Abstract

Phase-change material Ge2Sb2T5 rings with nanometer-scale thickness have been fabricated using the photo-thermal effect of a focused laser beam followed by differential chemical etching. Laser irradiation conditions and etching process parameters are varied to control the geometric characteristics of the rings. We demonstrate the possibility of arranging the rings in specific geometric patterns, and also their release from the original substrate.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Ovshinsky, “Reversible electrical switching phenomena in disordered structures,” Phys. Rev. Lett. 21(20), 1450–1453 (1968).
    [CrossRef]
  2. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
    [CrossRef]
  3. T. Ohta, K. Nagata, I. Satoh, and R. Imanaka, “Overwritable phase-change optical disk recording,” IEEE Trans. Magn. 34(2), 426–431 (1998).
    [CrossRef]
  4. T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, and T. Kozaki, “Overview and the future of phase-change optical disk technology,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 770–774 (2000).
    [CrossRef]
  5. K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, and M. Suzuki, “Nonvolatile memory based on phase change in Se-Sb-Te glass,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 404–408 (2003).
    [CrossRef]
  6. A. L. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, and R. Bez, “Electronic switching in phase-change memories,” IEEE Trans. Electron. Dev. 51(3), 452–459 (2004).
    [CrossRef]
  7. W. Welnic and M. Wuttig, “Reversible switching in phase-change materials,” Mater. Today 11(6), 20–27 (2008).
    [CrossRef]
  8. S. K. Lin, I. C. Lin, and D. P. Tsai, “Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks,” Opt. Express 14(10), 4452–4458 (2006).
    [CrossRef] [PubMed]
  9. C. H. Chu, B. J. Wu, T. S. Kao, Y. H. Fu, H. P. Chiang, and D. P. Tsai, “Imaging of recording marks and their jitters with different writing strategy and terminal resistance of optical output,” IEEE Trans. Magn. 45(5), 2221–2223 (2009).
    [CrossRef]
  10. C. B. Peng, L. Cheng, and M. Mansuripur, “Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media,” J. Appl. Phys. 82(9), 4183–4191 (1997).
    [CrossRef]
  11. P. K. Khulbe, E. M. Wright, and M. Mansuripur, “Crystallization behavior of as-deposited, melt quenched, and primed amorphous states of Ge2Sb2.3Te5 film,” J. Appl. Phys. 88(7), 3926–3933 (2000).
    [CrossRef]
  12. T. S. Kao, Y. H. Fu, H. W. Hsu, and D. P. Tsai, “Study of the optical response of phase-change recording layer with zinc oxide nanostructured thin film,” J. Microsc. 229(3), 561–566 (2008).
    [CrossRef] [PubMed]
  13. K. P. Chiu, K. F. Lai, and D. P. Tsai, “Application of surface polariton coupling between nano recording marks to optical data storage,” Opt. Express 16(18), 13885–13892 (2008).
    [CrossRef] [PubMed]
  14. S. K. Lin, P. L. Yang, I. C. Lin, H. W. Hsu, and D. P. Tsai, “Resolving nano scale recording bits on phase-change rewritable optical disk,” Jpn. J. Appl. Phys. 45(No. 2B), 1431–1434 (2006).
    [CrossRef]
  15. Y. Zhang, S. Raoux, D. Krebs, L. E. Krupp, T. Topuria, M. A. Caldwell, D. J. Milliron, A. Kellock, P. M. Rice, J. L. Jordan-Sweet, and H.-S. P. Wong, “Phase change nanodots patterning using a self-assembled polymer lithography and crystallization analysis,” J. Appl. Phys. 104(7), 074312 (2008).
    [CrossRef]
  16. K. Y. Yang, S. H. Hong, D. K. Kim, B. K. Cheong, and H. Lee, “Patterning of Ge2Sb2Te5 phase change material using UV nano-imprint lithography,” Microelectron. Eng. 84(1), 21–24 (2007).
    [CrossRef]
  17. S. Raoux, C. T. Rettner, J. L. Jordan-Sweet, A. J. Kellock, T. Topuria, P. M. Rice, and D. C. Miller, “Direct observation of amorphous to crystalline phase transitions in nanoparticle arrays of phase change materials,” J. Appl. Phys. 102(9), 094305 (2007).
    [CrossRef]
  18. H. Yoon, W. Jo, E. Lee, J. Lee, M. Kim, K. Lee, and Y. Khang, “Generation of phase-change Ge–Sb–Te nanoparticles by pulsed laser ablation,” J. Non-Cryst. Solids 351(43-45), 3430–3434 (2005).
    [CrossRef]
  19. S. M. Yoon, K. J. Choi, Y. S. Park, S. Y. Lee, N. Y. Lee, and B. G. Yu, “Fabrication and electrical characterization of phase-change memory devices with nanoscale self-heating-channel structures,” Microelectron. Eng. 85(12), 2334–2337 (2008).
    [CrossRef]
  20. C. H. Chu, C. Da Shiue, H. W. Cheng, M. L. Tseng, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express 18(17), 18383–18393 (2010).
    [CrossRef] [PubMed]

2010

2009

C. H. Chu, B. J. Wu, T. S. Kao, Y. H. Fu, H. P. Chiang, and D. P. Tsai, “Imaging of recording marks and their jitters with different writing strategy and terminal resistance of optical output,” IEEE Trans. Magn. 45(5), 2221–2223 (2009).
[CrossRef]

2008

W. Welnic and M. Wuttig, “Reversible switching in phase-change materials,” Mater. Today 11(6), 20–27 (2008).
[CrossRef]

T. S. Kao, Y. H. Fu, H. W. Hsu, and D. P. Tsai, “Study of the optical response of phase-change recording layer with zinc oxide nanostructured thin film,” J. Microsc. 229(3), 561–566 (2008).
[CrossRef] [PubMed]

Y. Zhang, S. Raoux, D. Krebs, L. E. Krupp, T. Topuria, M. A. Caldwell, D. J. Milliron, A. Kellock, P. M. Rice, J. L. Jordan-Sweet, and H.-S. P. Wong, “Phase change nanodots patterning using a self-assembled polymer lithography and crystallization analysis,” J. Appl. Phys. 104(7), 074312 (2008).
[CrossRef]

K. P. Chiu, K. F. Lai, and D. P. Tsai, “Application of surface polariton coupling between nano recording marks to optical data storage,” Opt. Express 16(18), 13885–13892 (2008).
[CrossRef] [PubMed]

S. M. Yoon, K. J. Choi, Y. S. Park, S. Y. Lee, N. Y. Lee, and B. G. Yu, “Fabrication and electrical characterization of phase-change memory devices with nanoscale self-heating-channel structures,” Microelectron. Eng. 85(12), 2334–2337 (2008).
[CrossRef]

2007

K. Y. Yang, S. H. Hong, D. K. Kim, B. K. Cheong, and H. Lee, “Patterning of Ge2Sb2Te5 phase change material using UV nano-imprint lithography,” Microelectron. Eng. 84(1), 21–24 (2007).
[CrossRef]

S. Raoux, C. T. Rettner, J. L. Jordan-Sweet, A. J. Kellock, T. Topuria, P. M. Rice, and D. C. Miller, “Direct observation of amorphous to crystalline phase transitions in nanoparticle arrays of phase change materials,” J. Appl. Phys. 102(9), 094305 (2007).
[CrossRef]

2006

S. K. Lin, P. L. Yang, I. C. Lin, H. W. Hsu, and D. P. Tsai, “Resolving nano scale recording bits on phase-change rewritable optical disk,” Jpn. J. Appl. Phys. 45(No. 2B), 1431–1434 (2006).
[CrossRef]

S. K. Lin, I. C. Lin, and D. P. Tsai, “Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks,” Opt. Express 14(10), 4452–4458 (2006).
[CrossRef] [PubMed]

2005

H. Yoon, W. Jo, E. Lee, J. Lee, M. Kim, K. Lee, and Y. Khang, “Generation of phase-change Ge–Sb–Te nanoparticles by pulsed laser ablation,” J. Non-Cryst. Solids 351(43-45), 3430–3434 (2005).
[CrossRef]

2004

A. L. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, and R. Bez, “Electronic switching in phase-change memories,” IEEE Trans. Electron. Dev. 51(3), 452–459 (2004).
[CrossRef]

2003

K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, and M. Suzuki, “Nonvolatile memory based on phase change in Se-Sb-Te glass,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 404–408 (2003).
[CrossRef]

2000

T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, and T. Kozaki, “Overview and the future of phase-change optical disk technology,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 770–774 (2000).
[CrossRef]

P. K. Khulbe, E. M. Wright, and M. Mansuripur, “Crystallization behavior of as-deposited, melt quenched, and primed amorphous states of Ge2Sb2.3Te5 film,” J. Appl. Phys. 88(7), 3926–3933 (2000).
[CrossRef]

1998

T. Ohta, K. Nagata, I. Satoh, and R. Imanaka, “Overwritable phase-change optical disk recording,” IEEE Trans. Magn. 34(2), 426–431 (1998).
[CrossRef]

1997

C. B. Peng, L. Cheng, and M. Mansuripur, “Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media,” J. Appl. Phys. 82(9), 4183–4191 (1997).
[CrossRef]

1991

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
[CrossRef]

1968

S. R. Ovshinsky, “Reversible electrical switching phenomena in disordered structures,” Phys. Rev. Lett. 21(20), 1450–1453 (1968).
[CrossRef]

Akahira, N.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
[CrossRef]

Benvenuti, A.

A. L. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, and R. Bez, “Electronic switching in phase-change memories,” IEEE Trans. Electron. Dev. 51(3), 452–459 (2004).
[CrossRef]

Bez, R.

A. L. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, and R. Bez, “Electronic switching in phase-change memories,” IEEE Trans. Electron. Dev. 51(3), 452–459 (2004).
[CrossRef]

Caldwell, M. A.

Y. Zhang, S. Raoux, D. Krebs, L. E. Krupp, T. Topuria, M. A. Caldwell, D. J. Milliron, A. Kellock, P. M. Rice, J. L. Jordan-Sweet, and H.-S. P. Wong, “Phase change nanodots patterning using a self-assembled polymer lithography and crystallization analysis,” J. Appl. Phys. 104(7), 074312 (2008).
[CrossRef]

Cheng, H. W.

Cheng, L.

C. B. Peng, L. Cheng, and M. Mansuripur, “Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media,” J. Appl. Phys. 82(9), 4183–4191 (1997).
[CrossRef]

Cheong, B. K.

K. Y. Yang, S. H. Hong, D. K. Kim, B. K. Cheong, and H. Lee, “Patterning of Ge2Sb2Te5 phase change material using UV nano-imprint lithography,” Microelectron. Eng. 84(1), 21–24 (2007).
[CrossRef]

Chiang, H. P.

C. H. Chu, B. J. Wu, T. S. Kao, Y. H. Fu, H. P. Chiang, and D. P. Tsai, “Imaging of recording marks and their jitters with different writing strategy and terminal resistance of optical output,” IEEE Trans. Magn. 45(5), 2221–2223 (2009).
[CrossRef]

Chiang, H.-P.

Chiu, K. P.

Choi, K. J.

S. M. Yoon, K. J. Choi, Y. S. Park, S. Y. Lee, N. Y. Lee, and B. G. Yu, “Fabrication and electrical characterization of phase-change memory devices with nanoscale self-heating-channel structures,” Microelectron. Eng. 85(12), 2334–2337 (2008).
[CrossRef]

Chu, C. H.

C. H. Chu, C. Da Shiue, H. W. Cheng, M. L. Tseng, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express 18(17), 18383–18393 (2010).
[CrossRef] [PubMed]

C. H. Chu, B. J. Wu, T. S. Kao, Y. H. Fu, H. P. Chiang, and D. P. Tsai, “Imaging of recording marks and their jitters with different writing strategy and terminal resistance of optical output,” IEEE Trans. Magn. 45(5), 2221–2223 (2009).
[CrossRef]

Da Shiue, C.

Fu, Y. H.

C. H. Chu, B. J. Wu, T. S. Kao, Y. H. Fu, H. P. Chiang, and D. P. Tsai, “Imaging of recording marks and their jitters with different writing strategy and terminal resistance of optical output,” IEEE Trans. Magn. 45(5), 2221–2223 (2009).
[CrossRef]

T. S. Kao, Y. H. Fu, H. W. Hsu, and D. P. Tsai, “Study of the optical response of phase-change recording layer with zinc oxide nanostructured thin film,” J. Microsc. 229(3), 561–566 (2008).
[CrossRef] [PubMed]

Fukushima, S.

K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, and M. Suzuki, “Nonvolatile memory based on phase change in Se-Sb-Te glass,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 404–408 (2003).
[CrossRef]

Hong, S. H.

K. Y. Yang, S. H. Hong, D. K. Kim, B. K. Cheong, and H. Lee, “Patterning of Ge2Sb2Te5 phase change material using UV nano-imprint lithography,” Microelectron. Eng. 84(1), 21–24 (2007).
[CrossRef]

Hsu, H. W.

T. S. Kao, Y. H. Fu, H. W. Hsu, and D. P. Tsai, “Study of the optical response of phase-change recording layer with zinc oxide nanostructured thin film,” J. Microsc. 229(3), 561–566 (2008).
[CrossRef] [PubMed]

S. K. Lin, P. L. Yang, I. C. Lin, H. W. Hsu, and D. P. Tsai, “Resolving nano scale recording bits on phase-change rewritable optical disk,” Jpn. J. Appl. Phys. 45(No. 2B), 1431–1434 (2006).
[CrossRef]

Imai, Y.

K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, and M. Suzuki, “Nonvolatile memory based on phase change in Se-Sb-Te glass,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 404–408 (2003).
[CrossRef]

Imanaka, R.

T. Ohta, K. Nagata, I. Satoh, and R. Imanaka, “Overwritable phase-change optical disk recording,” IEEE Trans. Magn. 34(2), 426–431 (1998).
[CrossRef]

Ishibashi, H.

T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, and T. Kozaki, “Overview and the future of phase-change optical disk technology,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 770–774 (2000).
[CrossRef]

Jo, W.

H. Yoon, W. Jo, E. Lee, J. Lee, M. Kim, K. Lee, and Y. Khang, “Generation of phase-change Ge–Sb–Te nanoparticles by pulsed laser ablation,” J. Non-Cryst. Solids 351(43-45), 3430–3434 (2005).
[CrossRef]

Jordan-Sweet, J. L.

Y. Zhang, S. Raoux, D. Krebs, L. E. Krupp, T. Topuria, M. A. Caldwell, D. J. Milliron, A. Kellock, P. M. Rice, J. L. Jordan-Sweet, and H.-S. P. Wong, “Phase change nanodots patterning using a self-assembled polymer lithography and crystallization analysis,” J. Appl. Phys. 104(7), 074312 (2008).
[CrossRef]

S. Raoux, C. T. Rettner, J. L. Jordan-Sweet, A. J. Kellock, T. Topuria, P. M. Rice, and D. C. Miller, “Direct observation of amorphous to crystalline phase transitions in nanoparticle arrays of phase change materials,” J. Appl. Phys. 102(9), 094305 (2007).
[CrossRef]

Kakimoto, Y.

K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, and M. Suzuki, “Nonvolatile memory based on phase change in Se-Sb-Te glass,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 404–408 (2003).
[CrossRef]

Kao, T. S.

C. H. Chu, B. J. Wu, T. S. Kao, Y. H. Fu, H. P. Chiang, and D. P. Tsai, “Imaging of recording marks and their jitters with different writing strategy and terminal resistance of optical output,” IEEE Trans. Magn. 45(5), 2221–2223 (2009).
[CrossRef]

T. S. Kao, Y. H. Fu, H. W. Hsu, and D. P. Tsai, “Study of the optical response of phase-change recording layer with zinc oxide nanostructured thin film,” J. Microsc. 229(3), 561–566 (2008).
[CrossRef] [PubMed]

Kasai, T.

K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, and M. Suzuki, “Nonvolatile memory based on phase change in Se-Sb-Te glass,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 404–408 (2003).
[CrossRef]

Kellock, A.

Y. Zhang, S. Raoux, D. Krebs, L. E. Krupp, T. Topuria, M. A. Caldwell, D. J. Milliron, A. Kellock, P. M. Rice, J. L. Jordan-Sweet, and H.-S. P. Wong, “Phase change nanodots patterning using a self-assembled polymer lithography and crystallization analysis,” J. Appl. Phys. 104(7), 074312 (2008).
[CrossRef]

Kellock, A. J.

S. Raoux, C. T. Rettner, J. L. Jordan-Sweet, A. J. Kellock, T. Topuria, P. M. Rice, and D. C. Miller, “Direct observation of amorphous to crystalline phase transitions in nanoparticle arrays of phase change materials,” J. Appl. Phys. 102(9), 094305 (2007).
[CrossRef]

Khang, Y.

H. Yoon, W. Jo, E. Lee, J. Lee, M. Kim, K. Lee, and Y. Khang, “Generation of phase-change Ge–Sb–Te nanoparticles by pulsed laser ablation,” J. Non-Cryst. Solids 351(43-45), 3430–3434 (2005).
[CrossRef]

Khulbe, P. K.

P. K. Khulbe, E. M. Wright, and M. Mansuripur, “Crystallization behavior of as-deposited, melt quenched, and primed amorphous states of Ge2Sb2.3Te5 film,” J. Appl. Phys. 88(7), 3926–3933 (2000).
[CrossRef]

Kim, D. K.

K. Y. Yang, S. H. Hong, D. K. Kim, B. K. Cheong, and H. Lee, “Patterning of Ge2Sb2Te5 phase change material using UV nano-imprint lithography,” Microelectron. Eng. 84(1), 21–24 (2007).
[CrossRef]

Kim, M.

H. Yoon, W. Jo, E. Lee, J. Lee, M. Kim, K. Lee, and Y. Khang, “Generation of phase-change Ge–Sb–Te nanoparticles by pulsed laser ablation,” J. Non-Cryst. Solids 351(43-45), 3430–3434 (2005).
[CrossRef]

Kitagawa, A.

K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, and M. Suzuki, “Nonvolatile memory based on phase change in Se-Sb-Te glass,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 404–408 (2003).
[CrossRef]

Kitaoka, Y.

T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, and T. Kozaki, “Overview and the future of phase-change optical disk technology,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 770–774 (2000).
[CrossRef]

Kojima, K.

K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, and M. Suzuki, “Nonvolatile memory based on phase change in Se-Sb-Te glass,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 404–408 (2003).
[CrossRef]

Kozaki, T.

T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, and T. Kozaki, “Overview and the future of phase-change optical disk technology,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 770–774 (2000).
[CrossRef]

Krebs, D.

Y. Zhang, S. Raoux, D. Krebs, L. E. Krupp, T. Topuria, M. A. Caldwell, D. J. Milliron, A. Kellock, P. M. Rice, J. L. Jordan-Sweet, and H.-S. P. Wong, “Phase change nanodots patterning using a self-assembled polymer lithography and crystallization analysis,” J. Appl. Phys. 104(7), 074312 (2008).
[CrossRef]

Krupp, L. E.

Y. Zhang, S. Raoux, D. Krebs, L. E. Krupp, T. Topuria, M. A. Caldwell, D. J. Milliron, A. Kellock, P. M. Rice, J. L. Jordan-Sweet, and H.-S. P. Wong, “Phase change nanodots patterning using a self-assembled polymer lithography and crystallization analysis,” J. Appl. Phys. 104(7), 074312 (2008).
[CrossRef]

Kumeda, M.

K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, and M. Suzuki, “Nonvolatile memory based on phase change in Se-Sb-Te glass,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 404–408 (2003).
[CrossRef]

Lacaita, A. L.

A. L. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, and R. Bez, “Electronic switching in phase-change memories,” IEEE Trans. Electron. Dev. 51(3), 452–459 (2004).
[CrossRef]

Lai, K. F.

Lee, E.

H. Yoon, W. Jo, E. Lee, J. Lee, M. Kim, K. Lee, and Y. Khang, “Generation of phase-change Ge–Sb–Te nanoparticles by pulsed laser ablation,” J. Non-Cryst. Solids 351(43-45), 3430–3434 (2005).
[CrossRef]

Lee, H.

K. Y. Yang, S. H. Hong, D. K. Kim, B. K. Cheong, and H. Lee, “Patterning of Ge2Sb2Te5 phase change material using UV nano-imprint lithography,” Microelectron. Eng. 84(1), 21–24 (2007).
[CrossRef]

Lee, J.

H. Yoon, W. Jo, E. Lee, J. Lee, M. Kim, K. Lee, and Y. Khang, “Generation of phase-change Ge–Sb–Te nanoparticles by pulsed laser ablation,” J. Non-Cryst. Solids 351(43-45), 3430–3434 (2005).
[CrossRef]

Lee, K.

H. Yoon, W. Jo, E. Lee, J. Lee, M. Kim, K. Lee, and Y. Khang, “Generation of phase-change Ge–Sb–Te nanoparticles by pulsed laser ablation,” J. Non-Cryst. Solids 351(43-45), 3430–3434 (2005).
[CrossRef]

Lee, N. Y.

S. M. Yoon, K. J. Choi, Y. S. Park, S. Y. Lee, N. Y. Lee, and B. G. Yu, “Fabrication and electrical characterization of phase-change memory devices with nanoscale self-heating-channel structures,” Microelectron. Eng. 85(12), 2334–2337 (2008).
[CrossRef]

Lee, S. Y.

S. M. Yoon, K. J. Choi, Y. S. Park, S. Y. Lee, N. Y. Lee, and B. G. Yu, “Fabrication and electrical characterization of phase-change memory devices with nanoscale self-heating-channel structures,” Microelectron. Eng. 85(12), 2334–2337 (2008).
[CrossRef]

Lin, I. C.

S. K. Lin, P. L. Yang, I. C. Lin, H. W. Hsu, and D. P. Tsai, “Resolving nano scale recording bits on phase-change rewritable optical disk,” Jpn. J. Appl. Phys. 45(No. 2B), 1431–1434 (2006).
[CrossRef]

S. K. Lin, I. C. Lin, and D. P. Tsai, “Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks,” Opt. Express 14(10), 4452–4458 (2006).
[CrossRef] [PubMed]

Lin, S. K.

S. K. Lin, I. C. Lin, and D. P. Tsai, “Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks,” Opt. Express 14(10), 4452–4458 (2006).
[CrossRef] [PubMed]

S. K. Lin, P. L. Yang, I. C. Lin, H. W. Hsu, and D. P. Tsai, “Resolving nano scale recording bits on phase-change rewritable optical disk,” Jpn. J. Appl. Phys. 45(No. 2B), 1431–1434 (2006).
[CrossRef]

Mansuripur, M.

C. H. Chu, C. Da Shiue, H. W. Cheng, M. L. Tseng, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express 18(17), 18383–18393 (2010).
[CrossRef] [PubMed]

P. K. Khulbe, E. M. Wright, and M. Mansuripur, “Crystallization behavior of as-deposited, melt quenched, and primed amorphous states of Ge2Sb2.3Te5 film,” J. Appl. Phys. 88(7), 3926–3933 (2000).
[CrossRef]

C. B. Peng, L. Cheng, and M. Mansuripur, “Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media,” J. Appl. Phys. 82(9), 4183–4191 (1997).
[CrossRef]

Miller, D. C.

S. Raoux, C. T. Rettner, J. L. Jordan-Sweet, A. J. Kellock, T. Topuria, P. M. Rice, and D. C. Miller, “Direct observation of amorphous to crystalline phase transitions in nanoparticle arrays of phase change materials,” J. Appl. Phys. 102(9), 094305 (2007).
[CrossRef]

Milliron, D. J.

Y. Zhang, S. Raoux, D. Krebs, L. E. Krupp, T. Topuria, M. A. Caldwell, D. J. Milliron, A. Kellock, P. M. Rice, J. L. Jordan-Sweet, and H.-S. P. Wong, “Phase change nanodots patterning using a self-assembled polymer lithography and crystallization analysis,” J. Appl. Phys. 104(7), 074312 (2008).
[CrossRef]

Nagata, K.

T. Ohta, K. Nagata, I. Satoh, and R. Imanaka, “Overwritable phase-change optical disk recording,” IEEE Trans. Magn. 34(2), 426–431 (1998).
[CrossRef]

Nakayama, K.

K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, and M. Suzuki, “Nonvolatile memory based on phase change in Se-Sb-Te glass,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 404–408 (2003).
[CrossRef]

Narumi, K.

T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, and T. Kozaki, “Overview and the future of phase-change optical disk technology,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 770–774 (2000).
[CrossRef]

Nishiuchi, K.

T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, and T. Kozaki, “Overview and the future of phase-change optical disk technology,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 770–774 (2000).
[CrossRef]

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
[CrossRef]

Ohno, E.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
[CrossRef]

Ohta, T.

T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, and T. Kozaki, “Overview and the future of phase-change optical disk technology,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 770–774 (2000).
[CrossRef]

T. Ohta, K. Nagata, I. Satoh, and R. Imanaka, “Overwritable phase-change optical disk recording,” IEEE Trans. Magn. 34(2), 426–431 (1998).
[CrossRef]

Ovshinsky, S. R.

S. R. Ovshinsky, “Reversible electrical switching phenomena in disordered structures,” Phys. Rev. Lett. 21(20), 1450–1453 (1968).
[CrossRef]

Park, Y. S.

S. M. Yoon, K. J. Choi, Y. S. Park, S. Y. Lee, N. Y. Lee, and B. G. Yu, “Fabrication and electrical characterization of phase-change memory devices with nanoscale self-heating-channel structures,” Microelectron. Eng. 85(12), 2334–2337 (2008).
[CrossRef]

Pellizzer, F.

A. L. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, and R. Bez, “Electronic switching in phase-change memories,” IEEE Trans. Electron. Dev. 51(3), 452–459 (2004).
[CrossRef]

Peng, C. B.

C. B. Peng, L. Cheng, and M. Mansuripur, “Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media,” J. Appl. Phys. 82(9), 4183–4191 (1997).
[CrossRef]

Pirovano, A. L.

A. L. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, and R. Bez, “Electronic switching in phase-change memories,” IEEE Trans. Electron. Dev. 51(3), 452–459 (2004).
[CrossRef]

Raoux, S.

Y. Zhang, S. Raoux, D. Krebs, L. E. Krupp, T. Topuria, M. A. Caldwell, D. J. Milliron, A. Kellock, P. M. Rice, J. L. Jordan-Sweet, and H.-S. P. Wong, “Phase change nanodots patterning using a self-assembled polymer lithography and crystallization analysis,” J. Appl. Phys. 104(7), 074312 (2008).
[CrossRef]

S. Raoux, C. T. Rettner, J. L. Jordan-Sweet, A. J. Kellock, T. Topuria, P. M. Rice, and D. C. Miller, “Direct observation of amorphous to crystalline phase transitions in nanoparticle arrays of phase change materials,” J. Appl. Phys. 102(9), 094305 (2007).
[CrossRef]

Rettner, C. T.

S. Raoux, C. T. Rettner, J. L. Jordan-Sweet, A. J. Kellock, T. Topuria, P. M. Rice, and D. C. Miller, “Direct observation of amorphous to crystalline phase transitions in nanoparticle arrays of phase change materials,” J. Appl. Phys. 102(9), 094305 (2007).
[CrossRef]

Rice, P. M.

Y. Zhang, S. Raoux, D. Krebs, L. E. Krupp, T. Topuria, M. A. Caldwell, D. J. Milliron, A. Kellock, P. M. Rice, J. L. Jordan-Sweet, and H.-S. P. Wong, “Phase change nanodots patterning using a self-assembled polymer lithography and crystallization analysis,” J. Appl. Phys. 104(7), 074312 (2008).
[CrossRef]

S. Raoux, C. T. Rettner, J. L. Jordan-Sweet, A. J. Kellock, T. Topuria, P. M. Rice, and D. C. Miller, “Direct observation of amorphous to crystalline phase transitions in nanoparticle arrays of phase change materials,” J. Appl. Phys. 102(9), 094305 (2007).
[CrossRef]

Satoh, I.

T. Ohta, K. Nagata, I. Satoh, and R. Imanaka, “Overwritable phase-change optical disk recording,” IEEE Trans. Magn. 34(2), 426–431 (1998).
[CrossRef]

Suzuki, M.

K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, and M. Suzuki, “Nonvolatile memory based on phase change in Se-Sb-Te glass,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 404–408 (2003).
[CrossRef]

Takao, M.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
[CrossRef]

Topuria, T.

Y. Zhang, S. Raoux, D. Krebs, L. E. Krupp, T. Topuria, M. A. Caldwell, D. J. Milliron, A. Kellock, P. M. Rice, J. L. Jordan-Sweet, and H.-S. P. Wong, “Phase change nanodots patterning using a self-assembled polymer lithography and crystallization analysis,” J. Appl. Phys. 104(7), 074312 (2008).
[CrossRef]

S. Raoux, C. T. Rettner, J. L. Jordan-Sweet, A. J. Kellock, T. Topuria, P. M. Rice, and D. C. Miller, “Direct observation of amorphous to crystalline phase transitions in nanoparticle arrays of phase change materials,” J. Appl. Phys. 102(9), 094305 (2007).
[CrossRef]

Tsai, D. P.

C. H. Chu, C. Da Shiue, H. W. Cheng, M. L. Tseng, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography,” Opt. Express 18(17), 18383–18393 (2010).
[CrossRef] [PubMed]

C. H. Chu, B. J. Wu, T. S. Kao, Y. H. Fu, H. P. Chiang, and D. P. Tsai, “Imaging of recording marks and their jitters with different writing strategy and terminal resistance of optical output,” IEEE Trans. Magn. 45(5), 2221–2223 (2009).
[CrossRef]

T. S. Kao, Y. H. Fu, H. W. Hsu, and D. P. Tsai, “Study of the optical response of phase-change recording layer with zinc oxide nanostructured thin film,” J. Microsc. 229(3), 561–566 (2008).
[CrossRef] [PubMed]

K. P. Chiu, K. F. Lai, and D. P. Tsai, “Application of surface polariton coupling between nano recording marks to optical data storage,” Opt. Express 16(18), 13885–13892 (2008).
[CrossRef] [PubMed]

S. K. Lin, P. L. Yang, I. C. Lin, H. W. Hsu, and D. P. Tsai, “Resolving nano scale recording bits on phase-change rewritable optical disk,” Jpn. J. Appl. Phys. 45(No. 2B), 1431–1434 (2006).
[CrossRef]

S. K. Lin, I. C. Lin, and D. P. Tsai, “Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks,” Opt. Express 14(10), 4452–4458 (2006).
[CrossRef] [PubMed]

Tseng, M. L.

Welnic, W.

W. Welnic and M. Wuttig, “Reversible switching in phase-change materials,” Mater. Today 11(6), 20–27 (2008).
[CrossRef]

Wong, H.-S. P.

Y. Zhang, S. Raoux, D. Krebs, L. E. Krupp, T. Topuria, M. A. Caldwell, D. J. Milliron, A. Kellock, P. M. Rice, J. L. Jordan-Sweet, and H.-S. P. Wong, “Phase change nanodots patterning using a self-assembled polymer lithography and crystallization analysis,” J. Appl. Phys. 104(7), 074312 (2008).
[CrossRef]

Wright, E. M.

P. K. Khulbe, E. M. Wright, and M. Mansuripur, “Crystallization behavior of as-deposited, melt quenched, and primed amorphous states of Ge2Sb2.3Te5 film,” J. Appl. Phys. 88(7), 3926–3933 (2000).
[CrossRef]

Wu, B. J.

C. H. Chu, B. J. Wu, T. S. Kao, Y. H. Fu, H. P. Chiang, and D. P. Tsai, “Imaging of recording marks and their jitters with different writing strategy and terminal resistance of optical output,” IEEE Trans. Magn. 45(5), 2221–2223 (2009).
[CrossRef]

Wuttig, M.

W. Welnic and M. Wuttig, “Reversible switching in phase-change materials,” Mater. Today 11(6), 20–27 (2008).
[CrossRef]

Yamada, N.

T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, and T. Kozaki, “Overview and the future of phase-change optical disk technology,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 770–774 (2000).
[CrossRef]

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
[CrossRef]

Yang, K. Y.

K. Y. Yang, S. H. Hong, D. K. Kim, B. K. Cheong, and H. Lee, “Patterning of Ge2Sb2Te5 phase change material using UV nano-imprint lithography,” Microelectron. Eng. 84(1), 21–24 (2007).
[CrossRef]

Yang, P. L.

S. K. Lin, P. L. Yang, I. C. Lin, H. W. Hsu, and D. P. Tsai, “Resolving nano scale recording bits on phase-change rewritable optical disk,” Jpn. J. Appl. Phys. 45(No. 2B), 1431–1434 (2006).
[CrossRef]

Yoon, H.

H. Yoon, W. Jo, E. Lee, J. Lee, M. Kim, K. Lee, and Y. Khang, “Generation of phase-change Ge–Sb–Te nanoparticles by pulsed laser ablation,” J. Non-Cryst. Solids 351(43-45), 3430–3434 (2005).
[CrossRef]

Yoon, S. M.

S. M. Yoon, K. J. Choi, Y. S. Park, S. Y. Lee, N. Y. Lee, and B. G. Yu, “Fabrication and electrical characterization of phase-change memory devices with nanoscale self-heating-channel structures,” Microelectron. Eng. 85(12), 2334–2337 (2008).
[CrossRef]

Yu, B. G.

S. M. Yoon, K. J. Choi, Y. S. Park, S. Y. Lee, N. Y. Lee, and B. G. Yu, “Fabrication and electrical characterization of phase-change memory devices with nanoscale self-heating-channel structures,” Microelectron. Eng. 85(12), 2334–2337 (2008).
[CrossRef]

Zhang, Y.

Y. Zhang, S. Raoux, D. Krebs, L. E. Krupp, T. Topuria, M. A. Caldwell, D. J. Milliron, A. Kellock, P. M. Rice, J. L. Jordan-Sweet, and H.-S. P. Wong, “Phase change nanodots patterning using a self-assembled polymer lithography and crystallization analysis,” J. Appl. Phys. 104(7), 074312 (2008).
[CrossRef]

IEEE Trans. Electron. Dev.

A. L. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, and R. Bez, “Electronic switching in phase-change memories,” IEEE Trans. Electron. Dev. 51(3), 452–459 (2004).
[CrossRef]

IEEE Trans. Magn.

T. Ohta, K. Nagata, I. Satoh, and R. Imanaka, “Overwritable phase-change optical disk recording,” IEEE Trans. Magn. 34(2), 426–431 (1998).
[CrossRef]

C. H. Chu, B. J. Wu, T. S. Kao, Y. H. Fu, H. P. Chiang, and D. P. Tsai, “Imaging of recording marks and their jitters with different writing strategy and terminal resistance of optical output,” IEEE Trans. Magn. 45(5), 2221–2223 (2009).
[CrossRef]

J. Appl. Phys.

C. B. Peng, L. Cheng, and M. Mansuripur, “Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media,” J. Appl. Phys. 82(9), 4183–4191 (1997).
[CrossRef]

P. K. Khulbe, E. M. Wright, and M. Mansuripur, “Crystallization behavior of as-deposited, melt quenched, and primed amorphous states of Ge2Sb2.3Te5 film,” J. Appl. Phys. 88(7), 3926–3933 (2000).
[CrossRef]

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
[CrossRef]

Y. Zhang, S. Raoux, D. Krebs, L. E. Krupp, T. Topuria, M. A. Caldwell, D. J. Milliron, A. Kellock, P. M. Rice, J. L. Jordan-Sweet, and H.-S. P. Wong, “Phase change nanodots patterning using a self-assembled polymer lithography and crystallization analysis,” J. Appl. Phys. 104(7), 074312 (2008).
[CrossRef]

S. Raoux, C. T. Rettner, J. L. Jordan-Sweet, A. J. Kellock, T. Topuria, P. M. Rice, and D. C. Miller, “Direct observation of amorphous to crystalline phase transitions in nanoparticle arrays of phase change materials,” J. Appl. Phys. 102(9), 094305 (2007).
[CrossRef]

J. Microsc.

T. S. Kao, Y. H. Fu, H. W. Hsu, and D. P. Tsai, “Study of the optical response of phase-change recording layer with zinc oxide nanostructured thin film,” J. Microsc. 229(3), 561–566 (2008).
[CrossRef] [PubMed]

J. Non-Cryst. Solids

H. Yoon, W. Jo, E. Lee, J. Lee, M. Kim, K. Lee, and Y. Khang, “Generation of phase-change Ge–Sb–Te nanoparticles by pulsed laser ablation,” J. Non-Cryst. Solids 351(43-45), 3430–3434 (2005).
[CrossRef]

Jpn. J. Appl. Phys.

S. K. Lin, P. L. Yang, I. C. Lin, H. W. Hsu, and D. P. Tsai, “Resolving nano scale recording bits on phase-change rewritable optical disk,” Jpn. J. Appl. Phys. 45(No. 2B), 1431–1434 (2006).
[CrossRef]

T. Ohta, K. Nishiuchi, K. Narumi, Y. Kitaoka, H. Ishibashi, N. Yamada, and T. Kozaki, “Overview and the future of phase-change optical disk technology,” Jpn. J. Appl. Phys. 39(Part 1, No. 2B), 770–774 (2000).
[CrossRef]

K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, and M. Suzuki, “Nonvolatile memory based on phase change in Se-Sb-Te glass,” Jpn. J. Appl. Phys. 42(Part 1, No. 2A), 404–408 (2003).
[CrossRef]

Mater. Today

W. Welnic and M. Wuttig, “Reversible switching in phase-change materials,” Mater. Today 11(6), 20–27 (2008).
[CrossRef]

Microelectron. Eng.

K. Y. Yang, S. H. Hong, D. K. Kim, B. K. Cheong, and H. Lee, “Patterning of Ge2Sb2Te5 phase change material using UV nano-imprint lithography,” Microelectron. Eng. 84(1), 21–24 (2007).
[CrossRef]

S. M. Yoon, K. J. Choi, Y. S. Park, S. Y. Lee, N. Y. Lee, and B. G. Yu, “Fabrication and electrical characterization of phase-change memory devices with nanoscale self-heating-channel structures,” Microelectron. Eng. 85(12), 2334–2337 (2008).
[CrossRef]

Opt. Express

Phys. Rev. Lett.

S. R. Ovshinsky, “Reversible electrical switching phenomena in disordered structures,” Phys. Rev. Lett. 21(20), 1450–1453 (1968).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

AFM images of various ring structures before etching (top row) and after etching (bottom row) recorded on a crystalline Ge2Sb2Te5 thin film with a focused laser beam having a pulse duration of 700ns at laser powers ranging from 7mW to 20mW.

Fig. 2
Fig. 2

Incident laser power dependence of (a) inner diameter, (b) outer diameter, (c) width, and (d) height of the rings before and after etching.

Fig. 3
Fig. 3

AFM and optical images of rings recorded with a laser power of 16 mW and pulse duration of 700 ns on a crystalline Ge2Sb2Te5 thin film. (a)-(c) AFM image, optical reflection image, and optical transmission image of the sample before etching. (d)-(f) AFM image, optical reflection image, and optical transmission image of the same region of the sample after 40 minutes of etching.

Fig. 4
Fig. 4

AFM images of strings of 5 rings and the Olympic symbol fabricated by multiple laser pulses on a crystalline Ge2Sb2Te5 thin film. The laser power and pulse duration were 16 mW and 700 ns for recording the pre-etch patterns shown in (a) and (b). AFM images of the etched samples are shown in (c) and (d). The corresponding cross-sectional profiles are also shown under individual AFM images.

Metrics