Abstract

Multichannel Fourier transform interferometry to measure the spectrum of arbitrarily short pulses and of fast time-varying signals was achieved using a micro/nanomanufactured multimirror array. We describe the performance of a demonstrator FTIR that works in the mid-infrared (MIR) range of 700-1400 cm−1 and reaches a spectral resolution of 10 cm−1 taking into account apodization. Spectral measurements down to pulse lengths of 319 µs were carried out using a mechanical camera shutter. Arbitrarily short pulses are expected feasible provided the source can deliver enough photons to overcome the noise equivalent number of photons.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, 1972).
  2. L. Genzel, “Fourier-Transform-Spektroskopie im Infraroten”, Fresenius’ J. Anal. Chem. 273, 391–400 (1975).
    [CrossRef]
  3. E. B. Brown, Modern Optics (Reinhold Publishing Corporation, Chapman&Hall Ltd, 1966), pp. 437–441.
    [PubMed]
  4. J. Strong and J. Vanasse, “Applications of Fourier Transformation in Optics: Interferometric Spectroscopy” in Concepts in Classical Optics, J. Strong (W.H. Freeman&Co., 1958), pp. 419–434.
  5. Bruker Optics, “Step and Rapid Scan,” http://www.brukeroptics.com/stepscan.html .
  6. G. D. Smith and R. A. Palmer, “Fast Time-resolved Mid-infrared Spectroscopy Using an Interferometer,” in Handbook of Vibrational Spectroscopy: Volume 1, (John Wiley and Sons Ltd, 2002).
  7. D. Baurecht, “Schwingungs-Spektroskopie,” p. 32 (2009) http://www.bpc.univie.ac.at/fileadmin/ user_upload/inst_bio_phys_chem/pub/db_IR_und_Raman-Theorie.pdf .
  8. M. Hashimoto and S. Kawata, “Multichannel Fourier-transform infrared spectrometer,” Appl. Opt. 31(28), 6096–6101 (1992).
    [CrossRef] [PubMed]
  9. H. O. Moser and K. D. Möller, “Gitterstruktur und deren Verwendung”, European patent EP 0 765 488 B1, June 18, 1994.
  10. O. Manzardo, R. Michaely, F. Schädelin, W. Noell, T. Overstolz, N. De Rooij, and H. P. Herzig, “Miniature lamellar grating interferometer based on silicon technology,” Opt. Lett. 29(13), 1437–1439 (2004).
    [CrossRef] [PubMed]
  11. T. Scharf, D. Briand, S. Buehler, O. Manzardo, H. P. Herzig, and N. F. de Rooij, “Miniaturized Fourier Trans-form Spectrometer for Gas Detection in the MIR Region,” Sens. Actuators B Chem. 147(1), 116–121 (2010).
    [CrossRef]
  12. O. Manzardo, Micro-sized Fourier spectrometers, PhD thesis, University of Neuchatel, (1999).
  13. P. R. Griffiths, B. L. Hirsche, and C. J. Manning, “Ultra-Rapid-Scanning Fourier Transform Infrared Spectrometry,” Vib. Spectrosc. 19(1), 165–176 (1999).
    [CrossRef]
  14. K. D. Möller and C. Belorgeot, Cours d’optique, (Springer Verlag France, Paris, 2007), pp. 190.
  15. S. P. Heussler, Design, Micro-Manufacturing, and Characterization of a New Fast Parallel-Processing Fourier Transform Interferometer (FTIR) with Single Non-Periodic Pulse Capability, PhD thesis, National University of Singapore, unpublished (2010).
  16. E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Muenchmeyer, “Fabrication of Microstructures With High Aspect Ratios and Great Structural Heights by Synchrotron Radiation Lithography, Galvanoforming, and Plastic Moulding (LIGA Process),” Microelectron. Eng. 4(1), 35–56 (1986).
    [CrossRef]
  17. S.P. Heussler, H.O. Moser, 3D micro/nanomanufacturing of arbitrary multilevel plane surfaces, US Provisional Application No.: 61/407,502, Filing Date: 28 October 2010.
  18. C. S.-C. Yang, E. E. Brown, U. H. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared emission from laser-induced breakdown spectroscopy,” Appl. Spectrosc. 61(3), 321–326 (2007).
    [CrossRef] [PubMed]

2010

T. Scharf, D. Briand, S. Buehler, O. Manzardo, H. P. Herzig, and N. F. de Rooij, “Miniaturized Fourier Trans-form Spectrometer for Gas Detection in the MIR Region,” Sens. Actuators B Chem. 147(1), 116–121 (2010).
[CrossRef]

2007

2004

1999

P. R. Griffiths, B. L. Hirsche, and C. J. Manning, “Ultra-Rapid-Scanning Fourier Transform Infrared Spectrometry,” Vib. Spectrosc. 19(1), 165–176 (1999).
[CrossRef]

1992

1986

E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Muenchmeyer, “Fabrication of Microstructures With High Aspect Ratios and Great Structural Heights by Synchrotron Radiation Lithography, Galvanoforming, and Plastic Moulding (LIGA Process),” Microelectron. Eng. 4(1), 35–56 (1986).
[CrossRef]

1975

L. Genzel, “Fourier-Transform-Spektroskopie im Infraroten”, Fresenius’ J. Anal. Chem. 273, 391–400 (1975).
[CrossRef]

Becker, E. W.

E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Muenchmeyer, “Fabrication of Microstructures With High Aspect Ratios and Great Structural Heights by Synchrotron Radiation Lithography, Galvanoforming, and Plastic Moulding (LIGA Process),” Microelectron. Eng. 4(1), 35–56 (1986).
[CrossRef]

Briand, D.

T. Scharf, D. Briand, S. Buehler, O. Manzardo, H. P. Herzig, and N. F. de Rooij, “Miniaturized Fourier Trans-form Spectrometer for Gas Detection in the MIR Region,” Sens. Actuators B Chem. 147(1), 116–121 (2010).
[CrossRef]

Brown, E. E.

Buehler, S.

T. Scharf, D. Briand, S. Buehler, O. Manzardo, H. P. Herzig, and N. F. de Rooij, “Miniaturized Fourier Trans-form Spectrometer for Gas Detection in the MIR Region,” Sens. Actuators B Chem. 147(1), 116–121 (2010).
[CrossRef]

De Rooij, N.

de Rooij, N. F.

T. Scharf, D. Briand, S. Buehler, O. Manzardo, H. P. Herzig, and N. F. de Rooij, “Miniaturized Fourier Trans-form Spectrometer for Gas Detection in the MIR Region,” Sens. Actuators B Chem. 147(1), 116–121 (2010).
[CrossRef]

Ehrfeld, W.

E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Muenchmeyer, “Fabrication of Microstructures With High Aspect Ratios and Great Structural Heights by Synchrotron Radiation Lithography, Galvanoforming, and Plastic Moulding (LIGA Process),” Microelectron. Eng. 4(1), 35–56 (1986).
[CrossRef]

Genzel, L.

L. Genzel, “Fourier-Transform-Spektroskopie im Infraroten”, Fresenius’ J. Anal. Chem. 273, 391–400 (1975).
[CrossRef]

Griffiths, P. R.

P. R. Griffiths, B. L. Hirsche, and C. J. Manning, “Ultra-Rapid-Scanning Fourier Transform Infrared Spectrometry,” Vib. Spectrosc. 19(1), 165–176 (1999).
[CrossRef]

Hagmann, P.

E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Muenchmeyer, “Fabrication of Microstructures With High Aspect Ratios and Great Structural Heights by Synchrotron Radiation Lithography, Galvanoforming, and Plastic Moulding (LIGA Process),” Microelectron. Eng. 4(1), 35–56 (1986).
[CrossRef]

Hashimoto, M.

Herzig, H. P.

T. Scharf, D. Briand, S. Buehler, O. Manzardo, H. P. Herzig, and N. F. de Rooij, “Miniaturized Fourier Trans-form Spectrometer for Gas Detection in the MIR Region,” Sens. Actuators B Chem. 147(1), 116–121 (2010).
[CrossRef]

O. Manzardo, R. Michaely, F. Schädelin, W. Noell, T. Overstolz, N. De Rooij, and H. P. Herzig, “Miniature lamellar grating interferometer based on silicon technology,” Opt. Lett. 29(13), 1437–1439 (2004).
[CrossRef] [PubMed]

Hirsche, B. L.

P. R. Griffiths, B. L. Hirsche, and C. J. Manning, “Ultra-Rapid-Scanning Fourier Transform Infrared Spectrometry,” Vib. Spectrosc. 19(1), 165–176 (1999).
[CrossRef]

Hommerich, U. H.

Kawata, S.

Maner, A.

E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Muenchmeyer, “Fabrication of Microstructures With High Aspect Ratios and Great Structural Heights by Synchrotron Radiation Lithography, Galvanoforming, and Plastic Moulding (LIGA Process),” Microelectron. Eng. 4(1), 35–56 (1986).
[CrossRef]

Manning, C. J.

P. R. Griffiths, B. L. Hirsche, and C. J. Manning, “Ultra-Rapid-Scanning Fourier Transform Infrared Spectrometry,” Vib. Spectrosc. 19(1), 165–176 (1999).
[CrossRef]

Manzardo, O.

T. Scharf, D. Briand, S. Buehler, O. Manzardo, H. P. Herzig, and N. F. de Rooij, “Miniaturized Fourier Trans-form Spectrometer for Gas Detection in the MIR Region,” Sens. Actuators B Chem. 147(1), 116–121 (2010).
[CrossRef]

O. Manzardo, R. Michaely, F. Schädelin, W. Noell, T. Overstolz, N. De Rooij, and H. P. Herzig, “Miniature lamellar grating interferometer based on silicon technology,” Opt. Lett. 29(13), 1437–1439 (2004).
[CrossRef] [PubMed]

Michaely, R.

Muenchmeyer, D.

E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Muenchmeyer, “Fabrication of Microstructures With High Aspect Ratios and Great Structural Heights by Synchrotron Radiation Lithography, Galvanoforming, and Plastic Moulding (LIGA Process),” Microelectron. Eng. 4(1), 35–56 (1986).
[CrossRef]

Noell, W.

Overstolz, T.

Samuels, A. C.

Schädelin, F.

Scharf, T.

T. Scharf, D. Briand, S. Buehler, O. Manzardo, H. P. Herzig, and N. F. de Rooij, “Miniaturized Fourier Trans-form Spectrometer for Gas Detection in the MIR Region,” Sens. Actuators B Chem. 147(1), 116–121 (2010).
[CrossRef]

Snyder, A. P.

Trivedi, S. B.

Yang, C. S.-C.

Appl. Opt.

Appl. Spectrosc.

Fresenius’ J. Anal. Chem.

L. Genzel, “Fourier-Transform-Spektroskopie im Infraroten”, Fresenius’ J. Anal. Chem. 273, 391–400 (1975).
[CrossRef]

Microelectron. Eng.

E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, and D. Muenchmeyer, “Fabrication of Microstructures With High Aspect Ratios and Great Structural Heights by Synchrotron Radiation Lithography, Galvanoforming, and Plastic Moulding (LIGA Process),” Microelectron. Eng. 4(1), 35–56 (1986).
[CrossRef]

Opt. Lett.

Sens. Actuators B Chem.

T. Scharf, D. Briand, S. Buehler, O. Manzardo, H. P. Herzig, and N. F. de Rooij, “Miniaturized Fourier Trans-form Spectrometer for Gas Detection in the MIR Region,” Sens. Actuators B Chem. 147(1), 116–121 (2010).
[CrossRef]

Vib. Spectrosc.

P. R. Griffiths, B. L. Hirsche, and C. J. Manning, “Ultra-Rapid-Scanning Fourier Transform Infrared Spectrometry,” Vib. Spectrosc. 19(1), 165–176 (1999).
[CrossRef]

Other

K. D. Möller and C. Belorgeot, Cours d’optique, (Springer Verlag France, Paris, 2007), pp. 190.

S. P. Heussler, Design, Micro-Manufacturing, and Characterization of a New Fast Parallel-Processing Fourier Transform Interferometer (FTIR) with Single Non-Periodic Pulse Capability, PhD thesis, National University of Singapore, unpublished (2010).

S.P. Heussler, H.O. Moser, 3D micro/nanomanufacturing of arbitrary multilevel plane surfaces, US Provisional Application No.: 61/407,502, Filing Date: 28 October 2010.

R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic, 1972).

O. Manzardo, Micro-sized Fourier spectrometers, PhD thesis, University of Neuchatel, (1999).

H. O. Moser and K. D. Möller, “Gitterstruktur und deren Verwendung”, European patent EP 0 765 488 B1, June 18, 1994.

E. B. Brown, Modern Optics (Reinhold Publishing Corporation, Chapman&Hall Ltd, 1966), pp. 437–441.
[PubMed]

J. Strong and J. Vanasse, “Applications of Fourier Transformation in Optics: Interferometric Spectroscopy” in Concepts in Classical Optics, J. Strong (W.H. Freeman&Co., 1958), pp. 419–434.

Bruker Optics, “Step and Rapid Scan,” http://www.brukeroptics.com/stepscan.html .

G. D. Smith and R. A. Palmer, “Fast Time-resolved Mid-infrared Spectroscopy Using an Interferometer,” in Handbook of Vibrational Spectroscopy: Volume 1, (John Wiley and Sons Ltd, 2002).

D. Baurecht, “Schwingungs-Spektroskopie,” p. 32 (2009) http://www.bpc.univie.ac.at/fileadmin/ user_upload/inst_bio_phys_chem/pub/db_IR_und_Raman-Theorie.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Multimirror array (MMA) with a chess-board-like area of stepped planes that represent the bottom mirrors and a multitude of lamellae the top ridges of which embody the top mirrors (left). Denomination of angles (right): k wave vector of incident plane wave, γ the angle between k and its projection onto the x-z plane, φ the angle between the projection of k onto the x-z plane and the x axis. (b) Extract of simulated and measured interferograms for a spectrum produced by a narrow bandpass filter centered at 961 cm−1 for a Gaussian transmission peak of spectral beam-width (FHWM) of 20 cm−1. (c) Optical layout of MC-FTIR. Mirrors M2 and M3 can be optionally removed. (d) Experimental set up of the MC-FTIR. Image width 50 cm.

Fig. 2
Fig. 2

(a) SEM of a fractional area of the MMA. Grooves deepen towards the right. Scale bar 500 μm. (b) Average surface roughness (Ra) of groove bottoms versus etch depth.

Fig. 3
Fig. 3

(a) Comparison of normalized spectra of a narrow bandpass filter taken with the IFS 66 interferometer over 60 s (solid line) and MC-FTIR taken at 20 ms (dashed line). (b) Shape of measured spectrum versus exposure duration ranging from 31.48 ms to 320 µs. Spectra are shifted vertically for better viewing. For all measurements, the pulse duration was reproducible within a tolerance of 20 µs.

Tables (1)

Tables Icon

Table 1 Geometric Parameters of MMA

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

u 1 ( k,x,t ) = g ( k ) A 1 ( t ) e i ( kx ωt )
u 2 ( k,x,t ) = g ( k ) A 2 ( t ) e i [ k ( x δ ( t ) ) ωt ]
J ( δ,t ) = ( A 1 2 ( t ) + A 2 2 ( t ) ) 0 G ( k ) dk + 2A 1 ( t ) A 2 ( t ) 0 G ( k ) cos ( ) dk
S ( δ ) = 0 G ( k ) cos ( k δ ) d k
G ( k ) = 0 S ( k ) cos ( k δ ) d δ
S ( δ ) = J ( δ,t ) ( A 1 2 ( t ) + A 2 2 ( t ) ) S ( 0 ) 2A 1 ( t ) A 2 ( t )
J [ sin ( 1 2 k w sin α ) 1 2 k w sin α ] 2 [ sin ( 1 2 k l sin β ) 1 2 k l sin β ] 2 [ sin ( 1 2 k w N sin α ) k w sin α ] 2 cos [ 1 2 k ( w sin ( α ) + 2 h cos γ sin φ ) ] 2

Metrics