33(5), 861–873 (1997).
[CrossRef]

1996 (1)

Y. Demirel and S. C. Saxena, “Heat transfer through a low-pressure gas enclosure as a thermal insulator: design considerations,” Int. J. Energy Res. 20(4), 327–338 (1996).
[CrossRef]

1993 (1)

T. Y. Fan, “Heat-generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
[CrossRef]

1987 (1)

I. Yasumoto, “Accommodation coefficients of helium, neon, argon, hydrogen, and deuterium on graphitized carbon,” J. Phys. Chem. 91(16), 4298–4301 (1987).
[CrossRef]

1939 (1)

B. Raines, “The accommodation coefficient of helium on nickel,” Phys. Rev. 56(7), 691–695 (1939).
[CrossRef]

Aggarwal, R. L.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

Albach, D.

J.-C. Chanteloup and D. Albach, “Current status on high average power and energy diode pumped solid state lasers,” IEEE Photon. J. 3, 245–248 (2011).

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, J. Hein, M. Wolf, J. Körner, and B. J. L. Garrec, “Multi KJ level laser concepts for HiPER facility,” J. Phys.: Conf. Ser. 244(1), 012010 (2010).
[CrossRef]

D. Albach, J.-C. Chanteloup, and G. Touzé, “Influence of ASE on the gain distribution in large size, high gain Yb3+:YAG slabs,” Opt. Express 17(5), 3792–3801 (2009).
[CrossRef] [PubMed]

Armstrong, J.

Balembois, F.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

Banerjee, S.

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, J. Hein, M. Wolf, J. Körner, and B. J. L. Garrec, “Multi KJ level laser concepts for HiPER facility,” J. Phys.: Conf. Ser. 244(1), 012010 (2010).
[CrossRef]

Barty, C.

Bayramian, A.

Bayramian, A. J.

A. J. Bayramian, R. W. Campbell, C. A. Ebbers, B. L. Freitas, J. Latkowski, W. A. Molander, S. B. Sutton, S. Telford, and J. A. Caird, “A laser technology test facility for laser inertial fusion energy (LIFE),” J. .Phys.: Conf. Ser. 244(3), 032016 (2010).
[CrossRef]

Beer, G.

Bock, S.

M. Siebold, S. Bock, U. Schramm, B. Xu, J. L. Doualan, P. Camy, and R. Moncorgé, “Yb:CaF2- a new old laser crystal,” Appl. Phys. B 97(2), 327–338 (2009).
[CrossRef]

Bödefeld, R.

M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, J. Hein, and M. C. Kaluza, “Temporal pulse control of a multi-10 TW diode-pumped Yb:glass laser,” Appl. Phys. B 101(1-2), 93–102 (2010).
[CrossRef]

Brown, D. C.

D. C. Brown, J. M. Singley, K. Kowalewski, J. Guelzow, and V. Vitali, “High sustained average power cw and ultrafast Yb:YAG near-diffraction-limited cryogenic solid-state laser,” Opt. Express 18(24), 24770–24792 (2010).
[CrossRef] [PubMed]

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[CrossRef]

D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb: YAG lasers,” IEEE J. Quantum Electron. 33(5), 861–873 (1997).
[CrossRef]

Caird, J.

Caird, J. A.

A. J. Bayramian, R. W. Campbell, C. A. Ebbers, B. L. Freitas, J. Latkowski, W. A. Molander, S. B. Sutton, S. Telford, and J. A. Caird, “A laser technology test facility for laser inertial fusion energy (LIFE),” J. .Phys.: Conf. Ser. 244(3), 032016 (2010).
[CrossRef]

Campbell, R.

Campbell, R. W.

A. J. Bayramian, R. W. Campbell, C. A. Ebbers, B. L. Freitas, J. Latkowski, W. A. Molander, S. B. Sutton, S. Telford, and J. A. Caird, “A laser technology test facility for laser inertial fusion energy (LIFE),” J. .Phys.: Conf. Ser. 244(3), 032016 (2010).
[CrossRef]

Camy, P.

M. Siebold, S. Bock, U. Schramm, B. Xu, J. L. Doualan, P. Camy, and R. Moncorgé, “Yb:CaF2- a new old laser crystal,” Appl. Phys. B 97(2), 327–338 (2009).
[CrossRef]

Chai, B.

Chann, B.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

Chanteloup, J.-C.

J.-C. Chanteloup and D. Albach, “Current status on high average power and energy diode pumped solid state lasers,” IEEE Photon. J. 3, 245–248 (2011).

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, J. Hein, M. Wolf, J. Körner, and B. J. L. Garrec, “Multi KJ level laser concepts for HiPER facility,” J. Phys.: Conf. Ser. 244(1), 012010 (2010).
[CrossRef]

D. Albach, J.-C. Chanteloup, and G. Touzé, “Influence of ASE on the gain distribution in large size, high gain Yb3+:YAG slabs,” Opt. Express 17(5), 3792–3801 (2009).
[CrossRef] [PubMed]

Chénais, S.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

Collier, J. L.

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, J. Hein, M. Wolf, J. Körner, and B. J. L. Garrec, “Multi KJ level laser concepts for HiPER facility,” J. Phys.: Conf. Ser. 244(1), 012010 (2010).
[CrossRef]

Corruccini, R.J.

R.J. Corruccini, “Gaseous heat conduction at low pressures and temperatures,” Vacuum7&8, 19–29 (1959).
[CrossRef]

Cross, R.

Demirel, Y.

Y. Demirel and S. C. Saxena, “Heat transfer through a low-pressure gas enclosure as a thermal insulator: design considerations,” Int. J. Energy Res. 20(4), 327–338 (1996).
[CrossRef]

Doualan, J. L.

M. Siebold, S. Bock, U. Schramm, B. Xu, J. L. Doualan, P. Camy, and R. Moncorgé, “Yb:CaF2- a new old laser crystal,” Appl. Phys. B 97(2), 327–338 (2009).
[CrossRef]

Druon, F.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

Dunne, M.

M. Dunne, “A high-power laser fusion facility for Europe,” Nat. Phys. 2(1), 2–5 (2006).
[CrossRef]

Ebbers, C.

Ebbers, C. A.

A. J. Bayramian, R. W. Campbell, C. A. Ebbers, B. L. Freitas, J. Latkowski, W. A. Molander, S. B. Sutton, S. Telford, and J. A. Caird, “A laser technology test facility for laser inertial fusion energy (LIFE),” J. .Phys.: Conf. Ser. 244(3), 032016 (2010).
[CrossRef]

Erlandson, A.

Ertel, K.

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, J. Hein, M. Wolf, J. Körner, and B. J. L. Garrec, “Multi KJ level laser concepts for HiPER facility,” J. Phys.: Conf. Ser. 244(1), 012010 (2010).
[CrossRef]

Fan, T. Y.

J. C. Manni, J. D. Hybl, D. Rand, D. T. Ripin, J. R. Ochoa, and T. Y. Fan, “100-W Q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46(1), 95–98 (2010).
[CrossRef]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

T. Y. Fan, “Heat-generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
[CrossRef]

Fei, Y.

Forget, S.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

Freitas, B.

Freitas, B. L.

A. J. Bayramian, R. W. Campbell, C. A. Ebbers, B. L. Freitas, J. Latkowski, W. A. Molander, S. B. Sutton, S. Telford, and J. A. Caird, “A laser technology test facility for laser inertial fusion energy (LIFE),” J. .Phys.: Conf. Ser. 244(3), 032016 (2010).
[CrossRef]

Fujita, M.

Furuse, H.

Garrec, B. J. L.

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, J. Hein, M. Wolf, J. Körner, and B. J. L. Garrec, “Multi KJ level laser concepts for HiPER facility,” J. Phys.: Conf. Ser. 244(1), 012010 (2010).
[CrossRef]

Georges, P.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

Guelzow, J.

Hein, J.

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, J. Hein, M. Wolf, J. Körner, and B. J. L. Garrec, “Multi KJ level laser concepts for HiPER facility,” J. Phys.: Conf. Ser. 244(1), 012010 (2010).
[CrossRef]

M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, J. Hein, and M. C. Kaluza, “Temporal pulse control of a multi-10 TW diode-pumped Yb:glass laser,” Appl. Phys. B 101(1-2), 93–102 (2010).
[CrossRef]

Hernandez-Gomez, C.

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, J. Hein, M. Wolf, J. Körner, and B. J. L. Garrec, “Multi KJ level laser concepts for HiPER facility,” J. Phys.: Conf. Ser. 244(1), 012010 (2010).
[CrossRef]

Hornung, M.

M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, J. Hein, and M. C. Kaluza, “Temporal pulse control of a multi-10 TW diode-pumped Yb:glass laser,” Appl. Phys. B 101(1-2), 93–102 (2010).
[CrossRef]

Hybl, J. D.

J. C. Manni, J. D. Hybl, D. Rand, D. T. Ripin, J. R. Ochoa, and T. Y. Fan, “100-W Q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46(1), 95–98 (2010).
[CrossRef]

Ikegawa, T.

Imasaki, K.

Ishii, S.

Izawa, Y.

Kaluza, M. C.

M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, J. Hein, and M. C. Kaluza, “Temporal pulse control of a multi-10 TW diode-pumped Yb:glass laser,” Appl. Phys. B 101(1-2), 93–102 (2010).
[CrossRef]

Kan, H.

Kanabe, T.

Kawanaka, J.

Kawashima, T.

Kent, R.

Keppler, S.

M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, J. Hein, and M. C. Kaluza, “Temporal pulse control of a multi-10 TW diode-pumped Yb:glass laser,” Appl. Phys. B 101(1-2), 93–102 (2010).
[CrossRef]

Kessler, A.

M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, J. Hein, and M. C. Kaluza, “Temporal pulse control of a multi-10 TW diode-pumped Yb:glass laser,” Appl. Phys. B 101(1-2), 93–102 (2010).
[CrossRef]

Körner, J.

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, J. Hein, M. Wolf, J. Körner, and B. J. L. Garrec, “Multi KJ level laser concepts for HiPER facility,” J. Phys.: Conf. Ser. 244(1), 012010 (2010).
[CrossRef]

Kowalewski, K.

Kurita, T.

Latkowski, J.

A. J. Bayramian, R. W. Campbell, C. A. Ebbers, B. L. Freitas, J. Latkowski, W. A. Molander, S. B. Sutton, S. Telford, and J. A. Caird, “A laser technology test facility for laser inertial fusion energy (LIFE),” J. .Phys.: Conf. Ser. 244(3), 032016 (2010).
[CrossRef]

Lucianetti, A.

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, J. Hein, M. Wolf, J. Körner, and B. J. L. Garrec, “Multi KJ level laser concepts for HiPER facility,” J. Phys.: Conf. Ser. 244(1), 012010 (2010).
[CrossRef]

Manni, J. C.

J. C. Manni, J. D. Hybl, D. Rand, D. T. Ripin, J. R. Ochoa, and T. Y. Fan, “100-W Q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46(1), 95–98 (2010).
[CrossRef]

Mason, P. D.

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, J. Hein, M. Wolf, J. Körner, and B. J. L. Garrec, “Multi KJ level laser concepts for HiPER facility,” J. Phys.: Conf. Ser. 244(1), 012010 (2010).
[CrossRef]

Matsumoto, O.

Menapace, J.

Miyamoto, M.

Miyanaga, N.

Molander, W.

Molander, W. A.

A. J. Bayramian, R. W. Campbell, C. A. Ebbers, B. L. Freitas, J. Latkowski, W. A. Molander, S. B. Sutton, S. Telford, and J. A. Caird, “A laser technology test facility for laser inertial fusion energy (LIFE),” J. .Phys.: Conf. Ser. 244(3), 032016 (2010).
[CrossRef]

Moncorgé, R.

M. Siebold, S. Bock, U. Schramm, B. Xu, J. L. Doualan, P. Camy, and R. Moncorgé, “Yb:CaF2- a new old laser crystal,” Appl. Phys. B 97(2), 327–338 (2009).
[CrossRef]

Nakatsuka, M.

Ochoa, J. R.

J. C. Manni, J. D. Hybl, D. Rand, D. T. Ripin, J. R. Ochoa, and T. Y. Fan, “100-W Q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46(1), 95–98 (2010).
[CrossRef]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

Pearce, S. J.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically cooled Yb:YAG laser,” Laser Phys. 20(5), 1079–1084 (2010).
[CrossRef]

Podleska, S.

M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, J. Hein, and M. C. Kaluza, “Temporal pulse control of a multi-10 TW diode-pumped Yb:glass laser,” Appl. Phys. B 101(1-2), 93–102 (2010).
[CrossRef]

Raines, B.

B. Raines, “The accommodation coefficient of helium on nickel,” Phys. Rev. 56(7), 691–695 (1939).
[CrossRef]

Rand, D.

J. C. Manni, J. D. Hybl, D. Rand, D. T. Ripin, J. R. Ochoa, and T. Y. Fan, “100-W Q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46(1), 95–98 (2010).
[CrossRef]

Ripin, D. J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

Ripin, D. T.

J. C. Manni, J. D. Hybl, D. Rand, D. T. Ripin, J. R. Ochoa, and T. Y. Fan, “100-W Q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46(1), 95–98 (2010).
[CrossRef]

Saiki, T.

Sävert, A.

M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, J. Hein, and M. C. Kaluza, “Temporal pulse control of a multi-10 TW diode-pumped Yb:glass laser,” Appl. Phys. B 101(1-2), 93–102 (2010).
[CrossRef]

Saxena, S. C.

Y. Demirel and S. C. Saxena, “Heat transfer through a low-pressure gas enclosure as a thermal insulator: design considerations,” Int. J. Energy Res. 20(4), 327–338 (1996).
[CrossRef]

Schaffers, K.

Schnepp, M.

M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, J. Hein, and M. C. Kaluza, “Temporal pulse control of a multi-10 TW diode-pumped Yb:glass laser,” Appl. Phys. B 101(1-2), 93–102 (2010).
[CrossRef]

Schramm, U.

M. Siebold, S. Bock, U. Schramm, B. Xu, J. L. Doualan, P. Camy, and R. Moncorgé, “Yb:CaF2- a new old laser crystal,” Appl. Phys. B 97(2), 327–338 (2009).
[CrossRef]

Sekine, T.

Siders, C.

Siebold, M.

M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, J. Hein, and M. C. Kaluza, “Temporal pulse control of a multi-10 TW diode-pumped Yb:glass laser,” Appl. Phys. B 101(1-2), 93–102 (2010).
[CrossRef]

M. Siebold, S. Bock, U. Schramm, B. Xu, J. L. Doualan, P. Camy, and R. Moncorgé, “Yb:CaF2- a new old laser crystal,” Appl. Phys. B 97(2), 327–338 (2009).
[CrossRef]

Singley, J. M.

Spitzberg, J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

Sutton, S.

Sutton, S. B.

A. J. Bayramian, R. W. Campbell, C. A. Ebbers, B. L. Freitas, J. Latkowski, W. A. Molander, S. B. Sutton, S. Telford, and J. A. Caird, “A laser technology test facility for laser inertial fusion energy (LIFE),” J. .Phys.: Conf. Ser. 244(3), 032016 (2010).
[CrossRef]

Takeshita, K.

Takeuchi, Y.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically cooled Yb:YAG laser,” Laser Phys. 20(5), 1079–1084 (2010).
[CrossRef]

Tassano, J.

Telford, S.

A. J. Bayramian, R. W. Campbell, C. A. Ebbers, B. L. Freitas, J. Latkowski, W. A. Molander, S. B. Sutton, S. Telford, and J. A. Caird, “A laser technology test facility for laser inertial fusion energy (LIFE),” J. .Phys.: Conf. Ser. 244(3), 032016 (2010).
[CrossRef]

A. Bayramian, J. Armstrong, G. Beer, R. Campbell, B. Chai, R. Cross, A. Erlandson, Y. Fei, B. Freitas, R. Kent, J. Menapace, W. Molander, K. Schaffers, C. Siders, S. Sutton, J. Tassano, S. Telford, C. Ebbers, J. Caird, and C. Barty, “High-average-power femto-petawatt laser pumped by the mercury laser facility,” J. Opt. Soc. Am. B 25(7), B57–B61 (2008).
[CrossRef]

Tilleman, M.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

Touzé, G.

Vitali, V.

Wachs, R.

M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, J. Hein, and M. C. Kaluza, “Temporal pulse control of a multi-10 TW diode-pumped Yb:glass laser,” Appl. Phys. B 101(1-2), 93–102 (2010).
[CrossRef]

Wolf, M.

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, J. Hein, M. Wolf, J. Körner, and B. J. L. Garrec, “Multi KJ level laser concepts for HiPER facility,” J. Phys.: Conf. Ser. 244(1), 012010 (2010).
[CrossRef]

Xu, B.

M. Siebold, S. Bock, U. Schramm, B. Xu, J. L. Doualan, P. Camy, and R. Moncorgé, “Yb:CaF2- a new old laser crystal,” Appl. Phys. B 97(2), 327–338 (2009).
[CrossRef]

Yasuhara, R.

Yasumoto, I.

I. Yasumoto, “Accommodation coefficients of helium, neon, argon, hydrogen, and deuterium on graphitized carbon,” J. Phys. Chem. 91(16), 4298–4301 (1987).
[CrossRef]

Yoshida, A.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically cooled Yb:YAG laser,” Laser Phys. 20(5), 1079–1084 (2010).
[CrossRef]

Yoshida, H.

Appl. Phys. B (2)

M. Hornung, R. Bödefeld, M. Siebold, A. Kessler, M. Schnepp, R. Wachs, A. Sävert, S. Podleska, S. Keppler, J. Hein, and M. C. Kaluza, “Temporal pulse control of a multi-10 TW diode-pumped Yb:glass laser,” Appl. Phys. B 101(1-2), 93–102 (2010).
[CrossRef]

M. Siebold, S. Bock, U. Schramm, B. Xu, J. L. Doualan, P. Camy, and R. Moncorgé, “Yb:CaF2- a new old laser crystal,” Appl. Phys. B 97(2), 327–338 (2009).
[CrossRef]

IEEE J. Quantum Electron. (3)

J. C. Manni, J. D. Hybl, D. Rand, D. T. Ripin, J. R. Ochoa, and T. Y. Fan, “100-W Q-switched cryogenically cooled Yb:YAG laser,” IEEE J. Quantum Electron. 46(1), 95–98 (2010).
[CrossRef]

D. C. Brown, “Ultrahigh-average-power diode-pumped Nd:YAG and Yb: YAG lasers,” IEEE J. Quantum Electron. 33(5), 861–873 (1997).
[CrossRef]

T. Y. Fan, “Heat-generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29(6), 1457–1459 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11(3), 587–599 (2005).
[CrossRef]

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 448–459 (2007).
[CrossRef]

IEEE Photon. J. (1)

J.-C. Chanteloup and D. Albach, “Current status on high average power and energy diode pumped solid state lasers,” IEEE Photon. J. 3, 245–248 (2011).

Int. J. Energy Res. (1)

Y. Demirel and S. C. Saxena, “Heat transfer through a low-pressure gas enclosure as a thermal insulator: design considerations,” Int. J. Energy Res. 20(4), 327–338 (1996).
[CrossRef]

J. .Phys.: Conf. Ser. (1)

A. J. Bayramian, R. W. Campbell, C. A. Ebbers, B. L. Freitas, J. Latkowski, W. A. Molander, S. B. Sutton, S. Telford, and J. A. Caird, “A laser technology test facility for laser inertial fusion energy (LIFE),” J. .Phys.: Conf. Ser. 244(3), 032016 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

I. Yasumoto, “Accommodation coefficients of helium, neon, argon, hydrogen, and deuterium on graphitized carbon,” J. Phys. Chem. 91(16), 4298–4301 (1987).
[CrossRef]

J. Phys.: Conf. Ser. (1)

J.-C. Chanteloup, D. Albach, A. Lucianetti, K. Ertel, S. Banerjee, P. D. Mason, C. Hernandez-Gomez, J. L. Collier, J. Hein, M. Wolf, J. Körner, and B. J. L. Garrec, “Multi KJ level laser concepts for HiPER facility,” J. Phys.: Conf. Ser. 244(1), 012010 (2010).
[CrossRef]

Laser Phys. (1)

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically cooled Yb:YAG laser,” Laser Phys. 20(5), 1079–1084 (2010).
[CrossRef]

Nat. Phys. (1)

M. Dunne, “A high-power laser fusion facility for Europe,” Nat. Phys. 2(1), 2–5 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. (1)

B. Raines, “The accommodation coefficient of helium on nickel,” Phys. Rev. 56(7), 691–695 (1939).
[CrossRef]

Prog. Quantum Electron. (1)

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

Other (6)

http://www.extreme-light-infrastructure.eu/

A. Bayramian, “LIFE laser system update,” 6th International workshop on High Energy Class Diode Pumped Solid State Laser (HEC-DPSSL 2010), Versailles, France, September 8th-10th 2010.

D. Albach, J.-C. Chanteloup, T. Novo, and B. Vincent, “Lucia Yb3+:YAG Diode-Pumped Amplifier Head Characterization and First Activation at 6.6 J / 2 Hz”, 4th EPS-QEOD Europhoton Conference, Aug 29th-Sept 3rd, 2010, Hamburg, Germany.

K. Ertel, S. Banerjee, C. Hernandez-Gomez, P. D. Mason, P. J. Philipps, and J. L. Collier, “Performance Modeling of a 1 kJ DPSSL System,” in Proceedings of Advanced Solid-State Photonics (ASSP, Istanbul, Turkey), Feb. 13–18th), paper HThE3 2011.

L. M. Jiji, Heat Conduction (Springer-Verlag, 2009).

R.J. Corruccini, “Gaseous heat conduction at low pressures and temperatures,” Vacuum7&8, 19–29 (1959).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic view of the proposed cooling scheme for thermalization of a disk laser gain medium (top layer, pink) with a gas cell in contact with a cold heat sink. For the Lucia cryogenic amplifier design, typical foreseen values are: Yb3+:YAG at 160 K, copper heat sink in contact with a 77 K (liquid nitrogen temperature) dewar,102 to 105 Pa pressure of helium in a ~100 µm thick cell.

Fig. 2
Fig. 2

Thermal conductivity of helium as a function of temperature and thickness for α1 = α2 = 0.4. The pressure is fixed at 104 Pa. Curves from top to bottom are bulk, 1 mm, 200 μm, 150 μm, 100 μm and 50 μm helium thickness.

Fig. 3
Fig. 3

Thermal conductivity of helium as a function of temperature and pressure for α1 = α2 = 0.4. The thickness is fixed at 100 μm. Curves from top to bottom are obtained for 105 Pa (~1 atm), 104 Pa, 103 Pa and 102 Pa helium pressure.

Fig. 4
Fig. 4

Thermal conductivity of helium as a function of pressure for temperatures of 160 K (plain lines) and 300 K (dashed lines). Curves from top to bottom are obtained for 200 μm, 150 μm, and 100 μm helium gap thicknesses.

Fig. 5
Fig. 5

Slab HR surface temperature as a function of He gas pressure and thickness for heat flux of 5 W/cm2. The other surface temperature is set to 77 K. The thermal accommodation factor values are 0.4.

Fig. 6
Fig. 6

Heat flux transferred between a laser gain medium at 160 K and a copper heat sink at 77 K versus the helium cell pressure for 50 μm, 100 μm, and 200 μm helium gap thickness.

Fig. 7
Fig. 7

Heat flux transferred between a laser gain medium at room temperature (293 K) and a copper heat sink cooled with LN2 at 77 K (plain curves) or with H2O at 280 K (dashed curves) versus the helium cell pressure for three different cell thicknesses.

Fig. 8
Fig. 8

Illustration of the composite Cr4+/Yb3+:YAG Lucia disk amplifier with a low pressure helium cell located on the HR coated side (an already commissioned 4.5 cm sample is pictured as well with the Cr4+ doped periphery).

Fig. 9
Fig. 9

Transverse heat density distribution resulting in the disk described in Fig. 8 when illuminated with a supergaussian circular pump distribution. Profiles are given for position 0 (red), L/2 (green), and L (blue).

Fig. 10
Fig. 10

Radial temperature profiles of the cryogenic amplifier at the pumped (z = 0) and cooled (z = L) surfaces. A 180 μm thick helium cell at 2000 Pa pressure is considered. Radial coordinates below 1.72 cm (left of vertical dash line) define the extraction area, while larger values define the cladding peripheral area.

Fig. 11
Fig. 11

Axial(top) and radial(bottom) temperature profiles of the cryogenic amplifier for 100 μm, 140 μm, 180 μm, and 220 μm He gaps at 2000 Pa. In the top figure, the helium gap position is shown by the abrupt drop in temperature at 1.44 cm axial coordinate. Above this value, a constant 77K Cu temperature is observed.

Fig. 12
Fig. 12

Axial (top) and radial (bottom) temperature profiles of the disk amplifier for 500 Pa, 900 Pa, 5000 Pa, and 106 Pa (k bulk) helium pressure. The gap thickness is fixed at 100 µm.

Fig. 13
Fig. 13

Average axial temperature as a function of He gap at 2000 Pa for 1 and 2 cm cladding widths.

Tables (1)

Tables Icon

Table 1 Pump, Geometry and Cooling Parameters Used in the Finite-element Model

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k ( T ) = k b u l k ( T ) ( 1 + 8 3 k b u l k ( T ) T e p 3 R T ( 1 α 1 + 1 α 2 1 ) ) 1 ,

Metrics