Abstract

Quite recently Cerenkov luminescence imaging (CLI) has been introduced as a novel pre-clinical imaging for the in vivo imaging of small animals such as mice. The CLI method is based on the detection of Cerenkov radiation (CR) generated by beta particles as they travel into the animal tissues with an energy such that Cerenkov emission condition is satisfied. This paper describes an image reconstruction method called multi spectral diffuse Cerenkov luminescence tomography (msCLT) in order to obtain 3D images from the detection of CR. The multispectral approach is based on a set of 2D planar images acquired using a number of narrow bandpass filters, and the distinctive information content at each wavelength is used in the 3D image reconstruction process. The proposed msCLT method was tested both in vitro and in vivo using 32P-ATP and all the images were acquired by using the IVIS 200 small animal optical imager (Caliper Life Sciences, Alameda USA). Source depth estimation and spatial resolution measurements were performed using a small capillary source placed between several slices of chicken breast. The theoretical Cerenkov emission spectrum and optical properties of chicken breast were used in the modelling of photon propagation. In vivo imaging was performed by injecting control nude mice with 10 MBq of 32P-ATP and the 3D tracer bio-distribution was reconstructed. Whole body MRI was acquired to provide an anatomical localization of the Cerenkov emission. The spatial resolution obtained from the msCLT reconstructed images of the capillary source showed that the FWHM is about 1.5 mm for a 6 mm depth. Co-registered MRI images showed that the Cerenkov emission regions matches fairly well with anatomical regions, such as the brain, heart and abdomen. Ex vivo imaging of the different organs such as intestine, brain, heart and ribs further confirms these findings. We conclude that in vivo 3D bio-distribution of a pure beta-minus emitting radiopharmaceutical such as 32P-ATP can be obtained using the msCLT reconstruction approach.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Contag, D. Jenkins, P. R. Contag, and R. S. Negrin, “Use of reporter genes for optical measurements of neoplastic disease in vivo,” Neoplasia 2(1/2), 41–52 (2000).
    [CrossRef] [PubMed]
  2. S. Gross and D. Piwnica-Worms, “Real-time imaging of ligand-induced IKK activation in intact cells and in living mice,” Nat. Methods 2(8), 607–614 (2005).
    [CrossRef] [PubMed]
  3. V. Ntziachristos, “Optical imaging of molecular signatures in pulmonary inflammation,” Proc. Am. Thorac. Soc. 6(5), 416–418 (2009).
    [CrossRef] [PubMed]
  4. K. P. Francis, J. Yu, C. Bellinger-Kawahara, D. Joh, M. J. Hawkinson, G. Xiao, T. F. Purchio, M. G. Caparon, M. Lipsitch, and P. R. Contag, “Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel gram-positive lux transposon,” Infect. Immun. 69(5), 3350–3358 (2001).
    [CrossRef] [PubMed]
  5. R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva, “Optical imaging of Cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol. 54(16), N355–N365 (2009).
    [CrossRef] [PubMed]
  6. A. E. Spinelli, D. D’Ambrosio, L. Calderan, M. Marengo, A. Sbarbati, and F. Boschi, “Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers,” Phys. Med. Biol. 55(2), 483–495 (2010).
    [CrossRef]
  7. F. Boschi, L. Calderan, D. D'Ambrosio, M. Marengo, A. Fenzi, R. Calandrino, A. Sbarbati, and A. E. Spinelli, “In vivo (18)F-FDG tumour uptake measurements in small animals using Cerenkov radiation,” Eur. J. Nucl. Med. 38(1), 120–127 (2011).
    [CrossRef]
  8. A. E. Spinelli, F. Boschi, D. D'Ambrosio, L. Calderan, M. Marengo, A. Fenzi, A. Sbarbati, A. Del Vecchio, and R. Calandrino, “Cerenkov radiation imaging of beta emitters: in vitro and in vivo results,” Nucl. Instr. Meth. A . in press., doi:.
  9. G. Lucignani, “Čerenkov radioactive optical imaging: a promising new strategy,” Eur. J. Nucl. Med. Mol. Imaging 38(3), 592–595 (2011).
    [CrossRef]
  10. P. A. Cerenkov, “Visible emission of clean liquids by action of γ radiation,” C. R. Dokl. Akad. Nauk. SSSR 2, 451–454 (1934).
  11. H. Liu, G. Ren, Z. Miao, X. Zhang, X. Tang, P. Han, S. S. Gambhir, and Z. Cheng, “Molecular optical imaging with radioactive probes,” PLoS ONE 5(3), e9470 (2010).
    [CrossRef] [PubMed]
  12. A. Ruggiero, J. P. Holland, J. S. Lewis, and J. Grimm, “Cerenkov luminescence imaging of medical isotopes,” J. Nucl. Med. 51(7), 1123–1130 (2010).
    [CrossRef] [PubMed]
  13. M. A. Lewis, V. D. Kodibagkar, O. K. Öz, and R. P. Mason, “On the potential for molecular imaging with Cerenkov luminescence,” Opt. Lett. 35(23), 3889–3891 (2010).
    [CrossRef] [PubMed]
  14. C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12(2), 024007 (2007).
    [CrossRef] [PubMed]
  15. C. Li, G. S. Mitchell, and S. R. Cherry, “Cerenkov luminescence tomography for small-animal imaging,” Opt. Lett. 35(7), 1109–1111 (2010).
    [CrossRef] [PubMed]
  16. Z. Hu, J. Liang, W. Yang, W. Fan, C. Li, X. Ma, X. Chen, X. Ma, X. Li, X. Qu, J. Wang, F. Cao, and J. Tian, “Experimental Cerenkov luminescence tomography of the mouse model with SPECT imaging validation,” Opt. Express 18(24), 24441–24450 (2010).
    [CrossRef] [PubMed]
  17. J. V. Jelley, “Cerenkov Radiation and Its Applications”, (Pergamon, London, 1958).
  18. G. Marquez, L. V. Wang, S. P. Lin, J. A. Schwartz, and S. L. Thomsen, “Anisotropy in the absorption and scattering spectra of chicken breast tissue,” Appl. Opt. 37(4), 798–804 (1998).
    [CrossRef]
  19. J. Virostko, A. C. Powers, and E. D. Jansen, “Validation of luminescent source reconstruction using single-view spectrally resolved bioluminescence images,” Appl. Opt. 46(13), 2540–2547 (2007).
    [CrossRef] [PubMed]
  20. K. Magota, N. Kubo, Y. Kuge, K. I. Nishijima, S. Zhao, and N. Tamaki, “Performance characterization of the Inveon preclinical small-animal PET/SPECT/CT system for multimodality imaging,” Eur. J. Nucl. Med. in press., doi:.
  21. P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15(13), 8043–8058 (2007).
    [CrossRef] [PubMed]
  22. L. Herve, A. Da Silva, A. Koenig, J. M. Dinten, J. Boutet, M. Berger, I. Texier, P. Peltie, and P. Rizo, “Fluorescence tomography enhanced by taking into account the medium heterogeneity,” Nucl. Instr. Meth. A 571(1-2), 60–63 (2007).
    [CrossRef]

2011 (2)

F. Boschi, L. Calderan, D. D'Ambrosio, M. Marengo, A. Fenzi, R. Calandrino, A. Sbarbati, and A. E. Spinelli, “In vivo (18)F-FDG tumour uptake measurements in small animals using Cerenkov radiation,” Eur. J. Nucl. Med. 38(1), 120–127 (2011).
[CrossRef]

G. Lucignani, “Čerenkov radioactive optical imaging: a promising new strategy,” Eur. J. Nucl. Med. Mol. Imaging 38(3), 592–595 (2011).
[CrossRef]

2010 (6)

A. E. Spinelli, D. D’Ambrosio, L. Calderan, M. Marengo, A. Sbarbati, and F. Boschi, “Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers,” Phys. Med. Biol. 55(2), 483–495 (2010).
[CrossRef]

H. Liu, G. Ren, Z. Miao, X. Zhang, X. Tang, P. Han, S. S. Gambhir, and Z. Cheng, “Molecular optical imaging with radioactive probes,” PLoS ONE 5(3), e9470 (2010).
[CrossRef] [PubMed]

A. Ruggiero, J. P. Holland, J. S. Lewis, and J. Grimm, “Cerenkov luminescence imaging of medical isotopes,” J. Nucl. Med. 51(7), 1123–1130 (2010).
[CrossRef] [PubMed]

C. Li, G. S. Mitchell, and S. R. Cherry, “Cerenkov luminescence tomography for small-animal imaging,” Opt. Lett. 35(7), 1109–1111 (2010).
[CrossRef] [PubMed]

Z. Hu, J. Liang, W. Yang, W. Fan, C. Li, X. Ma, X. Chen, X. Ma, X. Li, X. Qu, J. Wang, F. Cao, and J. Tian, “Experimental Cerenkov luminescence tomography of the mouse model with SPECT imaging validation,” Opt. Express 18(24), 24441–24450 (2010).
[CrossRef] [PubMed]

M. A. Lewis, V. D. Kodibagkar, O. K. Öz, and R. P. Mason, “On the potential for molecular imaging with Cerenkov luminescence,” Opt. Lett. 35(23), 3889–3891 (2010).
[CrossRef] [PubMed]

2009 (2)

R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva, “Optical imaging of Cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol. 54(16), N355–N365 (2009).
[CrossRef] [PubMed]

V. Ntziachristos, “Optical imaging of molecular signatures in pulmonary inflammation,” Proc. Am. Thorac. Soc. 6(5), 416–418 (2009).
[CrossRef] [PubMed]

2007 (4)

J. Virostko, A. C. Powers, and E. D. Jansen, “Validation of luminescent source reconstruction using single-view spectrally resolved bioluminescence images,” Appl. Opt. 46(13), 2540–2547 (2007).
[CrossRef] [PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. M. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomography,” Opt. Express 15(13), 8043–8058 (2007).
[CrossRef] [PubMed]

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12(2), 024007 (2007).
[CrossRef] [PubMed]

L. Herve, A. Da Silva, A. Koenig, J. M. Dinten, J. Boutet, M. Berger, I. Texier, P. Peltie, and P. Rizo, “Fluorescence tomography enhanced by taking into account the medium heterogeneity,” Nucl. Instr. Meth. A 571(1-2), 60–63 (2007).
[CrossRef]

2005 (1)

S. Gross and D. Piwnica-Worms, “Real-time imaging of ligand-induced IKK activation in intact cells and in living mice,” Nat. Methods 2(8), 607–614 (2005).
[CrossRef] [PubMed]

2001 (1)

K. P. Francis, J. Yu, C. Bellinger-Kawahara, D. Joh, M. J. Hawkinson, G. Xiao, T. F. Purchio, M. G. Caparon, M. Lipsitch, and P. R. Contag, “Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel gram-positive lux transposon,” Infect. Immun. 69(5), 3350–3358 (2001).
[CrossRef] [PubMed]

2000 (1)

C. H. Contag, D. Jenkins, P. R. Contag, and R. S. Negrin, “Use of reporter genes for optical measurements of neoplastic disease in vivo,” Neoplasia 2(1/2), 41–52 (2000).
[CrossRef] [PubMed]

1998 (1)

1934 (1)

P. A. Cerenkov, “Visible emission of clean liquids by action of γ radiation,” C. R. Dokl. Akad. Nauk. SSSR 2, 451–454 (1934).

Bellinger-Kawahara, C.

K. P. Francis, J. Yu, C. Bellinger-Kawahara, D. Joh, M. J. Hawkinson, G. Xiao, T. F. Purchio, M. G. Caparon, M. Lipsitch, and P. R. Contag, “Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel gram-positive lux transposon,” Infect. Immun. 69(5), 3350–3358 (2001).
[CrossRef] [PubMed]

Berger, M.

L. Herve, A. Da Silva, A. Koenig, J. M. Dinten, J. Boutet, M. Berger, I. Texier, P. Peltie, and P. Rizo, “Fluorescence tomography enhanced by taking into account the medium heterogeneity,” Nucl. Instr. Meth. A 571(1-2), 60–63 (2007).
[CrossRef]

Boschi, F.

F. Boschi, L. Calderan, D. D'Ambrosio, M. Marengo, A. Fenzi, R. Calandrino, A. Sbarbati, and A. E. Spinelli, “In vivo (18)F-FDG tumour uptake measurements in small animals using Cerenkov radiation,” Eur. J. Nucl. Med. 38(1), 120–127 (2011).
[CrossRef]

A. E. Spinelli, D. D’Ambrosio, L. Calderan, M. Marengo, A. Sbarbati, and F. Boschi, “Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers,” Phys. Med. Biol. 55(2), 483–495 (2010).
[CrossRef]

A. E. Spinelli, F. Boschi, D. D'Ambrosio, L. Calderan, M. Marengo, A. Fenzi, A. Sbarbati, A. Del Vecchio, and R. Calandrino, “Cerenkov radiation imaging of beta emitters: in vitro and in vivo results,” Nucl. Instr. Meth. A . in press., doi:.

Boutet, J.

L. Herve, A. Da Silva, A. Koenig, J. M. Dinten, J. Boutet, M. Berger, I. Texier, P. Peltie, and P. Rizo, “Fluorescence tomography enhanced by taking into account the medium heterogeneity,” Nucl. Instr. Meth. A 571(1-2), 60–63 (2007).
[CrossRef]

Calandrino, R.

F. Boschi, L. Calderan, D. D'Ambrosio, M. Marengo, A. Fenzi, R. Calandrino, A. Sbarbati, and A. E. Spinelli, “In vivo (18)F-FDG tumour uptake measurements in small animals using Cerenkov radiation,” Eur. J. Nucl. Med. 38(1), 120–127 (2011).
[CrossRef]

A. E. Spinelli, F. Boschi, D. D'Ambrosio, L. Calderan, M. Marengo, A. Fenzi, A. Sbarbati, A. Del Vecchio, and R. Calandrino, “Cerenkov radiation imaging of beta emitters: in vitro and in vivo results,” Nucl. Instr. Meth. A . in press., doi:.

Calderan, L.

F. Boschi, L. Calderan, D. D'Ambrosio, M. Marengo, A. Fenzi, R. Calandrino, A. Sbarbati, and A. E. Spinelli, “In vivo (18)F-FDG tumour uptake measurements in small animals using Cerenkov radiation,” Eur. J. Nucl. Med. 38(1), 120–127 (2011).
[CrossRef]

A. E. Spinelli, D. D’Ambrosio, L. Calderan, M. Marengo, A. Sbarbati, and F. Boschi, “Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers,” Phys. Med. Biol. 55(2), 483–495 (2010).
[CrossRef]

A. E. Spinelli, F. Boschi, D. D'Ambrosio, L. Calderan, M. Marengo, A. Fenzi, A. Sbarbati, A. Del Vecchio, and R. Calandrino, “Cerenkov radiation imaging of beta emitters: in vitro and in vivo results,” Nucl. Instr. Meth. A . in press., doi:.

Cao, F.

Caparon, M. G.

K. P. Francis, J. Yu, C. Bellinger-Kawahara, D. Joh, M. J. Hawkinson, G. Xiao, T. F. Purchio, M. G. Caparon, M. Lipsitch, and P. R. Contag, “Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel gram-positive lux transposon,” Infect. Immun. 69(5), 3350–3358 (2001).
[CrossRef] [PubMed]

Carpenter, C. M.

Cerenkov, P. A.

P. A. Cerenkov, “Visible emission of clean liquids by action of γ radiation,” C. R. Dokl. Akad. Nauk. SSSR 2, 451–454 (1934).

Chen, X.

Cheng, Z.

H. Liu, G. Ren, Z. Miao, X. Zhang, X. Tang, P. Han, S. S. Gambhir, and Z. Cheng, “Molecular optical imaging with radioactive probes,” PLoS ONE 5(3), e9470 (2010).
[CrossRef] [PubMed]

Cherry, S. R.

C. Li, G. S. Mitchell, and S. R. Cherry, “Cerenkov luminescence tomography for small-animal imaging,” Opt. Lett. 35(7), 1109–1111 (2010).
[CrossRef] [PubMed]

R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva, “Optical imaging of Cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol. 54(16), N355–N365 (2009).
[CrossRef] [PubMed]

Contag, C. H.

C. H. Contag, D. Jenkins, P. R. Contag, and R. S. Negrin, “Use of reporter genes for optical measurements of neoplastic disease in vivo,” Neoplasia 2(1/2), 41–52 (2000).
[CrossRef] [PubMed]

Contag, P. R.

K. P. Francis, J. Yu, C. Bellinger-Kawahara, D. Joh, M. J. Hawkinson, G. Xiao, T. F. Purchio, M. G. Caparon, M. Lipsitch, and P. R. Contag, “Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel gram-positive lux transposon,” Infect. Immun. 69(5), 3350–3358 (2001).
[CrossRef] [PubMed]

C. H. Contag, D. Jenkins, P. R. Contag, and R. S. Negrin, “Use of reporter genes for optical measurements of neoplastic disease in vivo,” Neoplasia 2(1/2), 41–52 (2000).
[CrossRef] [PubMed]

Coquoz, O.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12(2), 024007 (2007).
[CrossRef] [PubMed]

D’Ambrosio, D.

A. E. Spinelli, D. D’Ambrosio, L. Calderan, M. Marengo, A. Sbarbati, and F. Boschi, “Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers,” Phys. Med. Biol. 55(2), 483–495 (2010).
[CrossRef]

Da Silva, A.

L. Herve, A. Da Silva, A. Koenig, J. M. Dinten, J. Boutet, M. Berger, I. Texier, P. Peltie, and P. Rizo, “Fluorescence tomography enhanced by taking into account the medium heterogeneity,” Nucl. Instr. Meth. A 571(1-2), 60–63 (2007).
[CrossRef]

D'Ambrosio, D.

F. Boschi, L. Calderan, D. D'Ambrosio, M. Marengo, A. Fenzi, R. Calandrino, A. Sbarbati, and A. E. Spinelli, “In vivo (18)F-FDG tumour uptake measurements in small animals using Cerenkov radiation,” Eur. J. Nucl. Med. 38(1), 120–127 (2011).
[CrossRef]

A. E. Spinelli, F. Boschi, D. D'Ambrosio, L. Calderan, M. Marengo, A. Fenzi, A. Sbarbati, A. Del Vecchio, and R. Calandrino, “Cerenkov radiation imaging of beta emitters: in vitro and in vivo results,” Nucl. Instr. Meth. A . in press., doi:.

Dehghani, H.

Del Vecchio, A.

A. E. Spinelli, F. Boschi, D. D'Ambrosio, L. Calderan, M. Marengo, A. Fenzi, A. Sbarbati, A. Del Vecchio, and R. Calandrino, “Cerenkov radiation imaging of beta emitters: in vitro and in vivo results,” Nucl. Instr. Meth. A . in press., doi:.

Dinten, J. M.

L. Herve, A. Da Silva, A. Koenig, J. M. Dinten, J. Boutet, M. Berger, I. Texier, P. Peltie, and P. Rizo, “Fluorescence tomography enhanced by taking into account the medium heterogeneity,” Nucl. Instr. Meth. A 571(1-2), 60–63 (2007).
[CrossRef]

Fan, W.

Fenzi, A.

F. Boschi, L. Calderan, D. D'Ambrosio, M. Marengo, A. Fenzi, R. Calandrino, A. Sbarbati, and A. E. Spinelli, “In vivo (18)F-FDG tumour uptake measurements in small animals using Cerenkov radiation,” Eur. J. Nucl. Med. 38(1), 120–127 (2011).
[CrossRef]

A. E. Spinelli, F. Boschi, D. D'Ambrosio, L. Calderan, M. Marengo, A. Fenzi, A. Sbarbati, A. Del Vecchio, and R. Calandrino, “Cerenkov radiation imaging of beta emitters: in vitro and in vivo results,” Nucl. Instr. Meth. A . in press., doi:.

Francis, K. P.

K. P. Francis, J. Yu, C. Bellinger-Kawahara, D. Joh, M. J. Hawkinson, G. Xiao, T. F. Purchio, M. G. Caparon, M. Lipsitch, and P. R. Contag, “Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel gram-positive lux transposon,” Infect. Immun. 69(5), 3350–3358 (2001).
[CrossRef] [PubMed]

Gambhir, S. S.

H. Liu, G. Ren, Z. Miao, X. Zhang, X. Tang, P. Han, S. S. Gambhir, and Z. Cheng, “Molecular optical imaging with radioactive probes,” PLoS ONE 5(3), e9470 (2010).
[CrossRef] [PubMed]

Germanos, M. S.

R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva, “Optical imaging of Cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol. 54(16), N355–N365 (2009).
[CrossRef] [PubMed]

Grimm, J.

A. Ruggiero, J. P. Holland, J. S. Lewis, and J. Grimm, “Cerenkov luminescence imaging of medical isotopes,” J. Nucl. Med. 51(7), 1123–1130 (2010).
[CrossRef] [PubMed]

Gross, S.

S. Gross and D. Piwnica-Worms, “Real-time imaging of ligand-induced IKK activation in intact cells and in living mice,” Nat. Methods 2(8), 607–614 (2005).
[CrossRef] [PubMed]

Han, P.

H. Liu, G. Ren, Z. Miao, X. Zhang, X. Tang, P. Han, S. S. Gambhir, and Z. Cheng, “Molecular optical imaging with radioactive probes,” PLoS ONE 5(3), e9470 (2010).
[CrossRef] [PubMed]

Hawkinson, M. J.

K. P. Francis, J. Yu, C. Bellinger-Kawahara, D. Joh, M. J. Hawkinson, G. Xiao, T. F. Purchio, M. G. Caparon, M. Lipsitch, and P. R. Contag, “Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel gram-positive lux transposon,” Infect. Immun. 69(5), 3350–3358 (2001).
[CrossRef] [PubMed]

Herve, L.

L. Herve, A. Da Silva, A. Koenig, J. M. Dinten, J. Boutet, M. Berger, I. Texier, P. Peltie, and P. Rizo, “Fluorescence tomography enhanced by taking into account the medium heterogeneity,” Nucl. Instr. Meth. A 571(1-2), 60–63 (2007).
[CrossRef]

Holland, J. P.

A. Ruggiero, J. P. Holland, J. S. Lewis, and J. Grimm, “Cerenkov luminescence imaging of medical isotopes,” J. Nucl. Med. 51(7), 1123–1130 (2010).
[CrossRef] [PubMed]

Hu, Z.

Jansen, E. D.

Jenkins, D.

C. H. Contag, D. Jenkins, P. R. Contag, and R. S. Negrin, “Use of reporter genes for optical measurements of neoplastic disease in vivo,” Neoplasia 2(1/2), 41–52 (2000).
[CrossRef] [PubMed]

Jiang, S.

Joh, D.

K. P. Francis, J. Yu, C. Bellinger-Kawahara, D. Joh, M. J. Hawkinson, G. Xiao, T. F. Purchio, M. G. Caparon, M. Lipsitch, and P. R. Contag, “Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel gram-positive lux transposon,” Infect. Immun. 69(5), 3350–3358 (2001).
[CrossRef] [PubMed]

Kodibagkar, V. D.

Koenig, A.

L. Herve, A. Da Silva, A. Koenig, J. M. Dinten, J. Boutet, M. Berger, I. Texier, P. Peltie, and P. Rizo, “Fluorescence tomography enhanced by taking into account the medium heterogeneity,” Nucl. Instr. Meth. A 571(1-2), 60–63 (2007).
[CrossRef]

Kubo, N.

K. Magota, N. Kubo, Y. Kuge, K. I. Nishijima, S. Zhao, and N. Tamaki, “Performance characterization of the Inveon preclinical small-animal PET/SPECT/CT system for multimodality imaging,” Eur. J. Nucl. Med. in press., doi:.

Kuge, Y.

K. Magota, N. Kubo, Y. Kuge, K. I. Nishijima, S. Zhao, and N. Tamaki, “Performance characterization of the Inveon preclinical small-animal PET/SPECT/CT system for multimodality imaging,” Eur. J. Nucl. Med. in press., doi:.

Kuo, C.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12(2), 024007 (2007).
[CrossRef] [PubMed]

Lewis, J. S.

A. Ruggiero, J. P. Holland, J. S. Lewis, and J. Grimm, “Cerenkov luminescence imaging of medical isotopes,” J. Nucl. Med. 51(7), 1123–1130 (2010).
[CrossRef] [PubMed]

Lewis, M. A.

Li, C.

Li, X.

Liang, J.

Lin, S. P.

Lipsitch, M.

K. P. Francis, J. Yu, C. Bellinger-Kawahara, D. Joh, M. J. Hawkinson, G. Xiao, T. F. Purchio, M. G. Caparon, M. Lipsitch, and P. R. Contag, “Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel gram-positive lux transposon,” Infect. Immun. 69(5), 3350–3358 (2001).
[CrossRef] [PubMed]

Liu, H.

H. Liu, G. Ren, Z. Miao, X. Zhang, X. Tang, P. Han, S. S. Gambhir, and Z. Cheng, “Molecular optical imaging with radioactive probes,” PLoS ONE 5(3), e9470 (2010).
[CrossRef] [PubMed]

Lucignani, G.

G. Lucignani, “Čerenkov radioactive optical imaging: a promising new strategy,” Eur. J. Nucl. Med. Mol. Imaging 38(3), 592–595 (2011).
[CrossRef]

Ma, X.

Magota, K.

K. Magota, N. Kubo, Y. Kuge, K. I. Nishijima, S. Zhao, and N. Tamaki, “Performance characterization of the Inveon preclinical small-animal PET/SPECT/CT system for multimodality imaging,” Eur. J. Nucl. Med. in press., doi:.

Marengo, M.

F. Boschi, L. Calderan, D. D'Ambrosio, M. Marengo, A. Fenzi, R. Calandrino, A. Sbarbati, and A. E. Spinelli, “In vivo (18)F-FDG tumour uptake measurements in small animals using Cerenkov radiation,” Eur. J. Nucl. Med. 38(1), 120–127 (2011).
[CrossRef]

A. E. Spinelli, D. D’Ambrosio, L. Calderan, M. Marengo, A. Sbarbati, and F. Boschi, “Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers,” Phys. Med. Biol. 55(2), 483–495 (2010).
[CrossRef]

A. E. Spinelli, F. Boschi, D. D'Ambrosio, L. Calderan, M. Marengo, A. Fenzi, A. Sbarbati, A. Del Vecchio, and R. Calandrino, “Cerenkov radiation imaging of beta emitters: in vitro and in vivo results,” Nucl. Instr. Meth. A . in press., doi:.

Marquez, G.

Mason, R. P.

Miao, Z.

H. Liu, G. Ren, Z. Miao, X. Zhang, X. Tang, P. Han, S. S. Gambhir, and Z. Cheng, “Molecular optical imaging with radioactive probes,” PLoS ONE 5(3), e9470 (2010).
[CrossRef] [PubMed]

Mitchell, G. S.

C. Li, G. S. Mitchell, and S. R. Cherry, “Cerenkov luminescence tomography for small-animal imaging,” Opt. Lett. 35(7), 1109–1111 (2010).
[CrossRef] [PubMed]

R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva, “Optical imaging of Cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol. 54(16), N355–N365 (2009).
[CrossRef] [PubMed]

Negrin, R. S.

C. H. Contag, D. Jenkins, P. R. Contag, and R. S. Negrin, “Use of reporter genes for optical measurements of neoplastic disease in vivo,” Neoplasia 2(1/2), 41–52 (2000).
[CrossRef] [PubMed]

Nishijima, K. I.

K. Magota, N. Kubo, Y. Kuge, K. I. Nishijima, S. Zhao, and N. Tamaki, “Performance characterization of the Inveon preclinical small-animal PET/SPECT/CT system for multimodality imaging,” Eur. J. Nucl. Med. in press., doi:.

Ntziachristos, V.

V. Ntziachristos, “Optical imaging of molecular signatures in pulmonary inflammation,” Proc. Am. Thorac. Soc. 6(5), 416–418 (2009).
[CrossRef] [PubMed]

Öz, O. K.

Paulsen, K. D.

Peltie, P.

L. Herve, A. Da Silva, A. Koenig, J. M. Dinten, J. Boutet, M. Berger, I. Texier, P. Peltie, and P. Rizo, “Fluorescence tomography enhanced by taking into account the medium heterogeneity,” Nucl. Instr. Meth. A 571(1-2), 60–63 (2007).
[CrossRef]

Piwnica-Worms, D.

S. Gross and D. Piwnica-Worms, “Real-time imaging of ligand-induced IKK activation in intact cells and in living mice,” Nat. Methods 2(8), 607–614 (2005).
[CrossRef] [PubMed]

Pogue, B. W.

Powers, A. C.

Purchio, T. F.

K. P. Francis, J. Yu, C. Bellinger-Kawahara, D. Joh, M. J. Hawkinson, G. Xiao, T. F. Purchio, M. G. Caparon, M. Lipsitch, and P. R. Contag, “Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel gram-positive lux transposon,” Infect. Immun. 69(5), 3350–3358 (2001).
[CrossRef] [PubMed]

Qu, X.

Ren, G.

H. Liu, G. Ren, Z. Miao, X. Zhang, X. Tang, P. Han, S. S. Gambhir, and Z. Cheng, “Molecular optical imaging with radioactive probes,” PLoS ONE 5(3), e9470 (2010).
[CrossRef] [PubMed]

Rice, B. W.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12(2), 024007 (2007).
[CrossRef] [PubMed]

Rizo, P.

L. Herve, A. Da Silva, A. Koenig, J. M. Dinten, J. Boutet, M. Berger, I. Texier, P. Peltie, and P. Rizo, “Fluorescence tomography enhanced by taking into account the medium heterogeneity,” Nucl. Instr. Meth. A 571(1-2), 60–63 (2007).
[CrossRef]

Robertson, R.

R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva, “Optical imaging of Cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol. 54(16), N355–N365 (2009).
[CrossRef] [PubMed]

Ruggiero, A.

A. Ruggiero, J. P. Holland, J. S. Lewis, and J. Grimm, “Cerenkov luminescence imaging of medical isotopes,” J. Nucl. Med. 51(7), 1123–1130 (2010).
[CrossRef] [PubMed]

Sbarbati, A.

F. Boschi, L. Calderan, D. D'Ambrosio, M. Marengo, A. Fenzi, R. Calandrino, A. Sbarbati, and A. E. Spinelli, “In vivo (18)F-FDG tumour uptake measurements in small animals using Cerenkov radiation,” Eur. J. Nucl. Med. 38(1), 120–127 (2011).
[CrossRef]

A. E. Spinelli, D. D’Ambrosio, L. Calderan, M. Marengo, A. Sbarbati, and F. Boschi, “Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers,” Phys. Med. Biol. 55(2), 483–495 (2010).
[CrossRef]

A. E. Spinelli, F. Boschi, D. D'Ambrosio, L. Calderan, M. Marengo, A. Fenzi, A. Sbarbati, A. Del Vecchio, and R. Calandrino, “Cerenkov radiation imaging of beta emitters: in vitro and in vivo results,” Nucl. Instr. Meth. A . in press., doi:.

Schwartz, J. A.

Silva, M. D.

R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva, “Optical imaging of Cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol. 54(16), N355–N365 (2009).
[CrossRef] [PubMed]

Spinelli, A. E.

F. Boschi, L. Calderan, D. D'Ambrosio, M. Marengo, A. Fenzi, R. Calandrino, A. Sbarbati, and A. E. Spinelli, “In vivo (18)F-FDG tumour uptake measurements in small animals using Cerenkov radiation,” Eur. J. Nucl. Med. 38(1), 120–127 (2011).
[CrossRef]

A. E. Spinelli, D. D’Ambrosio, L. Calderan, M. Marengo, A. Sbarbati, and F. Boschi, “Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers,” Phys. Med. Biol. 55(2), 483–495 (2010).
[CrossRef]

A. E. Spinelli, F. Boschi, D. D'Ambrosio, L. Calderan, M. Marengo, A. Fenzi, A. Sbarbati, A. Del Vecchio, and R. Calandrino, “Cerenkov radiation imaging of beta emitters: in vitro and in vivo results,” Nucl. Instr. Meth. A . in press., doi:.

Tamaki, N.

K. Magota, N. Kubo, Y. Kuge, K. I. Nishijima, S. Zhao, and N. Tamaki, “Performance characterization of the Inveon preclinical small-animal PET/SPECT/CT system for multimodality imaging,” Eur. J. Nucl. Med. in press., doi:.

Tang, X.

H. Liu, G. Ren, Z. Miao, X. Zhang, X. Tang, P. Han, S. S. Gambhir, and Z. Cheng, “Molecular optical imaging with radioactive probes,” PLoS ONE 5(3), e9470 (2010).
[CrossRef] [PubMed]

Texier, I.

L. Herve, A. Da Silva, A. Koenig, J. M. Dinten, J. Boutet, M. Berger, I. Texier, P. Peltie, and P. Rizo, “Fluorescence tomography enhanced by taking into account the medium heterogeneity,” Nucl. Instr. Meth. A 571(1-2), 60–63 (2007).
[CrossRef]

Thomsen, S. L.

Tian, J.

Troy, T. L.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12(2), 024007 (2007).
[CrossRef] [PubMed]

Virostko, J.

Wang, J.

Wang, L. V.

Xiao, G.

K. P. Francis, J. Yu, C. Bellinger-Kawahara, D. Joh, M. J. Hawkinson, G. Xiao, T. F. Purchio, M. G. Caparon, M. Lipsitch, and P. R. Contag, “Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel gram-positive lux transposon,” Infect. Immun. 69(5), 3350–3358 (2001).
[CrossRef] [PubMed]

Xu, H.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12(2), 024007 (2007).
[CrossRef] [PubMed]

Yalavarthy, P. K.

Yang, W.

Yu, J.

K. P. Francis, J. Yu, C. Bellinger-Kawahara, D. Joh, M. J. Hawkinson, G. Xiao, T. F. Purchio, M. G. Caparon, M. Lipsitch, and P. R. Contag, “Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel gram-positive lux transposon,” Infect. Immun. 69(5), 3350–3358 (2001).
[CrossRef] [PubMed]

Zhang, X.

H. Liu, G. Ren, Z. Miao, X. Zhang, X. Tang, P. Han, S. S. Gambhir, and Z. Cheng, “Molecular optical imaging with radioactive probes,” PLoS ONE 5(3), e9470 (2010).
[CrossRef] [PubMed]

Zhao, S.

K. Magota, N. Kubo, Y. Kuge, K. I. Nishijima, S. Zhao, and N. Tamaki, “Performance characterization of the Inveon preclinical small-animal PET/SPECT/CT system for multimodality imaging,” Eur. J. Nucl. Med. in press., doi:.

Appl. Opt. (2)

C. R. Dokl. Akad. Nauk. SSSR (1)

P. A. Cerenkov, “Visible emission of clean liquids by action of γ radiation,” C. R. Dokl. Akad. Nauk. SSSR 2, 451–454 (1934).

Eur. J. Nucl. Med. (2)

F. Boschi, L. Calderan, D. D'Ambrosio, M. Marengo, A. Fenzi, R. Calandrino, A. Sbarbati, and A. E. Spinelli, “In vivo (18)F-FDG tumour uptake measurements in small animals using Cerenkov radiation,” Eur. J. Nucl. Med. 38(1), 120–127 (2011).
[CrossRef]

K. Magota, N. Kubo, Y. Kuge, K. I. Nishijima, S. Zhao, and N. Tamaki, “Performance characterization of the Inveon preclinical small-animal PET/SPECT/CT system for multimodality imaging,” Eur. J. Nucl. Med. in press., doi:.

Eur. J. Nucl. Med. Mol. Imaging (1)

G. Lucignani, “Čerenkov radioactive optical imaging: a promising new strategy,” Eur. J. Nucl. Med. Mol. Imaging 38(3), 592–595 (2011).
[CrossRef]

Infect. Immun. (1)

K. P. Francis, J. Yu, C. Bellinger-Kawahara, D. Joh, M. J. Hawkinson, G. Xiao, T. F. Purchio, M. G. Caparon, M. Lipsitch, and P. R. Contag, “Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel gram-positive lux transposon,” Infect. Immun. 69(5), 3350–3358 (2001).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt. 12(2), 024007 (2007).
[CrossRef] [PubMed]

J. Nucl. Med. (1)

A. Ruggiero, J. P. Holland, J. S. Lewis, and J. Grimm, “Cerenkov luminescence imaging of medical isotopes,” J. Nucl. Med. 51(7), 1123–1130 (2010).
[CrossRef] [PubMed]

Nat. Methods (1)

S. Gross and D. Piwnica-Worms, “Real-time imaging of ligand-induced IKK activation in intact cells and in living mice,” Nat. Methods 2(8), 607–614 (2005).
[CrossRef] [PubMed]

Neoplasia (1)

C. H. Contag, D. Jenkins, P. R. Contag, and R. S. Negrin, “Use of reporter genes for optical measurements of neoplastic disease in vivo,” Neoplasia 2(1/2), 41–52 (2000).
[CrossRef] [PubMed]

Nucl. Instr. Meth. A (2)

A. E. Spinelli, F. Boschi, D. D'Ambrosio, L. Calderan, M. Marengo, A. Fenzi, A. Sbarbati, A. Del Vecchio, and R. Calandrino, “Cerenkov radiation imaging of beta emitters: in vitro and in vivo results,” Nucl. Instr. Meth. A . in press., doi:.

L. Herve, A. Da Silva, A. Koenig, J. M. Dinten, J. Boutet, M. Berger, I. Texier, P. Peltie, and P. Rizo, “Fluorescence tomography enhanced by taking into account the medium heterogeneity,” Nucl. Instr. Meth. A 571(1-2), 60–63 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Med. Biol. (2)

R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry, and M. D. Silva, “Optical imaging of Cerenkov light generation from positron-emitting radiotracers,” Phys. Med. Biol. 54(16), N355–N365 (2009).
[CrossRef] [PubMed]

A. E. Spinelli, D. D’Ambrosio, L. Calderan, M. Marengo, A. Sbarbati, and F. Boschi, “Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers,” Phys. Med. Biol. 55(2), 483–495 (2010).
[CrossRef]

PLoS ONE (1)

H. Liu, G. Ren, Z. Miao, X. Zhang, X. Tang, P. Han, S. S. Gambhir, and Z. Cheng, “Molecular optical imaging with radioactive probes,” PLoS ONE 5(3), e9470 (2010).
[CrossRef] [PubMed]

Proc. Am. Thorac. Soc. (1)

V. Ntziachristos, “Optical imaging of molecular signatures in pulmonary inflammation,” Proc. Am. Thorac. Soc. 6(5), 416–418 (2009).
[CrossRef] [PubMed]

Other (1)

J. V. Jelley, “Cerenkov Radiation and Its Applications”, (Pergamon, London, 1958).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Comparison between known and measured (from msCLT) depth of the 32P-ATP filled glass capillary at various experimental depths. The continuous red line shows the y = x identity relationship.

Fig. 2
Fig. 2

The top and middle part of the figure (a) shows the images of the capillary acquired using six filters. (b) the trans-axial msCLT reconstructed image of the capillary filled with 32P-ATP at 9 mm depth. The glass capillary was partially filled starting from the bottom for 2 cm (totally covered by chicken tissue) of its length.

Fig. 3
Fig. 3

Comparison between measured (circles) and simulated (square) FWHM (mm) of the capillary placed respectively in slices of chicken breast and mouse muscle. The simulations were performed as described in the materials and methods section.

Fig. 4
Fig. 4

Tissue time activity curves for the different organs. CLI images were acquired every 6 minutes for one hour after 32P -ATP injection.

Fig. 5
Fig. 5

Example of CLI images acquired respectively (a) before, (b) 30 minutes and (c) one hour after 32P -ATP injection. The images show a clear uptake in the abdominal region and in the bladder.

Fig. 6
Fig. 6

Comparison between the measured (upper row) with respect to the estimated photon density in the brain region.

Fig. 7
Fig. 7

Reconstructed CLI image trans-axial slice co-registered with MRI. The slice corresponds to the brain region. The image was acquired two days post injection.

Fig. 8
Fig. 8

Comparison between the measured (upper row) with respect to the estimated photon density in the thorax and abdominal region.

Fig. 9
Fig. 9

Reconstructed trans-axial CLI image of the thorax co-registered with MRI. The image acquired two days post injection shows a clear uptake of the tracer in the ribs region.

Fig. 10
Fig. 10

Example of whole body CLI image reconstructed using the msCLT approach. As one can see by looking at the panel on the right is possible to distinguish clearly the internal organs in the animal abdomen. The image was acquired two days post injection.

Fig. 11
Fig. 11

Ex vivo photographic (black and white) and CLI images (in colors) of the: (a) intestine, (b) heart, (c) ribs, (d) brain. The mouse was euthanized after 4 days from 32P-ATP injection. The colors scale represents the photons radiance (p/s/cm2 /sr).

Tables (1)

Tables Icon

Table 1 Depths Error (%) Calculated From The Source Depth Obtained Using The msCLT Reconstructed Images With Respect To The True Source Depths. The Table Also Shows The R2 Value Obtained By Fitting The Data In Fig. 1 With The Identity Line.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

D 2 ρ ( x ) μ a c ρ ( x ) = U ( x )
ρ = G s
ρ * = G * s
min ( ρ * G * s ) 2 2 + β 2 L s 2 2
D ( λ ) = c 3 [ μ a ( λ ) + μ s ' ( λ ) ]
μ e f f ( λ ) = 3 μ a ( λ ) [ μ a ( λ ) + μ s ' ( λ ) ]
[ ρ ( λ 1 ) .... ρ ( λ k ) ] = [ η ( λ 1 ) G ( λ 1 ) .... η ( λ k ) G ( λ k ) ] s
n ( λ k ) = λ k l o w λ k h i g h ξ ( λ ) d λ 0 ξ ( λ ) d λ
n ( λ k ) = 1 / λ k l o w 1 / λ k h i g h 1 / λ min

Metrics