Abstract

A compact and efficient polarization splitting and rotating device built on the silicon-on-insulator platform is introduced, which can be readily used for the interface section of a polarization diversity circuit. The device is compact, with a total length of a few tens of microns. It is also simple, consisting of only two parallel silicon-on-insulator wire waveguides with different widths, and thus requiring no additional and nonstandard fabrication steps. A total insertion loss of −0.6dB and an extinction ratio of 12dB have been obtained experimentally in the whole C-band.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
    [CrossRef]
  2. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
    [CrossRef]
  3. C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High density integrated optics,” J. Lightwave Technol. 17(9), 1682–1692 (1999).
    [CrossRef]
  4. T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
    [CrossRef]
  5. W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-4-1567 .
    [CrossRef] [PubMed]
  6. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16(7), 4872–4880 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-7-4872 .
    [CrossRef] [PubMed]
  7. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express 14(25), 12401–12408 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-25-12401 .
    [CrossRef] [PubMed]
  8. L. Liu, Y. Ding, K. Yvind, and J. M. Hvam, “Efficient and compact TE-TM polarization converter built on silicon-on-insulator platform with a simple fabrication process,” Opt. Lett. 36(7), 1059–1061 (2011).
    [CrossRef] [PubMed]
  9. H. Deng, D. O. Yevick, C. Brooks, and P. E. Jessop, “Design rules for slanted-angle polarization rotators,” J. Lightwave Technol. 23(1), 432–445 (2005).
    [CrossRef]
  10. M. R. Watts and H. A. Haus, “Integrated mode-evolution-based polarization rotators,” Opt. Lett. 30(2), 138–140 (2005).
    [CrossRef] [PubMed]
  11. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Polarization rotator based on silicon wire waveguides,” Opt. Express 16(4), 2628–2635 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-4-2628 .
    [CrossRef] [PubMed]
  12. Y. Yue, L. Zhang, M. Song, R. G. Beausoleil, and A. E. Willner, “Higher-order-mode assisted silicon-on-insulator 90 degree polarization rotator,” Opt. Express 17(23), 20694–20699 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-23-20694 .
    [CrossRef] [PubMed]
  13. Z. Wang and D. Dai, “Ultrasmall Si-nanowire-based polarization rotator,” J. Opt. Soc. Am. B 25(5), 747–753 (2008).
    [CrossRef]
  14. K. Bayat, S. K. Chaudhuri, and S. Safavi-Naeini, “Ultra-compact photonic crystal based polarization rotator,” Opt. Express 17(9), 7145–7158 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-9-7145 .
    [CrossRef] [PubMed]
  15. J. Zhang, M. Yu, G. Lo, and D. L. Kwong, “Silicon waveguide based mode-evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 53–60 (2010).
    [CrossRef]
  16. FIMMWAVE/FIMMPROP, Photon Design Ltd, http://www.photond.com .

2011 (1)

2010 (1)

J. Zhang, M. Yu, G. Lo, and D. L. Kwong, “Silicon waveguide based mode-evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 53–60 (2010).
[CrossRef]

2009 (2)

2008 (3)

2007 (2)

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-4-1567 .
[CrossRef] [PubMed]

2006 (1)

2005 (4)

1999 (1)

Baets, R.

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Bayat, K.

Beausoleil, R. G.

Beckx, S.

Bienstman, P.

Bogaerts, W.

Brooks, C.

Chaudhuri, S. K.

Dai, D.

Deng, H.

Ding, Y.

Dumon, P.

Fan, S.

Fukuda, H.

Haus, H. A.

Hvam, J. M.

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Itabashi, S.

Jessop, P. E.

Joannopoulos, J. D.

Johnson, S. G.

Kärtner, F. X.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Kwong, D. L.

J. Zhang, M. Yu, G. Lo, and D. L. Kwong, “Silicon waveguide based mode-evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 53–60 (2010).
[CrossRef]

Liu, L.

Lo, G.

J. Zhang, M. Yu, G. Lo, and D. L. Kwong, “Silicon waveguide based mode-evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 53–60 (2010).
[CrossRef]

Luyssaert, B.

Manolatou, C.

Morita, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

Pluk, E.

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Safavi-Naeini, S.

Shinojima, H.

Shoji, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Song, M.

Taillaert, D.

Takahashi, J.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

Takahashi, M.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

Tamechika, E.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

Tsuchizawa, T.

Van Campenhout, J.

Van Thourhout, D.

Villeneuve, P. R.

Wang, Z.

Watanabe, T.

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

M. R. Watts and H. A. Haus, “Integrated mode-evolution-based polarization rotators,” Opt. Lett. 30(2), 138–140 (2005).
[CrossRef] [PubMed]

Wiaux, V.

Willner, A. E.

Yamada, K.

Yevick, D. O.

Yu, M.

J. Zhang, M. Yu, G. Lo, and D. L. Kwong, “Silicon waveguide based mode-evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 53–60 (2010).
[CrossRef]

Yue, Y.

Yvind, K.

Zhang, J.

J. Zhang, M. Yu, G. Lo, and D. L. Kwong, “Silicon waveguide based mode-evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 53–60 (2010).
[CrossRef]

Zhang, L.

IEEE J. Sel. Top. Quantum Electron. (2)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005).
[CrossRef]

J. Zhang, M. Yu, G. Lo, and D. L. Kwong, “Silicon waveguide based mode-evolution polarization rotator,” IEEE J. Sel. Top. Quantum Electron. 16(1), 53–60 (2010).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Opt. Express (6)

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express 14(25), 12401–12408 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-25-12401 .
[CrossRef] [PubMed]

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, “A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires,” Opt. Express 15(4), 1567–1578 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-4-1567 .
[CrossRef] [PubMed]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Polarization rotator based on silicon wire waveguides,” Opt. Express 16(4), 2628–2635 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-4-2628 .
[CrossRef] [PubMed]

H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16(7), 4872–4880 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-7-4872 .
[CrossRef] [PubMed]

K. Bayat, S. K. Chaudhuri, and S. Safavi-Naeini, “Ultra-compact photonic crystal based polarization rotator,” Opt. Express 17(9), 7145–7158 (2009), http://www.opticsinfobase.org/abstract.cfm?uri=oe-17-9-7145 .
[CrossRef] [PubMed]

Y. Yue, L. Zhang, M. Song, R. G. Beausoleil, and A. E. Willner, “Higher-order-mode assisted silicon-on-insulator 90 degree polarization rotator,” Opt. Express 17(23), 20694–20699 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-23-20694 .
[CrossRef] [PubMed]

Opt. Lett. (2)

Other (1)

FIMMWAVE/FIMMPROP, Photon Design Ltd, http://www.photond.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic structure and working principle of the proposed polarization splitter and rotator. (a) three-dimensional model; (b) x-y cross-section; (c) x-z cross-section.

Fig. 2
Fig. 2

Effective indices of the fundamental TE and TM modes of an air-cladded SOI wire waveguide with different widths w. The model is shown in the inset. h = 250 nm.

Fig. 3
Fig. 3

Time snap-shots of the fields at steady state within the x-z plane which lies at the center of the SOI wire waveguide in the y direction. The simulation is done by 3D-FDTD with w 1 = 600 nm, w 2 = 333 nm, g = 100 nm, and h = 250 nm. The wavelength is 1550 nm. (a) and (b) are for the case of the TM mode input; (c) and (d) are for the case of the TE mode input. (a) and (c) are distributions of the Ex fileld; (b) and (d) are distributions of the Ey fileld.

Fig. 4
Fig. 4

Simulated transmission coefficients between differently polarized modes from the input-port to the cross-port (a) and the through-port (b). The models are shown in the insets respectively. Here, w 1 = 600 nm, w 2 = 333 nm, g = 100 nm, h = 250 nm, and l = 36.8 μm. The transmission coefficients which are not presented are well below −35dB.

Fig. 5
Fig. 5

(a) Simulated transmission coefficients. Here, w 2 = 332 nm, 333 nm, 334 nm along the solid arrow direction, and the rest of the parameters are the same as those in Fig. 4. (b) Relation between w 1 and w 2 in order to maintain the phase-matching condition at 1550 nm.

Fig. 6
Fig. 6

Scanning electron microscope picture of a fabricated device. Arrows indicate propagation directions of the light.

Fig. 7
Fig. 7

Measured transmission coefficients between different polarized modes from the input-port to the cross-port (a) and the through-port (b).

Fig. 8
Fig. 8

Measured transmission coefficient T c TM-TE of two PSR devices with the same parameters on one SOI die.

Metrics