Abstract

We have numerically demonstrated an efficient mode multiplexer which can tailor the input field patterns by using a phase controller and a mode coupler formed by four single-mode fibers (SMFs). By connecting the mode multiplexer to a multimode fiber (MMF), two orthogonal higher-order modes of the MMF can be simultaneously excited to form two communication channels. The simulated results show that very low modal interference between the two excited modes can be achieved by using the proposed mode multiplexer. We have also discussed the effect of the distance and size of the SMFs in the mode coupler on the performance of the proposed mode multiplexer.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Hill, R. Olshansky, and W. Burns, “Optical polarization division multiplexing at 4 Gb/s,” IEEE Photon. Technol. Lett. 4(5), 500–502 (1992).
    [CrossRef]
  2. E. Rochat, S. Walker, and M. Parker, “Polarisation and wavelength division multiplexing at 1.55 mum for bandwidth enhancement of multimode fibre based access networks,” Opt. Express 12(10), 2280–2292 (2004).
    [CrossRef] [PubMed]
  3. R. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
    [CrossRef]
  4. S. Iano, T. Sato, S. Sentsui, T. Kuroha, and Y. Nishimura, “Multicore optical fiber,” in Optical Fiber Communication, 1979 OSA Technical Digest Series (Optical Society of America, 1979), paper WB1.
  5. F. Saitoh, K. Saitoh, and M. Koshiba, “A design method of a fiber-based mode multi/demultiplexer for mode-division multiplexing,” Opt. Express 18(5), 4709–4716 (2010).
    [CrossRef] [PubMed]
  6. B. Zhu, T. F. Taunay, M. F. Yan, J. M. Fini, M. Fishteyn, E. M. Monberg, and F. V. Dimarcello, “Seven-core multicore fiber transmissions for passive optical network,” Opt. Express 18(11), 11117–11122 (2010).
    [CrossRef] [PubMed]
  7. B. Zhu, T. F. Taunay, M. F. Yan, M. Fishteyn, G. Oulundsen, and D. Vaidya, “70-Gb/s multicore multimode fiber transmissions for optical data links,” IEEE Photon. Technol. Lett. 22(22), 1647–1649 (2010).
  8. B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, F. V. Dimarcello, K. Abedin, P. W. Wisk, D. W. Peckham, and P. Dziedzic, “Space-, wavelength-, polarization-division multiplexed transmission of 56-Tb/s over a 76.8-km seven-core fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB7.
  9. J. M. Fini, B. Zhu, T. F. Taunay, and M. F. Yan, “Statistics of crosstalk in bent multicore fibers,” Opt. Express 18(14), 15122–15129 (2010).
    [CrossRef] [PubMed]
  10. K. Imamura, K. Mukasa, and T. Yagi, “Investigation on multi-core fibers with large Aeff and low micro bending loss,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OWK6.
  11. L. Yuan, Z. Liu, and J. Yang, “Coupling characteristics between single-core fiber and multicore fiber,” Opt. Lett. 31(22), 3237–3239 (2006).
    [CrossRef] [PubMed]
  12. H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science 289(5477), 281–283 (2000).
    [CrossRef] [PubMed]
  13. A. Tarighat, R. C. J. Hsu, A. Shah, A. H. Sayed, and B. Jalali, “Fundamentals and challenges of optical multiple-input multiple-output multimode fiber links,” IEEE Commun. Mag. 45(5), 57–63 (2007).
    [CrossRef]
  14. A. R. Shah, R. C. J. Hsu, A. Tarighat, A. H. Sayed, and B. Jalali, “Coherent Optical MIMO (COMIMO),” J. Lightwave Technol. 23(8), 2410–2419 (2005).
    [CrossRef]
  15. C. P. Tsekrekos and A. M. J. Koonen, “Mode-selective spatial filtering for increased robustness in a mode group diversity multiplexing link,” Opt. Lett. 32(9), 1041–1043 (2007).
    [CrossRef] [PubMed]
  16. D. H. Sim, Y. Takushima, and Y. C. Chung, “High-Speed Multimode Fiber Transmission by Using Mode-Field Matched Center-Launching Technique,” J. Lightwave Technol. 27(8), 1018–1026 (2009).
    [CrossRef]
  17. C. P. Tsekrekos, R. W. Smink, B. P. de Hon, A. G. Tijhuis, and A. M. Koonen, “Near-field intensity pattern at the output of silica-based graded-index multimode fibers under selective excitation with a single-mode fiber,” Opt. Express 15(7), 3656–3664 (2007).
    [CrossRef] [PubMed]
  18. D. H. Sim, Y. Takushima, and Y. C. Chung, “Transmission of 10-Gb/s and 40-Gb/s Signals over 3.7 km of Multimode Fiber using Mode-Field Matched Center Launching Technique,” in Proceedings of OFC 2007, (Anaheim, USA, 2007), OTuL3.
  19. B. Franz, D. Suikat, R. Dischler, F. Buchali, and H. Buelow, “High speed OFDM data transmission over 5 km GI-multimode fiber using spatial multiplexing with 2x4 MIMO processing,” Proc. ECOC’10, paper Tu.3.C.4 (2010).
  20. A. Li, A. A. Amin, X. Chen, and W. Shieh, “Reception of mode and polarization multiplexed 107-Gb/s COOFDM signal over a two-mode fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB8.
  21. M. Salsi, C. Koebele, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Astruc, L. Provost, F. Cerou, and G. Charlet, “Transmission at 2x100Gb/s, over two modes of 40km-long prototype few-mode fiber, using LCOS-based mode multiplexer and demultiplexer,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB9.
  22. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. McCurdy, and R. Lingle, Jr., “Space-division multiplexing over 10 km of three-mode fiber using coherent 6 x 6 MIMO processing,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB10.

2010 (5)

2009 (1)

2007 (3)

2006 (1)

2005 (1)

2004 (1)

2000 (1)

H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science 289(5477), 281–283 (2000).
[CrossRef] [PubMed]

1992 (1)

P. Hill, R. Olshansky, and W. Burns, “Optical polarization division multiplexing at 4 Gb/s,” IEEE Photon. Technol. Lett. 4(5), 500–502 (1992).
[CrossRef]

Burns, W.

P. Hill, R. Olshansky, and W. Burns, “Optical polarization division multiplexing at 4 Gb/s,” IEEE Photon. Technol. Lett. 4(5), 500–502 (1992).
[CrossRef]

Chung, Y. C.

de Hon, B. P.

Dimarcello, F. V.

Essiambre, R.

Fini, J. M.

Fishteyn, M.

B. Zhu, T. F. Taunay, M. F. Yan, J. M. Fini, M. Fishteyn, E. M. Monberg, and F. V. Dimarcello, “Seven-core multicore fiber transmissions for passive optical network,” Opt. Express 18(11), 11117–11122 (2010).
[CrossRef] [PubMed]

B. Zhu, T. F. Taunay, M. F. Yan, M. Fishteyn, G. Oulundsen, and D. Vaidya, “70-Gb/s multicore multimode fiber transmissions for optical data links,” IEEE Photon. Technol. Lett. 22(22), 1647–1649 (2010).

Foschini, G. J.

Goebel, B.

Hill, P.

P. Hill, R. Olshansky, and W. Burns, “Optical polarization division multiplexing at 4 Gb/s,” IEEE Photon. Technol. Lett. 4(5), 500–502 (1992).
[CrossRef]

Hsu, R. C. J.

A. Tarighat, R. C. J. Hsu, A. Shah, A. H. Sayed, and B. Jalali, “Fundamentals and challenges of optical multiple-input multiple-output multimode fiber links,” IEEE Commun. Mag. 45(5), 57–63 (2007).
[CrossRef]

A. R. Shah, R. C. J. Hsu, A. Tarighat, A. H. Sayed, and B. Jalali, “Coherent Optical MIMO (COMIMO),” J. Lightwave Technol. 23(8), 2410–2419 (2005).
[CrossRef]

Jalali, B.

A. Tarighat, R. C. J. Hsu, A. Shah, A. H. Sayed, and B. Jalali, “Fundamentals and challenges of optical multiple-input multiple-output multimode fiber links,” IEEE Commun. Mag. 45(5), 57–63 (2007).
[CrossRef]

A. R. Shah, R. C. J. Hsu, A. Tarighat, A. H. Sayed, and B. Jalali, “Coherent Optical MIMO (COMIMO),” J. Lightwave Technol. 23(8), 2410–2419 (2005).
[CrossRef]

Koonen, A. M.

Koonen, A. M. J.

Koshiba, M.

Kramer, G.

Liu, Z.

Monberg, E. M.

Olshansky, R.

P. Hill, R. Olshansky, and W. Burns, “Optical polarization division multiplexing at 4 Gb/s,” IEEE Photon. Technol. Lett. 4(5), 500–502 (1992).
[CrossRef]

Oulundsen, G.

B. Zhu, T. F. Taunay, M. F. Yan, M. Fishteyn, G. Oulundsen, and D. Vaidya, “70-Gb/s multicore multimode fiber transmissions for optical data links,” IEEE Photon. Technol. Lett. 22(22), 1647–1649 (2010).

Parker, M.

Rochat, E.

Saitoh, F.

Saitoh, K.

Sayed, A. H.

A. Tarighat, R. C. J. Hsu, A. Shah, A. H. Sayed, and B. Jalali, “Fundamentals and challenges of optical multiple-input multiple-output multimode fiber links,” IEEE Commun. Mag. 45(5), 57–63 (2007).
[CrossRef]

A. R. Shah, R. C. J. Hsu, A. Tarighat, A. H. Sayed, and B. Jalali, “Coherent Optical MIMO (COMIMO),” J. Lightwave Technol. 23(8), 2410–2419 (2005).
[CrossRef]

Shah, A.

A. Tarighat, R. C. J. Hsu, A. Shah, A. H. Sayed, and B. Jalali, “Fundamentals and challenges of optical multiple-input multiple-output multimode fiber links,” IEEE Commun. Mag. 45(5), 57–63 (2007).
[CrossRef]

Shah, A. R.

Sim, D. H.

Smink, R. W.

Stuart, H. R.

H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science 289(5477), 281–283 (2000).
[CrossRef] [PubMed]

Takushima, Y.

Tarighat, A.

A. Tarighat, R. C. J. Hsu, A. Shah, A. H. Sayed, and B. Jalali, “Fundamentals and challenges of optical multiple-input multiple-output multimode fiber links,” IEEE Commun. Mag. 45(5), 57–63 (2007).
[CrossRef]

A. R. Shah, R. C. J. Hsu, A. Tarighat, A. H. Sayed, and B. Jalali, “Coherent Optical MIMO (COMIMO),” J. Lightwave Technol. 23(8), 2410–2419 (2005).
[CrossRef]

Taunay, T. F.

Tijhuis, A. G.

Tsekrekos, C. P.

Vaidya, D.

B. Zhu, T. F. Taunay, M. F. Yan, M. Fishteyn, G. Oulundsen, and D. Vaidya, “70-Gb/s multicore multimode fiber transmissions for optical data links,” IEEE Photon. Technol. Lett. 22(22), 1647–1649 (2010).

Walker, S.

Winzer, P. J.

Yan, M. F.

Yang, J.

Yuan, L.

Zhu, B.

IEEE Commun. Mag. (1)

A. Tarighat, R. C. J. Hsu, A. Shah, A. H. Sayed, and B. Jalali, “Fundamentals and challenges of optical multiple-input multiple-output multimode fiber links,” IEEE Commun. Mag. 45(5), 57–63 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

P. Hill, R. Olshansky, and W. Burns, “Optical polarization division multiplexing at 4 Gb/s,” IEEE Photon. Technol. Lett. 4(5), 500–502 (1992).
[CrossRef]

B. Zhu, T. F. Taunay, M. F. Yan, M. Fishteyn, G. Oulundsen, and D. Vaidya, “70-Gb/s multicore multimode fiber transmissions for optical data links,” IEEE Photon. Technol. Lett. 22(22), 1647–1649 (2010).

J. Lightwave Technol. (3)

Opt. Express (5)

Opt. Lett. (2)

Science (1)

H. R. Stuart, “Dispersive multiplexing in multimode optical fiber,” Science 289(5477), 281–283 (2000).
[CrossRef] [PubMed]

Other (8)

B. Zhu, T. F. Taunay, M. Fishteyn, X. Liu, S. Chandrasekhar, M. F. Yan, J. M. Fini, E. M. Monberg, F. V. Dimarcello, K. Abedin, P. W. Wisk, D. W. Peckham, and P. Dziedzic, “Space-, wavelength-, polarization-division multiplexed transmission of 56-Tb/s over a 76.8-km seven-core fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB7.

K. Imamura, K. Mukasa, and T. Yagi, “Investigation on multi-core fibers with large Aeff and low micro bending loss,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OWK6.

S. Iano, T. Sato, S. Sentsui, T. Kuroha, and Y. Nishimura, “Multicore optical fiber,” in Optical Fiber Communication, 1979 OSA Technical Digest Series (Optical Society of America, 1979), paper WB1.

D. H. Sim, Y. Takushima, and Y. C. Chung, “Transmission of 10-Gb/s and 40-Gb/s Signals over 3.7 km of Multimode Fiber using Mode-Field Matched Center Launching Technique,” in Proceedings of OFC 2007, (Anaheim, USA, 2007), OTuL3.

B. Franz, D. Suikat, R. Dischler, F. Buchali, and H. Buelow, “High speed OFDM data transmission over 5 km GI-multimode fiber using spatial multiplexing with 2x4 MIMO processing,” Proc. ECOC’10, paper Tu.3.C.4 (2010).

A. Li, A. A. Amin, X. Chen, and W. Shieh, “Reception of mode and polarization multiplexed 107-Gb/s COOFDM signal over a two-mode fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB8.

M. Salsi, C. Koebele, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Astruc, L. Provost, F. Cerou, and G. Charlet, “Transmission at 2x100Gb/s, over two modes of 40km-long prototype few-mode fiber, using LCOS-based mode multiplexer and demultiplexer,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB9.

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. McCurdy, and R. Lingle, Jr., “Space-division multiplexing over 10 km of three-mode fiber using coherent 6 x 6 MIMO processing,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper PDPB10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The first ten guided modes of the MMF and m is the corresponding mode number.

Fig. 2
Fig. 2

(a) Schematic of the proposed mode multiplexer with the transmitted signals and MMF. (b) Cross-sectional view of the mode coupler with D and dc are the distance and diameter of the cores of the SMFs, respectively.

Fig. 3
Fig. 3

Power ratios for the first ten modes of the MMF for only TX1 transmission. The core size of the SMFs is 8.3 μm and the core distances are (a) D = 10 μm, (b) D = 13 μm, and (c) D = 16 μm.

Fig. 4
Fig. 4

Power ratio versus the core distance D with variant values of dc for (a) mode 2 in MMF with only TX1 transmission and (b) mode 3 in MMF with only TX2 transmission.

Fig. 5
Fig. 5

(a) Power ratio for the first 10 modes in the MMF as D = 11 μm and dc = 8.3 μm. (b) Power ratio for the mode 2 and mode 7 in the MMF versus the core distance D for both TX1 and TX2 transmission.

Fig. 6
Fig. 6

(a) Configuration of the MMF connected with two mode couplers at both ends. (b) The output field distribution at the end of the second mode coupler for only TX1 transmission. (c) The calculated received power at the end of the second mode coupler for MMFs with variant lengths.

Metrics