Abstract

A novel tunable and reconfigurable thermo-optical device is theoretically proposed and analyzed in this paper. The device is designed to be entirely compatible with CMOS process and to work as a thermo-optical filter or modulator. Numerical results, made by means of analytical and Finite-Difference Time-Domain (FDTD) methods, show that a compact device enables a broad bandwidth operation, of up to 830 GHz, which allows the device to work under a large temperature variation, of up to 96 K.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Pavesi and G. Guillot, Optical Interconnects - the silicon approach (Springer-Verlag, Heidelberg, 2006).
  2. M. L. Calvo and V. Lakshminarayanan, Optical Waveguides: From Theory to Applied Technologies (CRC Press; 1 edition 2007)
  3. B. S. Schmidt, V. R. Almeida, C. Manolatou, S. F. Preble, and M. Lipson, “Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection,” Appl. Phys. Lett. 85(21), 4854–4856 (2004).
    [CrossRef]
  4. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  5. X. Wang, T. Liu, V. R. de Almeida, and R. R. Panepucci, “On-chip silicon photonic wavelength control of optical fiber lasers,” Opt. Express 16(20), 15671–15676 (2008).
    [CrossRef] [PubMed]
  6. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
    [CrossRef] [PubMed]
  7. Y. Chung, D.-G. Kim, and N. Dagli, “Reflection Properties of Coupled-Ring Reflectors,” J. Lightwave Technol. 24, 1865 (2006).
    [CrossRef]
  8. R. K. Dokania, A. B. Apsel, “Analysis of challenges for on-chip optical interconnects,” Proceedings of the 19th ACM Great Lakes symposium on VLSI, 275–280, (2009)
  9. B. Frey, D. Leviton, and T. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J, 62732J-10 (2006).
    [CrossRef]
  10. J. Van Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, “Integrated NiSi waveguide heaters for CMOS-compatible silicon thermo-optic devices,” Opt. Lett. 35(7), 1013–1015 (2010).
    [CrossRef] [PubMed]
  11. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
    [CrossRef] [PubMed]
  12. J.-M. Lee, D.-J. Kim, H. Ahn, S.-H. Park, and G. Kim, “Temperature Dependence of Silicon Nanophotonic Ring Resonator With a Polymeric Overlayer,” J. Lightwave Technol. 25(8) 2236–2243 (2007).
    [CrossRef]
  13. M. Uenuma and T. Moooka, “Temperature-independent silicon waveguide optical filter,” Opt. Lett. 34(5), 599–601 (2009).
    [CrossRef] [PubMed]
  14. B. Guha, B. B. C. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express 18(4), 3487–3493 (2010).
    [CrossRef] [PubMed]
  15. W. S. Fegadolli, V. R. Almeida, and J. E. B. Oliveira, “Highly Insensitive to Temperature and Ultra-Broadband Silicon Electro-optic Modulator,” in Latin America Optics and Photonics Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper WI3.
  16. Q. Li, S. Yegnanarayanan, M. Soltani, P. Alipour, and A. Adibi, “A temperature-insensitive third-order coupled-resonator filter for on-chip terabit/s optical interconnects,” IEEE Photon. Technol. Lett. 22(23), 1768–1770 (2010).
    [CrossRef]
  17. F. Xia, L. Sekaric, M. O’Boyle, and Yu. A. Vlasov, “Coupled resonator optical waveguides (CROWs) based on silicon-on-insulator photonic wires,” Appl. Phys. Lett. 89(4), 041122 (2006).
    [CrossRef]
  18. S.-Y. Cho and R. Soref, “Interferometric microring-resonant 2 x 2 optical switches,” Opt. Express 16(17), 13304–13314 (2008).
    [CrossRef] [PubMed]
  19. M. Popovic, C. Manolatou, and M. Watts, “Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters,” Opt. Express 14(3), 1208–1222 (2006).
    [CrossRef] [PubMed]
  20. J. K. S. Poon, J. Scheuer, and A. Yariv, “Wavelength-selective reflector based on a circular array of coupled microring resonators,” IEEE Photon. Technol. Lett. 16(5), 1331–1333 (2004).
    [CrossRef]
  21. H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express 17(25), 22271–22280 (2009).
    [CrossRef]
  22. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002).
    [CrossRef]
  23. W. D. Fegadolli, V. R. Almeida, O. L. Coutinho, and J. E. B. Oliveira, “Highly Linear Electro-optic Modulator Based on Ring Resonator,” in Latin America Optics and Photonics Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper WD3
  24. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18(19), 20298–20304 (2010).
    [CrossRef] [PubMed]
  25. A. H. Atabaki, E. Shah Hosseini, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Optimization of metallic microheaters for high-speed reconfigurable silicon photonics,” Opt. Express 18(17), 18312–18323 (2010).
    [CrossRef] [PubMed]
  26. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
    [CrossRef] [PubMed]
  27. Y.-T. Han, J.-U. Shin, D.-J. Kim, S.-H. Park, Y.-J. Park, and H.-K. Sung, “A Rigorous 2D Approximation Technique for 3D Waveguide Structures for BPM Calculations,” ETRI Journal 25(6), 535–537 (2003).
    [CrossRef]
  28. J.-M. Lee, D.-J. Kim, H. Ahn, S.-H. Park, and G. Kim, “Temperature Dependence of Silicon Nanophotonic Ring Resonator With a Polymeric Overlayer,” J. Lightwave Technol. 25(8) 2236–2243 (2007).
    [CrossRef]
  29. B. Guha, A. Gondarenko, and M. Lipson, “Minimizing temperature sensitivity of silicon Mach-Zehnder interferometers,” Opt. Express 18(3), 1879–1887 (2010).
    [CrossRef] [PubMed]
  30. G.S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature, 2009.
  31. T. Barwicz, M. A. Popović, M. R. Watts, P. T. Rakich, E. P. Ippen, and H. I. Smith, “Fabrication of Add-Drop Filters Based on Frequency-Matched Microring Resonators,” J. Lightwave Technol. 24(5), 2207–2218 (2006).
    [CrossRef]
  32. G.-D. Kim, H.-S. Lee, C.-H. Park, S.-S. Lee, B. T. Lim, H. K. Bae, and W.-G. Lee, “Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process,” Opt. Express 18(21), 22215–22221 (2010).
    [CrossRef] [PubMed]
  33. F. Xia, L. Sekaric, and Y. Vlasov, “Ultra-compact optical buffers on a silicon chip,” Nature Photon. 1, 65–71 (2007).
    [CrossRef]
  34. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
    [CrossRef] [PubMed]
  35. R. Pafchek, R. Tummidi, J. Li, M. A. Webster, E. Chen, and T. L. Koch, “Low-loss silicon-on-insulator shallow-ridge TE and TM waveguides formed using thermal oxidation,” Appl. Opt. 48(5), 958–963 (2009).
    [CrossRef] [PubMed]
  36. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO(2) waveguides by roughness reduction,” Opt. Lett. 26(23), 1888–1890 (2001).
    [CrossRef]
  37. D. K. Sparacin, S. J. Spector, and L. C. Kimerling, “Silicon Waveguide Sidewall Smoothing by Wet Chemical Oxidation,” J. Lightwave Technol. 23, 2455 (2005).
    [CrossRef]
  38. V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov, and A. L. Gaeta, “All-optical switching on a silicon chip,” Opt. Lett. 29(24), 2867–2869 (2004).
    [CrossRef]
  39. P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
    [CrossRef]

2010 (7)

Q. Li, S. Yegnanarayanan, M. Soltani, P. Alipour, and A. Adibi, “A temperature-insensitive third-order coupled-resonator filter for on-chip terabit/s optical interconnects,” IEEE Photon. Technol. Lett. 22(23), 1768–1770 (2010).
[CrossRef]

B. Guha, A. Gondarenko, and M. Lipson, “Minimizing temperature sensitivity of silicon Mach-Zehnder interferometers,” Opt. Express 18(3), 1879–1887 (2010).
[CrossRef] [PubMed]

B. Guha, B. B. C. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express 18(4), 3487–3493 (2010).
[CrossRef] [PubMed]

J. Van Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, “Integrated NiSi waveguide heaters for CMOS-compatible silicon thermo-optic devices,” Opt. Lett. 35(7), 1013–1015 (2010).
[CrossRef] [PubMed]

A. H. Atabaki, E. Shah Hosseini, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Optimization of metallic microheaters for high-speed reconfigurable silicon photonics,” Opt. Express 18(17), 18312–18323 (2010).
[CrossRef] [PubMed]

P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18(19), 20298–20304 (2010).
[CrossRef] [PubMed]

G.-D. Kim, H.-S. Lee, C.-H. Park, S.-S. Lee, B. T. Lim, H. K. Bae, and W.-G. Lee, “Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process,” Opt. Express 18(21), 22215–22221 (2010).
[CrossRef] [PubMed]

2009 (5)

2008 (3)

2007 (3)

2006 (5)

2005 (2)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

D. K. Sparacin, S. J. Spector, and L. C. Kimerling, “Silicon Waveguide Sidewall Smoothing by Wet Chemical Oxidation,” J. Lightwave Technol. 23, 2455 (2005).
[CrossRef]

2004 (6)

Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov, and A. L. Gaeta, “All-optical switching on a silicon chip,” Opt. Lett. 29(24), 2867–2869 (2004).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

B. S. Schmidt, V. R. Almeida, C. Manolatou, S. F. Preble, and M. Lipson, “Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection,” Appl. Phys. Lett. 85(21), 4854–4856 (2004).
[CrossRef]

J. K. S. Poon, J. Scheuer, and A. Yariv, “Wavelength-selective reflector based on a circular array of coupled microring resonators,” IEEE Photon. Technol. Lett. 16(5), 1331–1333 (2004).
[CrossRef]

2003 (1)

Y.-T. Han, J.-U. Shin, D.-J. Kim, S.-H. Park, Y.-J. Park, and H.-K. Sung, “A Rigorous 2D Approximation Technique for 3D Waveguide Structures for BPM Calculations,” ETRI Journal 25(6), 535–537 (2003).
[CrossRef]

2002 (1)

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002).
[CrossRef]

2001 (1)

Adibi, A.

Q. Li, S. Yegnanarayanan, M. Soltani, P. Alipour, and A. Adibi, “A temperature-insensitive third-order coupled-resonator filter for on-chip terabit/s optical interconnects,” IEEE Photon. Technol. Lett. 22(23), 1768–1770 (2010).
[CrossRef]

A. H. Atabaki, E. Shah Hosseini, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Optimization of metallic microheaters for high-speed reconfigurable silicon photonics,” Opt. Express 18(17), 18312–18323 (2010).
[CrossRef] [PubMed]

Ahn, H.

Alipour, P.

Q. Li, S. Yegnanarayanan, M. Soltani, P. Alipour, and A. Adibi, “A temperature-insensitive third-order coupled-resonator filter for on-chip terabit/s optical interconnects,” IEEE Photon. Technol. Lett. 22(23), 1768–1770 (2010).
[CrossRef]

Almeida, V. R.

B. S. Schmidt, V. R. Almeida, C. Manolatou, S. F. Preble, and M. Lipson, “Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection,” Appl. Phys. Lett. 85(21), 4854–4856 (2004).
[CrossRef]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov, and A. L. Gaeta, “All-optical switching on a silicon chip,” Opt. Lett. 29(24), 2867–2869 (2004).
[CrossRef]

Asghari, M.

Assefa, S.

Atabaki, A. H.

Bae, H. K.

Baets, R.

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
[CrossRef] [PubMed]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov, and A. L. Gaeta, “All-optical switching on a silicon chip,” Opt. Lett. 29(24), 2867–2869 (2004).
[CrossRef]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Barwicz, T.

Beckx, S.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Bergman, K.

Biberman, A.

Bienstman, P.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Bogaerts, W.

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
[CrossRef] [PubMed]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Cerrina, F.

Chen, E.

Chen, L.

Cho, S.-Y.

Chung, Y.

Cunningham, J. E.

Dagli, N.

de Almeida, V. R.

Dong, P.

Dumon, P.

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
[CrossRef] [PubMed]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Eftekhar, A. A.

Feng, D.

Foster, M. A.

Frey, B.

B. Frey, D. Leviton, and T. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J, 62732J-10 (2006).
[CrossRef]

Gaeta, A. L.

Gondarenko, A.

G.S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature, 2009.

Gondarenko, A.

Green, W. M. J.

Guha, B.

Han, X.

Han, Y.-T.

Y.-T. Han, J.-U. Shin, D.-J. Kim, S.-H. Park, Y.-J. Park, and H.-K. Sung, “A Rigorous 2D Approximation Technique for 3D Waveguide Structures for BPM Calculations,” ETRI Journal 25(6), 535–537 (2003).
[CrossRef]

Ippen, E. P.

Jian, X.

Kim, D.-G.

Kim, D.-J.

Kim, G.

Kim, G.-D.

Kimerling, L. C.

Koch, T. L.

Krishnamoorthy, A. V.

Kyotoku, B. B. C.

Lee, B. G.

Lee, H.-S.

Lee, J.-M.

Lee, K. K.

Lee, S.-S.

Lee, W.-G.

Leviton, D.

B. Frey, D. Leviton, and T. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J, 62732J-10 (2006).
[CrossRef]

Li, G.

Li, J.

Li, Q.

Q. Li, S. Yegnanarayanan, M. Soltani, P. Alipour, and A. Adibi, “A temperature-insensitive third-order coupled-resonator filter for on-chip terabit/s optical interconnects,” IEEE Photon. Technol. Lett. 22(23), 1768–1770 (2010).
[CrossRef]

Liang, H.

Lim, B. T.

Lim, D. R.

Lipson, M.

B. Guha, B. B. C. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express 18(4), 3487–3493 (2010).
[CrossRef] [PubMed]

B. Guha, A. Gondarenko, and M. Lipson, “Minimizing temperature sensitivity of silicon Mach-Zehnder interferometers,” Opt. Express 18(3), 1879–1887 (2010).
[CrossRef] [PubMed]

H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express 17(25), 22271–22280 (2009).
[CrossRef]

G.S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature, 2009.

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

B. S. Schmidt, V. R. Almeida, C. Manolatou, S. F. Preble, and M. Lipson, “Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection,” Appl. Phys. Lett. 85(21), 4854–4856 (2004).
[CrossRef]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov, and A. L. Gaeta, “All-optical switching on a silicon chip,” Opt. Lett. 29(24), 2867–2869 (2004).
[CrossRef]

Lira, H. L. R.

Liu, T.

Luyssaert, B.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Madison, T.

B. Frey, D. Leviton, and T. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J, 62732J-10 (2006).
[CrossRef]

Manipatruni, S.

Manolatou, C.

M. Popovic, C. Manolatou, and M. Watts, “Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters,” Opt. Express 14(3), 1208–1222 (2006).
[CrossRef] [PubMed]

B. S. Schmidt, V. R. Almeida, C. Manolatou, S. F. Preble, and M. Lipson, “Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection,” Appl. Phys. Lett. 85(21), 4854–4856 (2004).
[CrossRef]

McNab, S. J.

Moooka, T.

Morthier, G.

O’Boyle, M.

F. Xia, L. Sekaric, M. O’Boyle, and Yu. A. Vlasov, “Coupled resonator optical waveguides (CROWs) based on silicon-on-insulator photonic wires,” Appl. Phys. Lett. 89(4), 041122 (2006).
[CrossRef]

Ouzounov, D. G.

Pafchek, R.

Panepucci, R. R.

Park, C.-H.

Park, S.-H.

Park, Y.-J.

Y.-T. Han, J.-U. Shin, D.-J. Kim, S.-H. Park, Y.-J. Park, and H.-K. Sung, “A Rigorous 2D Approximation Technique for 3D Waveguide Structures for BPM Calculations,” ETRI Journal 25(6), 535–537 (2003).
[CrossRef]

Poon, J. K. S.

J. K. S. Poon, J. Scheuer, and A. Yariv, “Wavelength-selective reflector based on a circular array of coupled microring resonators,” IEEE Photon. Technol. Lett. 16(5), 1331–1333 (2004).
[CrossRef]

Popovic, M.

Popovic, M. A.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Preble, S. F.

B. S. Schmidt, V. R. Almeida, C. Manolatou, S. F. Preble, and M. Lipson, “Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection,” Appl. Phys. Lett. 85(21), 4854–4856 (2004).
[CrossRef]

Qian, W.

Rakich, P. T.

Scheuer, J.

J. K. S. Poon, J. Scheuer, and A. Yariv, “Wavelength-selective reflector based on a circular array of coupled microring resonators,” IEEE Photon. Technol. Lett. 16(5), 1331–1333 (2004).
[CrossRef]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Schmidt, B. S.

B. S. Schmidt, V. R. Almeida, C. Manolatou, S. F. Preble, and M. Lipson, “Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection,” Appl. Phys. Lett. 85(21), 4854–4856 (2004).
[CrossRef]

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultra-compact optical buffers on a silicon chip,” Nature Photon. 1, 65–71 (2007).
[CrossRef]

F. Xia, L. Sekaric, M. O’Boyle, and Yu. A. Vlasov, “Coupled resonator optical waveguides (CROWs) based on silicon-on-insulator photonic wires,” Appl. Phys. Lett. 89(4), 041122 (2006).
[CrossRef]

Shafiiha, R.

Shah Hosseini, E.

Sherwood-Droz, N.

Shin, J.

Shin, J.-U.

Y.-T. Han, J.-U. Shin, D.-J. Kim, S.-H. Park, Y.-J. Park, and H.-K. Sung, “A Rigorous 2D Approximation Technique for 3D Waveguide Structures for BPM Calculations,” ETRI Journal 25(6), 535–537 (2003).
[CrossRef]

Smith, H. I.

Soltani, M.

Q. Li, S. Yegnanarayanan, M. Soltani, P. Alipour, and A. Adibi, “A temperature-insensitive third-order coupled-resonator filter for on-chip terabit/s optical interconnects,” IEEE Photon. Technol. Lett. 22(23), 1768–1770 (2010).
[CrossRef]

Soref, R.

Sparacin, D. K.

Spector, S. J.

Sung, H.-K.

Y.-T. Han, J.-U. Shin, D.-J. Kim, S.-H. Park, Y.-J. Park, and H.-K. Sung, “A Rigorous 2D Approximation Technique for 3D Waveguide Structures for BPM Calculations,” ETRI Journal 25(6), 535–537 (2003).
[CrossRef]

Taillaert, D.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Teng, J.

Tummidi, R.

Uenuma, M.

Van Campenhout, J.

J. Van Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, “Integrated NiSi waveguide heaters for CMOS-compatible silicon thermo-optic devices,” Opt. Lett. 35(7), 1013–1015 (2010).
[CrossRef] [PubMed]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Van Thourhout, D.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultra-compact optical buffers on a silicon chip,” Nature Photon. 1, 65–71 (2007).
[CrossRef]

Vlasov, Y. A.

Vlasov, Yu. A.

F. Xia, L. Sekaric, M. O’Boyle, and Yu. A. Vlasov, “Coupled resonator optical waveguides (CROWs) based on silicon-on-insulator photonic wires,” Appl. Phys. Lett. 89(4), 041122 (2006).
[CrossRef]

Wang, H.

Wang, X.

Watts, M.

Watts, M. R.

Webster, M. A.

Wiaux, V.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Wiederhecker, G.S.

G.S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature, 2009.

Wouters, J.

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultra-compact optical buffers on a silicon chip,” Nature Photon. 1, 65–71 (2007).
[CrossRef]

F. Xia, L. Sekaric, M. O’Boyle, and Yu. A. Vlasov, “Coupled resonator optical waveguides (CROWs) based on silicon-on-insulator photonic wires,” Appl. Phys. Lett. 89(4), 041122 (2006).
[CrossRef]

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Yariv, A.

J. K. S. Poon, J. Scheuer, and A. Yariv, “Wavelength-selective reflector based on a circular array of coupled microring resonators,” IEEE Photon. Technol. Lett. 16(5), 1331–1333 (2004).
[CrossRef]

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002).
[CrossRef]

Yegnanarayanan, S.

Q. Li, S. Yegnanarayanan, M. Soltani, P. Alipour, and A. Adibi, “A temperature-insensitive third-order coupled-resonator filter for on-chip terabit/s optical interconnects,” IEEE Photon. Technol. Lett. 22(23), 1768–1770 (2010).
[CrossRef]

A. H. Atabaki, E. Shah Hosseini, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Optimization of metallic microheaters for high-speed reconfigurable silicon photonics,” Opt. Express 18(17), 18312–18323 (2010).
[CrossRef] [PubMed]

Zhang, H.

Zhao, M.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

B. S. Schmidt, V. R. Almeida, C. Manolatou, S. F. Preble, and M. Lipson, “Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection,” Appl. Phys. Lett. 85(21), 4854–4856 (2004).
[CrossRef]

F. Xia, L. Sekaric, M. O’Boyle, and Yu. A. Vlasov, “Coupled resonator optical waveguides (CROWs) based on silicon-on-insulator photonic wires,” Appl. Phys. Lett. 89(4), 041122 (2006).
[CrossRef]

ETRI Journal (1)

Y.-T. Han, J.-U. Shin, D.-J. Kim, S.-H. Park, Y.-J. Park, and H.-K. Sung, “A Rigorous 2D Approximation Technique for 3D Waveguide Structures for BPM Calculations,” ETRI Journal 25(6), 535–537 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

J. K. S. Poon, J. Scheuer, and A. Yariv, “Wavelength-selective reflector based on a circular array of coupled microring resonators,” IEEE Photon. Technol. Lett. 16(5), 1331–1333 (2004).
[CrossRef]

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002).
[CrossRef]

Q. Li, S. Yegnanarayanan, M. Soltani, P. Alipour, and A. Adibi, “A temperature-insensitive third-order coupled-resonator filter for on-chip terabit/s optical interconnects,” IEEE Photon. Technol. Lett. 22(23), 1768–1770 (2010).
[CrossRef]

P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. Van Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. Van Thourhout, and R. Baets, “Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography,” IEEE Photon. Technol. Lett. 16(5), 1328–1330 (2004).
[CrossRef]

J. Lightwave Technol. (5)

Nature (2)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Nature Photon. (1)

F. Xia, L. Sekaric, and Y. Vlasov, “Ultra-compact optical buffers on a silicon chip,” Nature Photon. 1, 65–71 (2007).
[CrossRef]

Opt. Express (12)

Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
[CrossRef] [PubMed]

G.-D. Kim, H.-S. Lee, C.-H. Park, S.-S. Lee, B. T. Lim, H. K. Bae, and W.-G. Lee, “Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process,” Opt. Express 18(21), 22215–22221 (2010).
[CrossRef] [PubMed]

P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18(19), 20298–20304 (2010).
[CrossRef] [PubMed]

A. H. Atabaki, E. Shah Hosseini, A. A. Eftekhar, S. Yegnanarayanan, and A. Adibi, “Optimization of metallic microheaters for high-speed reconfigurable silicon photonics,” Opt. Express 18(17), 18312–18323 (2010).
[CrossRef] [PubMed]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[CrossRef] [PubMed]

B. Guha, A. Gondarenko, and M. Lipson, “Minimizing temperature sensitivity of silicon Mach-Zehnder interferometers,” Opt. Express 18(3), 1879–1887 (2010).
[CrossRef] [PubMed]

H. L. R. Lira, S. Manipatruni, and M. Lipson, “Broadband hitless silicon electro-optic switch for on-chip optical networks,” Opt. Express 17(25), 22271–22280 (2009).
[CrossRef]

X. Wang, T. Liu, V. R. de Almeida, and R. R. Panepucci, “On-chip silicon photonic wavelength control of optical fiber lasers,” Opt. Express 16(20), 15671–15676 (2008).
[CrossRef] [PubMed]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
[CrossRef] [PubMed]

S.-Y. Cho and R. Soref, “Interferometric microring-resonant 2 x 2 optical switches,” Opt. Express 16(17), 13304–13314 (2008).
[CrossRef] [PubMed]

M. Popovic, C. Manolatou, and M. Watts, “Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters,” Opt. Express 14(3), 1208–1222 (2006).
[CrossRef] [PubMed]

B. Guha, B. B. C. Kyotoku, and M. Lipson, “CMOS-compatible athermal silicon microring resonators,” Opt. Express 18(4), 3487–3493 (2010).
[CrossRef] [PubMed]

Opt. Lett. (4)

Proc. SPIE (1)

B. Frey, D. Leviton, and T. Madison, “Temperature-dependent refractive index of silicon and germanium,” Proc. SPIE 6273, 62732J, 62732J-10 (2006).
[CrossRef]

Other (6)

R. K. Dokania, A. B. Apsel, “Analysis of challenges for on-chip optical interconnects,” Proceedings of the 19th ACM Great Lakes symposium on VLSI, 275–280, (2009)

L. Pavesi and G. Guillot, Optical Interconnects - the silicon approach (Springer-Verlag, Heidelberg, 2006).

M. L. Calvo and V. Lakshminarayanan, Optical Waveguides: From Theory to Applied Technologies (CRC Press; 1 edition 2007)

W. S. Fegadolli, V. R. Almeida, and J. E. B. Oliveira, “Highly Insensitive to Temperature and Ultra-Broadband Silicon Electro-optic Modulator,” in Latin America Optics and Photonics Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper WI3.

W. D. Fegadolli, V. R. Almeida, O. L. Coutinho, and J. E. B. Oliveira, “Highly Linear Electro-optic Modulator Based on Ring Resonator,” in Latin America Optics and Photonics Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper WD3

G.S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature, 2009.

Supplementary Material (2)

» Media 1: AVI (3559 KB)     
» Media 2: AVI (2887 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic representation of proposed device.

Fig. 2
Fig. 2

Optical response of the proposed device; a) without bias and b) with bias, (Quasi-TM00 Polarization).

Fig. 3
Fig. 3

Optical response of the device; (a) not-modulated (corresponds to the logic level 0), and (b) modulated (corresponds to the logic level 1), Quasi-TM00 Polarization.

Fig. 4
Fig. 4

Optical response of the device (a) not-modulated and (b) modulated (Quasi-TM00 Polarization). Media 1.

Fig. 5
Fig. 5

Optical response of the device when is applied a modulation signal and when is not applied (Quasi-TM00 polarization): (a) analytical optical response as a function of wavelength and general loss; (b) comparison between analytical optical response and FDTD-2D simulations.

Fig. 6
Fig. 6

Extinction ratio of the device as a function of the wavelength (Quasi-TM00 polarization).

Fig. 7
Fig. 7

Extinction ratio of the device as a function of the wavelength (Quasi-TM00 polarization) for some values of temperature variation. Media 2.

Fig. 8
Fig. 8

Extinction ratio of the device as a function of temperature variation (Quasi-TM00).

Fig. 9
Fig. 9

Normalized optical intensity as a function of the wavelength and transmission coefficient, (a) contour map and (b) perspective view of the optical response on level 0, and (c) contour map and (d) perspective view of the optical response on level 1.

Fig. 10
Fig. 10

Extinction ratio as a function of the wavelength and transmission coefficient, (a) 2D contour map and (b) the respective 3D contour map.

Fig. 11
Fig. 11

Extinction ratio as a function of the temperature variation and transmission coefficient,, (a) 2D contour map and (b) the respective 3D contour map.

Tables (5)

Tables Icon

Table 1 Parameters used on the modulator design

Tables Icon

Table 2 Parameters for state shown in Fig. 2

Tables Icon

Table 3 Parameters for state shown in Fig. 3

Tables Icon

Table 4 Optimized dimensions of the final design.

Tables Icon

Table 5 Comparison with reported ring resonators.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T ( λ ) = | τ κ e j ϕ 1 τ e j ϕ | 2 ,
ϕ = 2 π λ 0 n e f f ( 2 π R ) ,
T ( λ ) = | n = 1 10 ( τ n κ n e j ϕ n 1 τ n e j ϕ n ) | 2 ,

Metrics