Abstract

We have numerically investigated the influence of a nanoscale silicon tip in proximity to an illuminated gold nanoparticle. We describe how the position of the high-permittivity tip and the size of the nanoparticle impact the absorption, peak electric field and surface plasmon resonance wavelength under different illumination conditions. We detail the finite element method (FEM) approach we have used, whereby we specify a volume excitation field analytically and calculate the difference between this source field and the total field (i.e., scattered-field formulation). We show that a nanoscale tip can locally enhance the absorption of the particle as well as the peak electric field at length scales far smaller than the wavelength of the incident light.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
    [CrossRef]
  2. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [CrossRef]
  3. E. A. Hawes, J. T. Hastings, C. Crofcheck, and M. P. Mengüç, “Spatially selective melting and evaporation of nanosized gold particles,” Opt. Lett. 33(12), 1383–1385 (2008).
    [CrossRef] [PubMed]
  4. P. G. Venkata, M. M. Aslan, M. P. Menguc, and G. Videen, “Surface Plasmon Scattering by Gold Nanoparticles and Two-Dimensional Agglomerates,” J. Heat Transfer 129(1), 60–70 (2007).
    [CrossRef]
  5. V. L. Y. Loke and M. P. Mengüç, “Surface waves and atomic force microscope probe-particle near-field coupling: discrete dipole approximation with surface interaction,” J. Opt. Soc. Am. A 27(10), 2293–2303 (2010).
    [CrossRef]
  6. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
    [CrossRef]
  7. M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9(5), 2188–2192 (2009).
    [CrossRef] [PubMed]
  8. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
    [CrossRef] [PubMed]
  9. R. M. Roth, N. C. Panoiu, M. M. Adams, R. M. Osgood, C. C. Neacsu, and M. B. Raschke, “Resonant-plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips,” Opt. Express 14(7), 2921–2931 (2006).
    [CrossRef] [PubMed]
  10. X. Chen and X. Wang, “Near-field thermal transport in a nanotip under laser irradiation,” Nanotechnology 22(7), 075204 (2011).
    [CrossRef] [PubMed]
  11. R. Hillenbrand, F. Keilmann, P. Hanarp, D. S. Sutherland, and J. Aizpurua, “Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe,” Appl. Phys. Lett. 83(2), 368–370 (2003).
    [CrossRef]
  12. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-Enhanced Raman Spectroscopy,” Ann. Rev. Anal. Chem. (Palo Alto Calif) 1(1), 601–626 (2008).
    [CrossRef]
  13. A. Rasmussen and V. Deckert, “Surface- and tip-enhanced Raman scattering of DNA components,” J. Raman Spectrosc. 37(1-3), 311–317 (2006).
    [CrossRef]
  14. R. Fikri, T. Grosges, and D. Barchiesi, “Apertureless scanning near-field optical microscopy: numerical modeling of the lock-in detection,” Opt. Commun. 232(1-6), 15–23 (2004).
    [CrossRef]
  15. W. Chen, A. Kimel, A. Kirilyuk, and T. Rasing, “Apertureless SNOM study on gold nanoparticles: Experiments and simulations,” Phys. Stat. Solidi B 247(8), 2047–2050 (2010).
    [CrossRef]
  16. R. Esteban, R. Vogelgesang, and K. Kern, “Full simulations of the apertureless scanning near field optical microscopy signal: achievable resolution and contrast,” Opt. Express 17(4), 2518–2529 (2009).
    [CrossRef] [PubMed]
  17. R. L. Stiles, K. A. Willets, L. J. Sherry, J. M. Roden, and R. P. Van Duyne, “Investigating tip-nanoparticle interactions in spatially correlated total internal reflection plasmon spectroscopy and atomic force microscopy,” J. Phys. Chem. C 112(31), 11696–11701 (2008).
    [CrossRef]
  18. D. Sadiq, J. Shirdel, J. S. Lee, E. Selishcheva, N. Park, and C. Lienau, “Adiabatic Nanofocusing Scattering-Type Optical Nanoscopy of Individual Gold Nanoparticles,” Nano Lett. 11(4), 1609–1613 (2011).
    [CrossRef] [PubMed]
  19. Finite Element Analysis Simulation Software, Available from http://www.comsol.com .
  20. A. Optics, “SCHOTT,” (2011), http://edit.schott.com/advanced_optics/us/abbe_datasheets/schott_datasheet_n-bk7.pdf
  21. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  22. B. Sensors, “AFM probe Model Tap300Al-G “, http://www.budgetsensors.com/tapping_mode_afm_aluminium.html .
  23. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1998).
  24. G. Mie, “Contributions on the optics of turbid media, particularly colloidal metal solutions,” Ann. Phys. IV, 25 (1908).
  25. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and Sons, 1983).
  26. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2008).
  27. J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum Description of the Plasmon Resonances of a Nanoparticle Dimer,” Nano Lett. 9(2), 887–891 (2009).
    [CrossRef] [PubMed]

2011

X. Chen and X. Wang, “Near-field thermal transport in a nanotip under laser irradiation,” Nanotechnology 22(7), 075204 (2011).
[CrossRef] [PubMed]

D. Sadiq, J. Shirdel, J. S. Lee, E. Selishcheva, N. Park, and C. Lienau, “Adiabatic Nanofocusing Scattering-Type Optical Nanoscopy of Individual Gold Nanoparticles,” Nano Lett. 11(4), 1609–1613 (2011).
[CrossRef] [PubMed]

2010

W. Chen, A. Kimel, A. Kirilyuk, and T. Rasing, “Apertureless SNOM study on gold nanoparticles: Experiments and simulations,” Phys. Stat. Solidi B 247(8), 2047–2050 (2010).
[CrossRef]

V. L. Y. Loke and M. P. Mengüç, “Surface waves and atomic force microscope probe-particle near-field coupling: discrete dipole approximation with surface interaction,” J. Opt. Soc. Am. A 27(10), 2293–2303 (2010).
[CrossRef]

2009

R. Esteban, R. Vogelgesang, and K. Kern, “Full simulations of the apertureless scanning near field optical microscopy signal: achievable resolution and contrast,” Opt. Express 17(4), 2518–2529 (2009).
[CrossRef] [PubMed]

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum Description of the Plasmon Resonances of a Nanoparticle Dimer,” Nano Lett. 9(2), 887–891 (2009).
[CrossRef] [PubMed]

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9(5), 2188–2192 (2009).
[CrossRef] [PubMed]

2008

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-Enhanced Raman Spectroscopy,” Ann. Rev. Anal. Chem. (Palo Alto Calif) 1(1), 601–626 (2008).
[CrossRef]

E. A. Hawes, J. T. Hastings, C. Crofcheck, and M. P. Mengüç, “Spatially selective melting and evaporation of nanosized gold particles,” Opt. Lett. 33(12), 1383–1385 (2008).
[CrossRef] [PubMed]

R. L. Stiles, K. A. Willets, L. J. Sherry, J. M. Roden, and R. P. Van Duyne, “Investigating tip-nanoparticle interactions in spatially correlated total internal reflection plasmon spectroscopy and atomic force microscopy,” J. Phys. Chem. C 112(31), 11696–11701 (2008).
[CrossRef]

2007

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef]

P. G. Venkata, M. M. Aslan, M. P. Menguc, and G. Videen, “Surface Plasmon Scattering by Gold Nanoparticles and Two-Dimensional Agglomerates,” J. Heat Transfer 129(1), 60–70 (2007).
[CrossRef]

2006

A. Rasmussen and V. Deckert, “Surface- and tip-enhanced Raman scattering of DNA components,” J. Raman Spectrosc. 37(1-3), 311–317 (2006).
[CrossRef]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[CrossRef]

R. M. Roth, N. C. Panoiu, M. M. Adams, R. M. Osgood, C. C. Neacsu, and M. B. Raschke, “Resonant-plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips,” Opt. Express 14(7), 2921–2931 (2006).
[CrossRef] [PubMed]

2005

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

2004

R. Fikri, T. Grosges, and D. Barchiesi, “Apertureless scanning near-field optical microscopy: numerical modeling of the lock-in detection,” Opt. Commun. 232(1-6), 15–23 (2004).
[CrossRef]

2003

R. Hillenbrand, F. Keilmann, P. Hanarp, D. S. Sutherland, and J. Aizpurua, “Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe,” Appl. Phys. Lett. 83(2), 368–370 (2003).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

1908

G. Mie, “Contributions on the optics of turbid media, particularly colloidal metal solutions,” Ann. Phys. IV, 25 (1908).

Adams, M. M.

Aizpurua, J.

R. Hillenbrand, F. Keilmann, P. Hanarp, D. S. Sutherland, and J. Aizpurua, “Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe,” Appl. Phys. Lett. 83(2), 368–370 (2003).
[CrossRef]

Aslan, M. M.

P. G. Venkata, M. M. Aslan, M. P. Menguc, and G. Videen, “Surface Plasmon Scattering by Gold Nanoparticles and Two-Dimensional Agglomerates,” J. Heat Transfer 129(1), 60–70 (2007).
[CrossRef]

Barchiesi, D.

R. Fikri, T. Grosges, and D. Barchiesi, “Apertureless scanning near-field optical microscopy: numerical modeling of the lock-in detection,” Opt. Commun. 232(1-6), 15–23 (2004).
[CrossRef]

Brongersma, M. L.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[CrossRef]

Chandran, A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[CrossRef]

Chen, W.

W. Chen, A. Kimel, A. Kirilyuk, and T. Rasing, “Apertureless SNOM study on gold nanoparticles: Experiments and simulations,” Phys. Stat. Solidi B 247(8), 2047–2050 (2010).
[CrossRef]

Chen, X.

X. Chen and X. Wang, “Near-field thermal transport in a nanotip under laser irradiation,” Nanotechnology 22(7), 075204 (2011).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Crofcheck, C.

Deckert, V.

A. Rasmussen and V. Deckert, “Surface- and tip-enhanced Raman scattering of DNA components,” J. Raman Spectrosc. 37(1-3), 311–317 (2006).
[CrossRef]

Dieringer, J. A.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-Enhanced Raman Spectroscopy,” Ann. Rev. Anal. Chem. (Palo Alto Calif) 1(1), 601–626 (2008).
[CrossRef]

Esteban, R.

Feng, B.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

Fikri, R.

R. Fikri, T. Grosges, and D. Barchiesi, “Apertureless scanning near-field optical microscopy: numerical modeling of the lock-in detection,” Opt. Commun. 232(1-6), 15–23 (2004).
[CrossRef]

Grady, N. K.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Grosges, T.

R. Fikri, T. Grosges, and D. Barchiesi, “Apertureless scanning near-field optical microscopy: numerical modeling of the lock-in detection,” Opt. Commun. 232(1-6), 15–23 (2004).
[CrossRef]

Halas, N. J.

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9(5), 2188–2192 (2009).
[CrossRef] [PubMed]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Hanarp, P.

R. Hillenbrand, F. Keilmann, P. Hanarp, D. S. Sutherland, and J. Aizpurua, “Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe,” Appl. Phys. Lett. 83(2), 368–370 (2003).
[CrossRef]

Hastings, J. T.

Hawes, E. A.

Hillenbrand, R.

R. Hillenbrand, F. Keilmann, P. Hanarp, D. S. Sutherland, and J. Aizpurua, “Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe,” Appl. Phys. Lett. 83(2), 368–370 (2003).
[CrossRef]

Hollars, C. W.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Huser, T. R.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Jackson, J. B.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Keilmann, F.

R. Hillenbrand, F. Keilmann, P. Hanarp, D. S. Sutherland, and J. Aizpurua, “Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe,” Appl. Phys. Lett. 83(2), 368–370 (2003).
[CrossRef]

Kern, K.

Kimel, A.

W. Chen, A. Kimel, A. Kirilyuk, and T. Rasing, “Apertureless SNOM study on gold nanoparticles: Experiments and simulations,” Phys. Stat. Solidi B 247(8), 2047–2050 (2010).
[CrossRef]

Kirilyuk, A.

W. Chen, A. Kimel, A. Kirilyuk, and T. Rasing, “Apertureless SNOM study on gold nanoparticles: Experiments and simulations,” Phys. Stat. Solidi B 247(8), 2047–2050 (2010).
[CrossRef]

Knight, M. W.

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9(5), 2188–2192 (2009).
[CrossRef] [PubMed]

Lane, S. M.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Lassiter, J. B.

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9(5), 2188–2192 (2009).
[CrossRef] [PubMed]

Lee, J. S.

D. Sadiq, J. Shirdel, J. S. Lee, E. Selishcheva, N. Park, and C. Lienau, “Adiabatic Nanofocusing Scattering-Type Optical Nanoscopy of Individual Gold Nanoparticles,” Nano Lett. 11(4), 1609–1613 (2011).
[CrossRef] [PubMed]

Lienau, C.

D. Sadiq, J. Shirdel, J. S. Lee, E. Selishcheva, N. Park, and C. Lienau, “Adiabatic Nanofocusing Scattering-Type Optical Nanoscopy of Individual Gold Nanoparticles,” Nano Lett. 11(4), 1609–1613 (2011).
[CrossRef] [PubMed]

Loke, V. L. Y.

Menguc, M. P.

P. G. Venkata, M. M. Aslan, M. P. Menguc, and G. Videen, “Surface Plasmon Scattering by Gold Nanoparticles and Two-Dimensional Agglomerates,” J. Heat Transfer 129(1), 60–70 (2007).
[CrossRef]

Mengüç, M. P.

Mie, G.

G. Mie, “Contributions on the optics of turbid media, particularly colloidal metal solutions,” Ann. Phys. IV, 25 (1908).

Neacsu, C. C.

Nordlander, P.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum Description of the Plasmon Resonances of a Nanoparticle Dimer,” Nano Lett. 9(2), 887–891 (2009).
[CrossRef] [PubMed]

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9(5), 2188–2192 (2009).
[CrossRef] [PubMed]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Osgood, R. M.

Oubre, C.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Panoiu, N. C.

Park, N.

D. Sadiq, J. Shirdel, J. S. Lee, E. Selishcheva, N. Park, and C. Lienau, “Adiabatic Nanofocusing Scattering-Type Optical Nanoscopy of Individual Gold Nanoparticles,” Nano Lett. 11(4), 1609–1613 (2011).
[CrossRef] [PubMed]

Prodan, E.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum Description of the Plasmon Resonances of a Nanoparticle Dimer,” Nano Lett. 9(2), 887–891 (2009).
[CrossRef] [PubMed]

Raschke, M. B.

Rasing, T.

W. Chen, A. Kimel, A. Kirilyuk, and T. Rasing, “Apertureless SNOM study on gold nanoparticles: Experiments and simulations,” Phys. Stat. Solidi B 247(8), 2047–2050 (2010).
[CrossRef]

Rasmussen, A.

A. Rasmussen and V. Deckert, “Surface- and tip-enhanced Raman scattering of DNA components,” J. Raman Spectrosc. 37(1-3), 311–317 (2006).
[CrossRef]

Roden, J. M.

R. L. Stiles, K. A. Willets, L. J. Sherry, J. M. Roden, and R. P. Van Duyne, “Investigating tip-nanoparticle interactions in spatially correlated total internal reflection plasmon spectroscopy and atomic force microscopy,” J. Phys. Chem. C 112(31), 11696–11701 (2008).
[CrossRef]

Roth, R. M.

Sadiq, D.

D. Sadiq, J. Shirdel, J. S. Lee, E. Selishcheva, N. Park, and C. Lienau, “Adiabatic Nanofocusing Scattering-Type Optical Nanoscopy of Individual Gold Nanoparticles,” Nano Lett. 11(4), 1609–1613 (2011).
[CrossRef] [PubMed]

Schaadt, D. M.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

Schuller, J. A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[CrossRef]

Selishcheva, E.

D. Sadiq, J. Shirdel, J. S. Lee, E. Selishcheva, N. Park, and C. Lienau, “Adiabatic Nanofocusing Scattering-Type Optical Nanoscopy of Individual Gold Nanoparticles,” Nano Lett. 11(4), 1609–1613 (2011).
[CrossRef] [PubMed]

Shah, N. C.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-Enhanced Raman Spectroscopy,” Ann. Rev. Anal. Chem. (Palo Alto Calif) 1(1), 601–626 (2008).
[CrossRef]

Sherry, L. J.

R. L. Stiles, K. A. Willets, L. J. Sherry, J. M. Roden, and R. P. Van Duyne, “Investigating tip-nanoparticle interactions in spatially correlated total internal reflection plasmon spectroscopy and atomic force microscopy,” J. Phys. Chem. C 112(31), 11696–11701 (2008).
[CrossRef]

Shirdel, J.

D. Sadiq, J. Shirdel, J. S. Lee, E. Selishcheva, N. Park, and C. Lienau, “Adiabatic Nanofocusing Scattering-Type Optical Nanoscopy of Individual Gold Nanoparticles,” Nano Lett. 11(4), 1609–1613 (2011).
[CrossRef] [PubMed]

Stiles, P. L.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-Enhanced Raman Spectroscopy,” Ann. Rev. Anal. Chem. (Palo Alto Calif) 1(1), 601–626 (2008).
[CrossRef]

Stiles, R. L.

R. L. Stiles, K. A. Willets, L. J. Sherry, J. M. Roden, and R. P. Van Duyne, “Investigating tip-nanoparticle interactions in spatially correlated total internal reflection plasmon spectroscopy and atomic force microscopy,” J. Phys. Chem. C 112(31), 11696–11701 (2008).
[CrossRef]

Sutherland, D. S.

R. Hillenbrand, F. Keilmann, P. Hanarp, D. S. Sutherland, and J. Aizpurua, “Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe,” Appl. Phys. Lett. 83(2), 368–370 (2003).
[CrossRef]

Talley, C. E.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Van Duyne, R. P.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-Enhanced Raman Spectroscopy,” Ann. Rev. Anal. Chem. (Palo Alto Calif) 1(1), 601–626 (2008).
[CrossRef]

R. L. Stiles, K. A. Willets, L. J. Sherry, J. M. Roden, and R. P. Van Duyne, “Investigating tip-nanoparticle interactions in spatially correlated total internal reflection plasmon spectroscopy and atomic force microscopy,” J. Phys. Chem. C 112(31), 11696–11701 (2008).
[CrossRef]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef]

Venkata, P. G.

P. G. Venkata, M. M. Aslan, M. P. Menguc, and G. Videen, “Surface Plasmon Scattering by Gold Nanoparticles and Two-Dimensional Agglomerates,” J. Heat Transfer 129(1), 60–70 (2007).
[CrossRef]

Videen, G.

P. G. Venkata, M. M. Aslan, M. P. Menguc, and G. Videen, “Surface Plasmon Scattering by Gold Nanoparticles and Two-Dimensional Agglomerates,” J. Heat Transfer 129(1), 60–70 (2007).
[CrossRef]

Vogelgesang, R.

Wang, X.

X. Chen and X. Wang, “Near-field thermal transport in a nanotip under laser irradiation,” Nanotechnology 22(7), 075204 (2011).
[CrossRef] [PubMed]

Willets, K. A.

R. L. Stiles, K. A. Willets, L. J. Sherry, J. M. Roden, and R. P. Van Duyne, “Investigating tip-nanoparticle interactions in spatially correlated total internal reflection plasmon spectroscopy and atomic force microscopy,” J. Phys. Chem. C 112(31), 11696–11701 (2008).
[CrossRef]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef]

Wu, Y.

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9(5), 2188–2192 (2009).
[CrossRef] [PubMed]

Yu, E. T.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

Zia, R.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[CrossRef]

Zuloaga, J.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum Description of the Plasmon Resonances of a Nanoparticle Dimer,” Nano Lett. 9(2), 887–891 (2009).
[CrossRef] [PubMed]

Ann. Phys.

G. Mie, “Contributions on the optics of turbid media, particularly colloidal metal solutions,” Ann. Phys. IV, 25 (1908).

Ann. Rev. Anal. Chem. (Palo Alto Calif)

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-Enhanced Raman Spectroscopy,” Ann. Rev. Anal. Chem. (Palo Alto Calif) 1(1), 601–626 (2008).
[CrossRef]

Annu. Rev. Phys. Chem.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef]

Appl. Phys. Lett.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86(6), 063106 (2005).
[CrossRef]

R. Hillenbrand, F. Keilmann, P. Hanarp, D. S. Sutherland, and J. Aizpurua, “Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe,” Appl. Phys. Lett. 83(2), 368–370 (2003).
[CrossRef]

J. Heat Transfer

P. G. Venkata, M. M. Aslan, M. P. Menguc, and G. Videen, “Surface Plasmon Scattering by Gold Nanoparticles and Two-Dimensional Agglomerates,” J. Heat Transfer 129(1), 60–70 (2007).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. Chem. C

R. L. Stiles, K. A. Willets, L. J. Sherry, J. M. Roden, and R. P. Van Duyne, “Investigating tip-nanoparticle interactions in spatially correlated total internal reflection plasmon spectroscopy and atomic force microscopy,” J. Phys. Chem. C 112(31), 11696–11701 (2008).
[CrossRef]

J. Raman Spectrosc.

A. Rasmussen and V. Deckert, “Surface- and tip-enhanced Raman scattering of DNA components,” J. Raman Spectrosc. 37(1-3), 311–317 (2006).
[CrossRef]

Mater. Today

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[CrossRef]

Nano Lett.

J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum Description of the Plasmon Resonances of a Nanoparticle Dimer,” Nano Lett. 9(2), 887–891 (2009).
[CrossRef] [PubMed]

D. Sadiq, J. Shirdel, J. S. Lee, E. Selishcheva, N. Park, and C. Lienau, “Adiabatic Nanofocusing Scattering-Type Optical Nanoscopy of Individual Gold Nanoparticles,” Nano Lett. 11(4), 1609–1613 (2011).
[CrossRef] [PubMed]

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9(5), 2188–2192 (2009).
[CrossRef] [PubMed]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Nanotechnology

X. Chen and X. Wang, “Near-field thermal transport in a nanotip under laser irradiation,” Nanotechnology 22(7), 075204 (2011).
[CrossRef] [PubMed]

Opt. Commun.

R. Fikri, T. Grosges, and D. Barchiesi, “Apertureless scanning near-field optical microscopy: numerical modeling of the lock-in detection,” Opt. Commun. 232(1-6), 15–23 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Phys. Stat. Solidi B

W. Chen, A. Kimel, A. Kirilyuk, and T. Rasing, “Apertureless SNOM study on gold nanoparticles: Experiments and simulations,” Phys. Stat. Solidi B 247(8), 2047–2050 (2010).
[CrossRef]

Other

B. Sensors, “AFM probe Model Tap300Al-G “, http://www.budgetsensors.com/tapping_mode_afm_aluminium.html .

E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1998).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley and Sons, 1983).

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2008).

Finite Element Analysis Simulation Software, Available from http://www.comsol.com .

A. Optics, “SCHOTT,” (2011), http://edit.schott.com/advanced_optics/us/abbe_datasheets/schott_datasheet_n-bk7.pdf

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Cross-sectional schematic of geometry of interest. A Si tip (length = 370 nm, radius = 10 nm, cone angle = 10°), is illuminated at an angle, θ, of 50°. For TE/TM polarization, the electric/magnetic field is transverse to the plane of incidence. (b) Cross-section of 3D simulation geometry with a truncated Si tip suspended above a gold nanoparticle (AuNP) on a glass substrate. 100-nm-thick perfectly matched layers (PML) enclose the simulation domain.

Fig. 2
Fig. 2

(a) Validation against Lorenz-Mie theory at 60° angle of incidence for both TM and TE polarization (physically indistinguishable but numerically implemented using distinct equations and symmetry conditions). The worst-case error in C abs is below 5%. (b) Effect of tip proximity on C abs of AuNP at 532 nm. For TM illumination with a relatively large electric-field component along the tip axis, absorption increases rapidly as the tip approaches the NP. For TE illumination, the tip has little effect. (c) Under TE illumination, the increase and redshift of C abs is due to the substrate only and varying the tip-NP vertical separation has little effect. As a result, all the curves overlap. (d) Under TM illumination, C abs increases and the resonance wavelength redshifts by 5 nm as the tip approaches the AuNP. In all cases the y-axis scales were kept the same to allow direct comparison. The black vertical lines in (a), (c) and (d) indicate the resonant wavelength of a 50-nm-diameter AuNP in free space.

Fig. 3
Fig. 3

(a) Change of C abs of AuNP as a function of lateral tip-NP separation. Positive values indicate the tip is to the left of the NP based on the perspective of Fig. 1(a). (b) Maximum electric-field enhancement as a function of tip-NP lateral separation. In both cases, the enhancement is localized to scales far below the diffraction limit of the incident light of 532 nm.

Fig. 4
Fig. 4

Field enhancement as a function of vertical separation between tip and particle. Inset: Cross-sectional plot through the plane of symmetry for the norm of the electric field with a 5-nm tip-particle separation. TM illumination is from below under TIR conditions at wavelength of 532 nm at 50° angle of incidence. Note the localization of the field between tip and particle.

Fig. 5
Fig. 5

Absorption efficiencies of AuNPs of different sizes with a constant 5-nm vertical separation between tip and particle. Illumination is at 50° (TIR) at 532 nm wavelength. The tip has little effect under TE illumination. For TM illumination there is significant enhancement of absorption efficiency. This effect becomes less pronounced as the particle radius grows with respect to the tip radius.

Metrics