Abstract

Photodiode nonlinearity measurements using one-, two- and three-tone measurement systems are compared with each other, to investigate the comparison accuracy between setups. The mathematical relationship between each setup is analyzed, and data on multiple devices are compared to find under which conditions the measurements are comparable. It is shown that the three measurement systems can be used interchangeably only when the distortion adheres to the expected mathematical slopes.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. D. Esman and K. J. Williams, “Measurement of harmonic distortion in microwave photodetectors,” IEEE Photon. Technol. Lett. 2(7), 502–504 (1990).
    [CrossRef]
  2. M. N. Draa, J. Ren, D. C. Scott, W. S. Chang, and P. K. L. Yu, “Three laser two-tone setup for measurement of photodiode intercept points,” Opt. Express 16(16), 12108–12113 (2008).
    [CrossRef] [PubMed]
  3. A. Ramaswamy, J. Klamkin, N. Nnoya, L. A. Johansson, L. A. Coldren, and J. E. Bowers, “Three-tone characterization of high-linearity waveguide uni-traveling-carrier photodiodes,” in 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society,2008. LEOS 2008 (IEEE LEOS, 2008), pp. 286–287.
  4. H. Pan, A. Beling, and J. C. Campbell, “High-linearity uni-traveling-carrier photodiodes,” IEEE Photon. Technol. Lett. 21(24), 1855–1857 (2009).
    [CrossRef]
  5. T. Ohno, H. Fukano, Y. Muramoto, T. Ishibashi, T. Yoshimatsu, and Y. Doi, “Measurement of intermodulation distortion in unitraveling-carrier refracting-facet photodiode and a p-i-n refracting-facet photodiode,” IEEE Photon. Technol. Lett. 14(3), 375–377 (2002).
    [CrossRef]
  6. D. C. Scott, T. A. Vang, J. Elliott, D. Forbes, J. Lacey, K. Everett, F. Alvarez, R. Johnson, A. Krispin, J. Brock, L. Lembo, H. Jiang, D. S. Shin, J. T. Zhu, and P. K. L. Yu, “Measurement of IP3 in p-i-n photodetectors and propose performance requirements for RF fiber-optics links,” IEEE Photon. Technol. Lett. 12(4), 422–424 (2000).
    [CrossRef]
  7. H. Jiang, D. S. Shin, G. L. Li, T. A. Vang, D. C. Scott, and P. K. L. Yu, “The frequency behavior of the third-order intercept point in a waveguide photodiode,” IEEE Photon. Technol. Lett. 12(5), 540–542 (2000).
    [CrossRef]
  8. T. Ozeki and E. H. Hara, “Measurement of nonlinear distortion in photodiodes,” Electron. Lett. 12(3), 80–81 (1976).
    [CrossRef]
  9. A. Famaswamy, N. Nunoya, M. Piels, L. A. Johansson, L. A. Coldren, A. S. Hastings, K. J. Williams, and J. Klamkin, “Experimental analysis of two measurement techniques to characterize photodiode linearity,” in International Topical Meeting on Microwave Photonics,2009. MWP '09 (IEEE, 2009), pp. 1642–1644.
  10. A. S. Hastings, D. A. Tulchinsky, and K. J. Williams, “Photodiode nonlinearities due to voltage-dependent responsivity,” IEEE Photon. Technol. Lett. 21(21), 1642–1644 (2009).
    [CrossRef]
  11. V. J. Urick, P. S. Devgan, J. D. McKinney, and J. L. Dexter, “Laser-noise and its impact on the performance of intensity-modulated direct-detection analog photonic links,” NRL Memorandum Report, NRL/MR/5652–07–9065, August 2007.
  12. K. J. Williams, L. T. Nichols, and R. D. Esman, “Photodetector nonlinearity limitations on a high-dynamic range 3GHz fiber optic link,” J. Lightwave Technol. 16(2), 192–199 (1998).
    [CrossRef]
  13. H. Pan, J. C. Campbell, A. Beling, H. Chen, and P. D. Yoder, “A high-linearity modified uni-traveling carrier photodiode with offset effects of nonlinear capacitance,” J. Lightwave Technol. 27(20), 4435–4439 (2009).
    [CrossRef]

2009

H. Pan, A. Beling, and J. C. Campbell, “High-linearity uni-traveling-carrier photodiodes,” IEEE Photon. Technol. Lett. 21(24), 1855–1857 (2009).
[CrossRef]

A. S. Hastings, D. A. Tulchinsky, and K. J. Williams, “Photodiode nonlinearities due to voltage-dependent responsivity,” IEEE Photon. Technol. Lett. 21(21), 1642–1644 (2009).
[CrossRef]

H. Pan, J. C. Campbell, A. Beling, H. Chen, and P. D. Yoder, “A high-linearity modified uni-traveling carrier photodiode with offset effects of nonlinear capacitance,” J. Lightwave Technol. 27(20), 4435–4439 (2009).
[CrossRef]

2008

2002

T. Ohno, H. Fukano, Y. Muramoto, T. Ishibashi, T. Yoshimatsu, and Y. Doi, “Measurement of intermodulation distortion in unitraveling-carrier refracting-facet photodiode and a p-i-n refracting-facet photodiode,” IEEE Photon. Technol. Lett. 14(3), 375–377 (2002).
[CrossRef]

2000

D. C. Scott, T. A. Vang, J. Elliott, D. Forbes, J. Lacey, K. Everett, F. Alvarez, R. Johnson, A. Krispin, J. Brock, L. Lembo, H. Jiang, D. S. Shin, J. T. Zhu, and P. K. L. Yu, “Measurement of IP3 in p-i-n photodetectors and propose performance requirements for RF fiber-optics links,” IEEE Photon. Technol. Lett. 12(4), 422–424 (2000).
[CrossRef]

H. Jiang, D. S. Shin, G. L. Li, T. A. Vang, D. C. Scott, and P. K. L. Yu, “The frequency behavior of the third-order intercept point in a waveguide photodiode,” IEEE Photon. Technol. Lett. 12(5), 540–542 (2000).
[CrossRef]

1998

1990

R. D. Esman and K. J. Williams, “Measurement of harmonic distortion in microwave photodetectors,” IEEE Photon. Technol. Lett. 2(7), 502–504 (1990).
[CrossRef]

1976

T. Ozeki and E. H. Hara, “Measurement of nonlinear distortion in photodiodes,” Electron. Lett. 12(3), 80–81 (1976).
[CrossRef]

Alvarez, F.

D. C. Scott, T. A. Vang, J. Elliott, D. Forbes, J. Lacey, K. Everett, F. Alvarez, R. Johnson, A. Krispin, J. Brock, L. Lembo, H. Jiang, D. S. Shin, J. T. Zhu, and P. K. L. Yu, “Measurement of IP3 in p-i-n photodetectors and propose performance requirements for RF fiber-optics links,” IEEE Photon. Technol. Lett. 12(4), 422–424 (2000).
[CrossRef]

Beling, A.

Brock, J.

D. C. Scott, T. A. Vang, J. Elliott, D. Forbes, J. Lacey, K. Everett, F. Alvarez, R. Johnson, A. Krispin, J. Brock, L. Lembo, H. Jiang, D. S. Shin, J. T. Zhu, and P. K. L. Yu, “Measurement of IP3 in p-i-n photodetectors and propose performance requirements for RF fiber-optics links,” IEEE Photon. Technol. Lett. 12(4), 422–424 (2000).
[CrossRef]

Campbell, J. C.

Chang, W. S.

Chen, H.

Doi, Y.

T. Ohno, H. Fukano, Y. Muramoto, T. Ishibashi, T. Yoshimatsu, and Y. Doi, “Measurement of intermodulation distortion in unitraveling-carrier refracting-facet photodiode and a p-i-n refracting-facet photodiode,” IEEE Photon. Technol. Lett. 14(3), 375–377 (2002).
[CrossRef]

Draa, M. N.

Elliott, J.

D. C. Scott, T. A. Vang, J. Elliott, D. Forbes, J. Lacey, K. Everett, F. Alvarez, R. Johnson, A. Krispin, J. Brock, L. Lembo, H. Jiang, D. S. Shin, J. T. Zhu, and P. K. L. Yu, “Measurement of IP3 in p-i-n photodetectors and propose performance requirements for RF fiber-optics links,” IEEE Photon. Technol. Lett. 12(4), 422–424 (2000).
[CrossRef]

Esman, R. D.

K. J. Williams, L. T. Nichols, and R. D. Esman, “Photodetector nonlinearity limitations on a high-dynamic range 3GHz fiber optic link,” J. Lightwave Technol. 16(2), 192–199 (1998).
[CrossRef]

R. D. Esman and K. J. Williams, “Measurement of harmonic distortion in microwave photodetectors,” IEEE Photon. Technol. Lett. 2(7), 502–504 (1990).
[CrossRef]

Everett, K.

D. C. Scott, T. A. Vang, J. Elliott, D. Forbes, J. Lacey, K. Everett, F. Alvarez, R. Johnson, A. Krispin, J. Brock, L. Lembo, H. Jiang, D. S. Shin, J. T. Zhu, and P. K. L. Yu, “Measurement of IP3 in p-i-n photodetectors and propose performance requirements for RF fiber-optics links,” IEEE Photon. Technol. Lett. 12(4), 422–424 (2000).
[CrossRef]

Forbes, D.

D. C. Scott, T. A. Vang, J. Elliott, D. Forbes, J. Lacey, K. Everett, F. Alvarez, R. Johnson, A. Krispin, J. Brock, L. Lembo, H. Jiang, D. S. Shin, J. T. Zhu, and P. K. L. Yu, “Measurement of IP3 in p-i-n photodetectors and propose performance requirements for RF fiber-optics links,” IEEE Photon. Technol. Lett. 12(4), 422–424 (2000).
[CrossRef]

Fukano, H.

T. Ohno, H. Fukano, Y. Muramoto, T. Ishibashi, T. Yoshimatsu, and Y. Doi, “Measurement of intermodulation distortion in unitraveling-carrier refracting-facet photodiode and a p-i-n refracting-facet photodiode,” IEEE Photon. Technol. Lett. 14(3), 375–377 (2002).
[CrossRef]

Hara, E. H.

T. Ozeki and E. H. Hara, “Measurement of nonlinear distortion in photodiodes,” Electron. Lett. 12(3), 80–81 (1976).
[CrossRef]

Hastings, A. S.

A. S. Hastings, D. A. Tulchinsky, and K. J. Williams, “Photodiode nonlinearities due to voltage-dependent responsivity,” IEEE Photon. Technol. Lett. 21(21), 1642–1644 (2009).
[CrossRef]

Ishibashi, T.

T. Ohno, H. Fukano, Y. Muramoto, T. Ishibashi, T. Yoshimatsu, and Y. Doi, “Measurement of intermodulation distortion in unitraveling-carrier refracting-facet photodiode and a p-i-n refracting-facet photodiode,” IEEE Photon. Technol. Lett. 14(3), 375–377 (2002).
[CrossRef]

Jiang, H.

D. C. Scott, T. A. Vang, J. Elliott, D. Forbes, J. Lacey, K. Everett, F. Alvarez, R. Johnson, A. Krispin, J. Brock, L. Lembo, H. Jiang, D. S. Shin, J. T. Zhu, and P. K. L. Yu, “Measurement of IP3 in p-i-n photodetectors and propose performance requirements for RF fiber-optics links,” IEEE Photon. Technol. Lett. 12(4), 422–424 (2000).
[CrossRef]

H. Jiang, D. S. Shin, G. L. Li, T. A. Vang, D. C. Scott, and P. K. L. Yu, “The frequency behavior of the third-order intercept point in a waveguide photodiode,” IEEE Photon. Technol. Lett. 12(5), 540–542 (2000).
[CrossRef]

Johnson, R.

D. C. Scott, T. A. Vang, J. Elliott, D. Forbes, J. Lacey, K. Everett, F. Alvarez, R. Johnson, A. Krispin, J. Brock, L. Lembo, H. Jiang, D. S. Shin, J. T. Zhu, and P. K. L. Yu, “Measurement of IP3 in p-i-n photodetectors and propose performance requirements for RF fiber-optics links,” IEEE Photon. Technol. Lett. 12(4), 422–424 (2000).
[CrossRef]

Krispin, A.

D. C. Scott, T. A. Vang, J. Elliott, D. Forbes, J. Lacey, K. Everett, F. Alvarez, R. Johnson, A. Krispin, J. Brock, L. Lembo, H. Jiang, D. S. Shin, J. T. Zhu, and P. K. L. Yu, “Measurement of IP3 in p-i-n photodetectors and propose performance requirements for RF fiber-optics links,” IEEE Photon. Technol. Lett. 12(4), 422–424 (2000).
[CrossRef]

Lacey, J.

D. C. Scott, T. A. Vang, J. Elliott, D. Forbes, J. Lacey, K. Everett, F. Alvarez, R. Johnson, A. Krispin, J. Brock, L. Lembo, H. Jiang, D. S. Shin, J. T. Zhu, and P. K. L. Yu, “Measurement of IP3 in p-i-n photodetectors and propose performance requirements for RF fiber-optics links,” IEEE Photon. Technol. Lett. 12(4), 422–424 (2000).
[CrossRef]

Lembo, L.

D. C. Scott, T. A. Vang, J. Elliott, D. Forbes, J. Lacey, K. Everett, F. Alvarez, R. Johnson, A. Krispin, J. Brock, L. Lembo, H. Jiang, D. S. Shin, J. T. Zhu, and P. K. L. Yu, “Measurement of IP3 in p-i-n photodetectors and propose performance requirements for RF fiber-optics links,” IEEE Photon. Technol. Lett. 12(4), 422–424 (2000).
[CrossRef]

Li, G. L.

H. Jiang, D. S. Shin, G. L. Li, T. A. Vang, D. C. Scott, and P. K. L. Yu, “The frequency behavior of the third-order intercept point in a waveguide photodiode,” IEEE Photon. Technol. Lett. 12(5), 540–542 (2000).
[CrossRef]

Muramoto, Y.

T. Ohno, H. Fukano, Y. Muramoto, T. Ishibashi, T. Yoshimatsu, and Y. Doi, “Measurement of intermodulation distortion in unitraveling-carrier refracting-facet photodiode and a p-i-n refracting-facet photodiode,” IEEE Photon. Technol. Lett. 14(3), 375–377 (2002).
[CrossRef]

Nichols, L. T.

Ohno, T.

T. Ohno, H. Fukano, Y. Muramoto, T. Ishibashi, T. Yoshimatsu, and Y. Doi, “Measurement of intermodulation distortion in unitraveling-carrier refracting-facet photodiode and a p-i-n refracting-facet photodiode,” IEEE Photon. Technol. Lett. 14(3), 375–377 (2002).
[CrossRef]

Ozeki, T.

T. Ozeki and E. H. Hara, “Measurement of nonlinear distortion in photodiodes,” Electron. Lett. 12(3), 80–81 (1976).
[CrossRef]

Pan, H.

Ren, J.

Scott, D. C.

M. N. Draa, J. Ren, D. C. Scott, W. S. Chang, and P. K. L. Yu, “Three laser two-tone setup for measurement of photodiode intercept points,” Opt. Express 16(16), 12108–12113 (2008).
[CrossRef] [PubMed]

D. C. Scott, T. A. Vang, J. Elliott, D. Forbes, J. Lacey, K. Everett, F. Alvarez, R. Johnson, A. Krispin, J. Brock, L. Lembo, H. Jiang, D. S. Shin, J. T. Zhu, and P. K. L. Yu, “Measurement of IP3 in p-i-n photodetectors and propose performance requirements for RF fiber-optics links,” IEEE Photon. Technol. Lett. 12(4), 422–424 (2000).
[CrossRef]

H. Jiang, D. S. Shin, G. L. Li, T. A. Vang, D. C. Scott, and P. K. L. Yu, “The frequency behavior of the third-order intercept point in a waveguide photodiode,” IEEE Photon. Technol. Lett. 12(5), 540–542 (2000).
[CrossRef]

Shin, D. S.

H. Jiang, D. S. Shin, G. L. Li, T. A. Vang, D. C. Scott, and P. K. L. Yu, “The frequency behavior of the third-order intercept point in a waveguide photodiode,” IEEE Photon. Technol. Lett. 12(5), 540–542 (2000).
[CrossRef]

D. C. Scott, T. A. Vang, J. Elliott, D. Forbes, J. Lacey, K. Everett, F. Alvarez, R. Johnson, A. Krispin, J. Brock, L. Lembo, H. Jiang, D. S. Shin, J. T. Zhu, and P. K. L. Yu, “Measurement of IP3 in p-i-n photodetectors and propose performance requirements for RF fiber-optics links,” IEEE Photon. Technol. Lett. 12(4), 422–424 (2000).
[CrossRef]

Tulchinsky, D. A.

A. S. Hastings, D. A. Tulchinsky, and K. J. Williams, “Photodiode nonlinearities due to voltage-dependent responsivity,” IEEE Photon. Technol. Lett. 21(21), 1642–1644 (2009).
[CrossRef]

Vang, T. A.

H. Jiang, D. S. Shin, G. L. Li, T. A. Vang, D. C. Scott, and P. K. L. Yu, “The frequency behavior of the third-order intercept point in a waveguide photodiode,” IEEE Photon. Technol. Lett. 12(5), 540–542 (2000).
[CrossRef]

D. C. Scott, T. A. Vang, J. Elliott, D. Forbes, J. Lacey, K. Everett, F. Alvarez, R. Johnson, A. Krispin, J. Brock, L. Lembo, H. Jiang, D. S. Shin, J. T. Zhu, and P. K. L. Yu, “Measurement of IP3 in p-i-n photodetectors and propose performance requirements for RF fiber-optics links,” IEEE Photon. Technol. Lett. 12(4), 422–424 (2000).
[CrossRef]

Williams, K. J.

A. S. Hastings, D. A. Tulchinsky, and K. J. Williams, “Photodiode nonlinearities due to voltage-dependent responsivity,” IEEE Photon. Technol. Lett. 21(21), 1642–1644 (2009).
[CrossRef]

K. J. Williams, L. T. Nichols, and R. D. Esman, “Photodetector nonlinearity limitations on a high-dynamic range 3GHz fiber optic link,” J. Lightwave Technol. 16(2), 192–199 (1998).
[CrossRef]

R. D. Esman and K. J. Williams, “Measurement of harmonic distortion in microwave photodetectors,” IEEE Photon. Technol. Lett. 2(7), 502–504 (1990).
[CrossRef]

Yoder, P. D.

Yoshimatsu, T.

T. Ohno, H. Fukano, Y. Muramoto, T. Ishibashi, T. Yoshimatsu, and Y. Doi, “Measurement of intermodulation distortion in unitraveling-carrier refracting-facet photodiode and a p-i-n refracting-facet photodiode,” IEEE Photon. Technol. Lett. 14(3), 375–377 (2002).
[CrossRef]

Yu, P. K. L.

M. N. Draa, J. Ren, D. C. Scott, W. S. Chang, and P. K. L. Yu, “Three laser two-tone setup for measurement of photodiode intercept points,” Opt. Express 16(16), 12108–12113 (2008).
[CrossRef] [PubMed]

D. C. Scott, T. A. Vang, J. Elliott, D. Forbes, J. Lacey, K. Everett, F. Alvarez, R. Johnson, A. Krispin, J. Brock, L. Lembo, H. Jiang, D. S. Shin, J. T. Zhu, and P. K. L. Yu, “Measurement of IP3 in p-i-n photodetectors and propose performance requirements for RF fiber-optics links,” IEEE Photon. Technol. Lett. 12(4), 422–424 (2000).
[CrossRef]

H. Jiang, D. S. Shin, G. L. Li, T. A. Vang, D. C. Scott, and P. K. L. Yu, “The frequency behavior of the third-order intercept point in a waveguide photodiode,” IEEE Photon. Technol. Lett. 12(5), 540–542 (2000).
[CrossRef]

Zhu, J. T.

D. C. Scott, T. A. Vang, J. Elliott, D. Forbes, J. Lacey, K. Everett, F. Alvarez, R. Johnson, A. Krispin, J. Brock, L. Lembo, H. Jiang, D. S. Shin, J. T. Zhu, and P. K. L. Yu, “Measurement of IP3 in p-i-n photodetectors and propose performance requirements for RF fiber-optics links,” IEEE Photon. Technol. Lett. 12(4), 422–424 (2000).
[CrossRef]

Electron. Lett.

T. Ozeki and E. H. Hara, “Measurement of nonlinear distortion in photodiodes,” Electron. Lett. 12(3), 80–81 (1976).
[CrossRef]

IEEE Photon. Technol. Lett.

A. S. Hastings, D. A. Tulchinsky, and K. J. Williams, “Photodiode nonlinearities due to voltage-dependent responsivity,” IEEE Photon. Technol. Lett. 21(21), 1642–1644 (2009).
[CrossRef]

H. Pan, A. Beling, and J. C. Campbell, “High-linearity uni-traveling-carrier photodiodes,” IEEE Photon. Technol. Lett. 21(24), 1855–1857 (2009).
[CrossRef]

T. Ohno, H. Fukano, Y. Muramoto, T. Ishibashi, T. Yoshimatsu, and Y. Doi, “Measurement of intermodulation distortion in unitraveling-carrier refracting-facet photodiode and a p-i-n refracting-facet photodiode,” IEEE Photon. Technol. Lett. 14(3), 375–377 (2002).
[CrossRef]

D. C. Scott, T. A. Vang, J. Elliott, D. Forbes, J. Lacey, K. Everett, F. Alvarez, R. Johnson, A. Krispin, J. Brock, L. Lembo, H. Jiang, D. S. Shin, J. T. Zhu, and P. K. L. Yu, “Measurement of IP3 in p-i-n photodetectors and propose performance requirements for RF fiber-optics links,” IEEE Photon. Technol. Lett. 12(4), 422–424 (2000).
[CrossRef]

H. Jiang, D. S. Shin, G. L. Li, T. A. Vang, D. C. Scott, and P. K. L. Yu, “The frequency behavior of the third-order intercept point in a waveguide photodiode,” IEEE Photon. Technol. Lett. 12(5), 540–542 (2000).
[CrossRef]

R. D. Esman and K. J. Williams, “Measurement of harmonic distortion in microwave photodetectors,” IEEE Photon. Technol. Lett. 2(7), 502–504 (1990).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

A. Ramaswamy, J. Klamkin, N. Nnoya, L. A. Johansson, L. A. Coldren, and J. E. Bowers, “Three-tone characterization of high-linearity waveguide uni-traveling-carrier photodiodes,” in 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society,2008. LEOS 2008 (IEEE LEOS, 2008), pp. 286–287.

V. J. Urick, P. S. Devgan, J. D. McKinney, and J. L. Dexter, “Laser-noise and its impact on the performance of intensity-modulated direct-detection analog photonic links,” NRL Memorandum Report, NRL/MR/5652–07–9065, August 2007.

A. Famaswamy, N. Nunoya, M. Piels, L. A. Johansson, L. A. Coldren, A. S. Hastings, K. J. Williams, and J. Klamkin, “Experimental analysis of two measurement techniques to characterize photodiode linearity,” in International Topical Meeting on Microwave Photonics,2009. MWP '09 (IEEE, 2009), pp. 1642–1644.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Five laser two-tone heterodyne setup

Fig. 2
Fig. 2

Four laser three-tone MZM measurement setup

Fig. 3
Fig. 3

OIP2 versus bias voltage for a PD3000 photodiode, using one-, two- and three-tone measurement setups. Fundamental frequency f = 100MHz, with frequency spacing Δf = 10MHz and total photocurrent = 10mA. One- and three-tone data are shifted according to Eq. (10) to mathematically match the two-tone data. One-tone data for 5MHz fundamental included (red solid triangles).

Fig. 4
Fig. 4

OIP3 versus bias voltage for a PD3000 photodiode, using one-, two- and three-tone measurement setups. Fundamental frequency f = 100MHz, with frequency spacing Δf = 10MHz and total photocurrent = 10mA. Only distortion near f is plotted. One- and three-tone data are according to Eq. (11) to mathematically match the two-tone data. One-tone data for 33MHz fundamental included (red solid triangles).

Fig. 5
Fig. 5

OIP3 versus bias voltage for a PD3000 photodiode, using one-, two- and three-tone measurement setups. Fundamental frequency f = 100MHz, with frequency spacing Δf = 10MHz and total photocurrent = 10mA. Only distortion near 3·f is plotted. One- and three-tone data are according to Eq. (11) to mathematically match the two-tone data.

Fig. 6
Fig. 6

Plots of the electric field vs. time for one-tone (top), two-tone (middle) and three-tone (bottom) measurements.

Fig. 7
Fig. 7

Fundamental and selected second and third order distortion power versus modulation depth at 2.5V bias for a PD3000 photodiode. Fundamental frequency f = 100MHz, with frequency spacing Δf = 10MHz and total photocurrent = 10mA. One- and three-tone data are according to Eq. (10) and Eq. (11) to mathematically match the two-tone data.

Fig. 8
Fig. 8

Slope of (a) IMD2/HD2 and (b) IMD3/HD3 vs. bias voltage for PD3000 for all three setups.

Fig. 9
Fig. 9

(a) OIP2 vs. bias voltage for PD1000 at center frequency 100MHz with 10MHz spacing at 10mA photocurrent for one-, two- and three-tone setups and (b) IMD2/H23 slope vs. bias voltage for PD1000. In (a), one- and three-tone data are according to Eq. (10) to mathematically match the two-tone data.

Fig. 10
Fig. 10

(a) OIP2 vs. bias voltage for Device C at center frequency 100MHz with 10MHz spacing at 10mA photocurrent for one-, two- and three-tone setups and (b) IMD2/HD2 slope vs. bias voltage for Device C. In (a), one- and three-tone data are according to Eq. (10) to mathematically match the two-tone data.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I = P ( t ) ( x )
( x ) ( a ) + ( a ) ( x a ) + ( a ) 2 ( x a ) 2
P ( t ) = P a v g [ 1 + ( l = 1 k m l sin ( ω l t ) ) ]
x δ P ( t )
I = c 1 P ( t ) + c 2 P 2 ( t ) + c 3 P 3 ( t )
I = P a v g { c 1 [ 1 + m 1 sin ( ω 1 t ) ] + c 2 [ 1 + 2 m 1 sin ( ω 1 t ) + m 1 2 2 ( 1 cos ( 2 ω 1 t ) ) ] + c 3 [ 1 + 3 m 1 sin ( ω 1 t ) + 3 m 1 2 2 ( 1 cos ( 2 ω 1 t ) ) + m 1 3 4 ( 3 sin ( ω 1 t ) sin ( 3 ω 1 t ) ) ] }
H D 2 1 t + 6 = I M D 2 2 t = I M D 2 3 t   (dBm)
H D 3 1 t + 9.54 = I M D 3 2 t = I M D 3 3 t 6   (dBm)
O I P 2 = 2 F I M D 2   (dBm)
O I P 3 = 3 2 F 1 2 I M D 3   (dBm)
O I P 2 1 t 6 = O I P 2 2 t = O I P 2 3 t   (dBm)
O I P 3 1 t 4.77 = O I P 3 2 t = O I P 3 3 t + 3   (dBm)

Metrics