Abstract

Vertical-cavity surface-emitting lasers emitting at 808 nm with unstrained GaAs/Al0.3Ga0.7As, tensilely strained GaAsxP1-x/Al0.3Ga0.7As and compressively strained In1-x-yGaxAlyAs/Al0.3Ga0.7As quantum-well active regions have been investigated. A comprehensive model is presented to determine the composition and width of these quantum wells. The numerical simulation shows that the gain peak wavelength is near 800 nm at room temperature for GaAs well with width of 4 nm, GaAs0.87P0.13 well with width of 13 nm and In0.14Ga0.74Al0.12As well with width of 6 nm. Furthermore, the output characteristics of the three designed quantum-well VCSELs are studied and compared. The results indicate that In0.14Ga0.74Al0.12As is the most appropriate candidate for the quantum well of 808-nm VCSELs.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Valle, M. Sciamanna, and K. Panajotov, “Nonlinear dynamics of the polarization of multitransverse mode vertical-cavity surface-emitting lasers under current modulation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(4), 046206 (2007).
    [CrossRef] [PubMed]
  2. Y. Ding, W. Fan, D. Xu, C. Tong, Y. Liu, and L. Zhao, “Low threshold current density, low resistance oxide-confined VCSEL fabricated by a dielectric-free approach,” Appl. Phys. B 98(4), 773–778 (2010).
    [CrossRef]
  3. L. A. D'Asaro, J. F. Seurin, and J. D. Wynn, “High-power, high-efficiency VCSELs pursue the goal,” Photon. Spectra 39, 62–66 (2005).
  4. E. Hugues-Salas, R. P. Giddings, X. Q. Jin, J. L. Wei, X. Zheng, Y. Hong, C. Shu, and J. M. Tang, “Real-time experimental demonstration of low-cost VCSEL intensity-modulated 11.25 Gb/s optical OFDM signal transmission over 25 km PON systems,” Opt. Express 19(4), 2979–2988 (2011).
    [CrossRef] [PubMed]
  5. Z. Wang, Y. Ning, Y. Zhang, J. Shi, X. Zhang, L. Zhang, W. Wang, D. Liu, Y. Hu, H. Cong, L. Qin, Y. Liu, and L. Wang, “High power and good beam quality of two-dimensional VCSEL array with integrated GaAs microlens array,” Opt. Express 18(23), 23900–23905 (2010).
    [CrossRef] [PubMed]
  6. J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D'Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
    [CrossRef]
  7. J. Sakaguchi, T. Katayama, and H. Kawaguchi, “All-optical memory operation of 980-nm polarization bistable VCSEL for 20-Gb/s PRBS RZ and 40-Gb/s NRZ data signals,” Opt. Express 18(12), 12362–12370 (2010).
    [CrossRef] [PubMed]
  8. K. Iga, “Vertical-cavity surface-emitting laser: Its conception and evolution,” Jpn. J. Appl. Phys. 47(1), 1–10 (2008).
    [CrossRef]
  9. Y. K. Kuo, J. R. Chen, M. L. Chen, and B. T. Liou, “Numerical study on strained InGaAsP/InGaP quantum wells for 850-nm vertical-cavity surface-emitting lasers,” Appl. Phys. B 86(4), 623–631 (2007).
    [CrossRef]
  10. L. Mutter, B. Dwir, A. Caliman, V. Iakovlev, A. Mereuta, A. Sirbu, and E. Kapon, “Intra-cavity patterning for mode control in 1.3 μm coupled VCSEL arrays,” Opt. Express 19(6), 4827–4832 (2011).
    [CrossRef] [PubMed]
  11. A. Hurtado, A. Quirce, A. Valle, L. Pesquera, and M. J. Adams, “Nonlinear dynamics induced by parallel and orthogonal optical injection in 1550 nm Vertical-Cavity Surface-Emitting Lasers (VCSELs),” Opt. Express 18(9), 9423–9428 (2010).
    [CrossRef] [PubMed]
  12. J.-F. Seurin, G. Xu, V. Khalfin, A. Miglo, J. D. Wynn, P. Pradhan, C. L. Ghosh, and L. A. D'Asaro, “Progress in high-power high-efficiency VCSEL arrays,” Proc. SPIE 7229, 722903 (2009).
    [CrossRef]
  13. L. Goldberg, C. McIntosh, and B. Cole, “VCSEL end-pumped passively Q-switched Nd:YAG laser with adjustable pulse energy,” Opt. Express 19(5), 4261–4267 (2011).
    [CrossRef] [PubMed]
  14. M. Grabherr, M. Miller, R. Jaeger, D. Wiedenmann, and R. King, “Commercial VCSELs reach 0.1 W cw output power,” Proc. SPIE 5364, 174–182 (2004).
    [CrossRef]
  15. Y.-Q. Hao, Y. Luo, Y. Feng, C.-L. Yan, Y.-J. Zhao, Y.-X. Wang, X.-H. Wang, Y. Qu, and G.-J. Liu, “Large aperture vertical cavity surface emitting laser with distributed-ring contact,” Appl. Opt. 50(7), 1034–1037 (2011).
    [CrossRef] [PubMed]
  16. PICS3D by Crosslight Software, Inc., Burnaby, Canada, 2005, http://www.crosslight.com .
  17. J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and experiment of In1-xGaxAsyP1-y and In1-x-yGaxAlyAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35(5), 771–782 (1999).
    [CrossRef]
  18. C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B Condens. Matter 39(3), 1871–1883 (1989).
    [CrossRef] [PubMed]
  19. S. Adachi, Properties of Semiconductor Alloys: Group-IV, III–V and II–VI Semiconductors (Wiley, 2009).
  20. C. Chih-Sheng and C. Shun Lien, “Modeling of strained quantum-well lasers with spin-orbit coupling,” IEEE J. Sel. Top. Quantum Electron. 1(2), 218–229 (1995).
    [CrossRef]
  21. P. Zhang, Y. Song, J. Tian, X. Zhang, and Z. Zhang, “Gain characteristics of the InGaAs strained quantum wells with GaAs, AlGaAs, and GaAsP barriers in vertical-external-cavity surface-emitting lasers,” J. Appl. Phys. 105(5), 053103 (2009).
    [CrossRef]
  22. J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers: I. Misfit dislocations,” J. Cryst. Growth 27, 118–125 (1974).
  23. S. F. Yu, Analysis and Design of Vertical Cavity Surface Emitting Lasers (Wiley-Interscience, 2003).
  24. H. Soda, Y. Motegi, and K. Iga, “GaInAsP/InP surface emitting injection lasers with short cavity length,” IEEE J. Quantum Electron. 19(6), 1035–1041 (1983).
    [CrossRef]
  25. K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron. 24(9), 1845–1855 (1988).
    [CrossRef]
  26. B. Lu, P. Zhou, J. Cheng, K. J. Malloy, and J. C. Zolper, “High temperature pulsed and continuous-wave operation and thermally stable threshold characteristics of vertical-cavity surface-emitting lasers grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 65(11), 1337–1339 (1994).
    [CrossRef]
  27. M. Grabherr, R. Jager, M. Miller, C. Thalmaier, J. Herlein, R. Michalzik, and K. J. Ebeling, “Bottom-emitting VCSEL's for high-CW optical output power,” IEEE Photon. Technol. Lett. 10(8), 1061–1063 (1998).
    [CrossRef]
  28. Y.-K. Kuo, J.-R. Chen, M.-Y. Jow, C.-Z. Wu, B.-J. Pong, and C.-C. Chen, “Optimization of oxide-confinement and active layers for high-speed 850-nm VCSELs,” Proc. SPIE 6132, 61320M (2006).
    [CrossRef]
  29. L. Solymar and D. Walsh, Lectures on the Electrical Properties of Materials (Oxford University Press, 1985).
  30. C.-F. Hsu, P. S. Zory, C.-H. Wu, and M. A. Emanuel, “Coulomb enhancement in InGaAs-GaAs quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 158–165 (1997).
    [CrossRef]
  31. J. Piprek, Y. A. Akulova, D. I. Babic, L. A. Coldren, and J. E. Bowers, “Minimum temperature sensitivity of 1.55 μm vertical-cavity lasers at −30 nm gain offset,” Appl. Phys. Lett. 72(15), 1814–1816 (1998).
    [CrossRef]

2011 (4)

2010 (4)

2009 (2)

J.-F. Seurin, G. Xu, V. Khalfin, A. Miglo, J. D. Wynn, P. Pradhan, C. L. Ghosh, and L. A. D'Asaro, “Progress in high-power high-efficiency VCSEL arrays,” Proc. SPIE 7229, 722903 (2009).
[CrossRef]

P. Zhang, Y. Song, J. Tian, X. Zhang, and Z. Zhang, “Gain characteristics of the InGaAs strained quantum wells with GaAs, AlGaAs, and GaAsP barriers in vertical-external-cavity surface-emitting lasers,” J. Appl. Phys. 105(5), 053103 (2009).
[CrossRef]

2008 (2)

K. Iga, “Vertical-cavity surface-emitting laser: Its conception and evolution,” Jpn. J. Appl. Phys. 47(1), 1–10 (2008).
[CrossRef]

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D'Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

2007 (2)

Y. K. Kuo, J. R. Chen, M. L. Chen, and B. T. Liou, “Numerical study on strained InGaAsP/InGaP quantum wells for 850-nm vertical-cavity surface-emitting lasers,” Appl. Phys. B 86(4), 623–631 (2007).
[CrossRef]

A. Valle, M. Sciamanna, and K. Panajotov, “Nonlinear dynamics of the polarization of multitransverse mode vertical-cavity surface-emitting lasers under current modulation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(4), 046206 (2007).
[CrossRef] [PubMed]

2006 (1)

Y.-K. Kuo, J.-R. Chen, M.-Y. Jow, C.-Z. Wu, B.-J. Pong, and C.-C. Chen, “Optimization of oxide-confinement and active layers for high-speed 850-nm VCSELs,” Proc. SPIE 6132, 61320M (2006).
[CrossRef]

2005 (1)

L. A. D'Asaro, J. F. Seurin, and J. D. Wynn, “High-power, high-efficiency VCSELs pursue the goal,” Photon. Spectra 39, 62–66 (2005).

2004 (1)

M. Grabherr, M. Miller, R. Jaeger, D. Wiedenmann, and R. King, “Commercial VCSELs reach 0.1 W cw output power,” Proc. SPIE 5364, 174–182 (2004).
[CrossRef]

1999 (1)

J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and experiment of In1-xGaxAsyP1-y and In1-x-yGaxAlyAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35(5), 771–782 (1999).
[CrossRef]

1998 (2)

J. Piprek, Y. A. Akulova, D. I. Babic, L. A. Coldren, and J. E. Bowers, “Minimum temperature sensitivity of 1.55 μm vertical-cavity lasers at −30 nm gain offset,” Appl. Phys. Lett. 72(15), 1814–1816 (1998).
[CrossRef]

M. Grabherr, R. Jager, M. Miller, C. Thalmaier, J. Herlein, R. Michalzik, and K. J. Ebeling, “Bottom-emitting VCSEL's for high-CW optical output power,” IEEE Photon. Technol. Lett. 10(8), 1061–1063 (1998).
[CrossRef]

1997 (1)

C.-F. Hsu, P. S. Zory, C.-H. Wu, and M. A. Emanuel, “Coulomb enhancement in InGaAs-GaAs quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 158–165 (1997).
[CrossRef]

1995 (1)

C. Chih-Sheng and C. Shun Lien, “Modeling of strained quantum-well lasers with spin-orbit coupling,” IEEE J. Sel. Top. Quantum Electron. 1(2), 218–229 (1995).
[CrossRef]

1994 (1)

B. Lu, P. Zhou, J. Cheng, K. J. Malloy, and J. C. Zolper, “High temperature pulsed and continuous-wave operation and thermally stable threshold characteristics of vertical-cavity surface-emitting lasers grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 65(11), 1337–1339 (1994).
[CrossRef]

1989 (1)

C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B Condens. Matter 39(3), 1871–1883 (1989).
[CrossRef] [PubMed]

1988 (1)

K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron. 24(9), 1845–1855 (1988).
[CrossRef]

1983 (1)

H. Soda, Y. Motegi, and K. Iga, “GaInAsP/InP surface emitting injection lasers with short cavity length,” IEEE J. Quantum Electron. 19(6), 1035–1041 (1983).
[CrossRef]

1974 (1)

J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers: I. Misfit dislocations,” J. Cryst. Growth 27, 118–125 (1974).

Adams, M. J.

Akulova, Y. A.

J. Piprek, Y. A. Akulova, D. I. Babic, L. A. Coldren, and J. E. Bowers, “Minimum temperature sensitivity of 1.55 μm vertical-cavity lasers at −30 nm gain offset,” Appl. Phys. Lett. 72(15), 1814–1816 (1998).
[CrossRef]

Babic, D. I.

J. Piprek, Y. A. Akulova, D. I. Babic, L. A. Coldren, and J. E. Bowers, “Minimum temperature sensitivity of 1.55 μm vertical-cavity lasers at −30 nm gain offset,” Appl. Phys. Lett. 72(15), 1814–1816 (1998).
[CrossRef]

Blakeslee, A. E.

J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers: I. Misfit dislocations,” J. Cryst. Growth 27, 118–125 (1974).

Bowers, J. E.

J. Piprek, Y. A. Akulova, D. I. Babic, L. A. Coldren, and J. E. Bowers, “Minimum temperature sensitivity of 1.55 μm vertical-cavity lasers at −30 nm gain offset,” Appl. Phys. Lett. 72(15), 1814–1816 (1998).
[CrossRef]

Caliman, A.

Chen, C.-C.

Y.-K. Kuo, J.-R. Chen, M.-Y. Jow, C.-Z. Wu, B.-J. Pong, and C.-C. Chen, “Optimization of oxide-confinement and active layers for high-speed 850-nm VCSELs,” Proc. SPIE 6132, 61320M (2006).
[CrossRef]

Chen, J. R.

Y. K. Kuo, J. R. Chen, M. L. Chen, and B. T. Liou, “Numerical study on strained InGaAsP/InGaP quantum wells for 850-nm vertical-cavity surface-emitting lasers,” Appl. Phys. B 86(4), 623–631 (2007).
[CrossRef]

Chen, J.-R.

Y.-K. Kuo, J.-R. Chen, M.-Y. Jow, C.-Z. Wu, B.-J. Pong, and C.-C. Chen, “Optimization of oxide-confinement and active layers for high-speed 850-nm VCSELs,” Proc. SPIE 6132, 61320M (2006).
[CrossRef]

Chen, M. L.

Y. K. Kuo, J. R. Chen, M. L. Chen, and B. T. Liou, “Numerical study on strained InGaAsP/InGaP quantum wells for 850-nm vertical-cavity surface-emitting lasers,” Appl. Phys. B 86(4), 623–631 (2007).
[CrossRef]

Cheng, J.

B. Lu, P. Zhou, J. Cheng, K. J. Malloy, and J. C. Zolper, “High temperature pulsed and continuous-wave operation and thermally stable threshold characteristics of vertical-cavity surface-emitting lasers grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 65(11), 1337–1339 (1994).
[CrossRef]

Chih-Sheng, C.

C. Chih-Sheng and C. Shun Lien, “Modeling of strained quantum-well lasers with spin-orbit coupling,” IEEE J. Sel. Top. Quantum Electron. 1(2), 218–229 (1995).
[CrossRef]

Chuang, S. L.

J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and experiment of In1-xGaxAsyP1-y and In1-x-yGaxAlyAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35(5), 771–782 (1999).
[CrossRef]

Coldren, L. A.

J. Piprek, Y. A. Akulova, D. I. Babic, L. A. Coldren, and J. E. Bowers, “Minimum temperature sensitivity of 1.55 μm vertical-cavity lasers at −30 nm gain offset,” Appl. Phys. Lett. 72(15), 1814–1816 (1998).
[CrossRef]

Cole, B.

Cong, H.

D'Asaro, L. A.

J.-F. Seurin, G. Xu, V. Khalfin, A. Miglo, J. D. Wynn, P. Pradhan, C. L. Ghosh, and L. A. D'Asaro, “Progress in high-power high-efficiency VCSEL arrays,” Proc. SPIE 7229, 722903 (2009).
[CrossRef]

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D'Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

L. A. D'Asaro, J. F. Seurin, and J. D. Wynn, “High-power, high-efficiency VCSELs pursue the goal,” Photon. Spectra 39, 62–66 (2005).

Ding, Y.

Y. Ding, W. Fan, D. Xu, C. Tong, Y. Liu, and L. Zhao, “Low threshold current density, low resistance oxide-confined VCSEL fabricated by a dielectric-free approach,” Appl. Phys. B 98(4), 773–778 (2010).
[CrossRef]

Dwir, B.

Ebeling, K. J.

M. Grabherr, R. Jager, M. Miller, C. Thalmaier, J. Herlein, R. Michalzik, and K. J. Ebeling, “Bottom-emitting VCSEL's for high-CW optical output power,” IEEE Photon. Technol. Lett. 10(8), 1061–1063 (1998).
[CrossRef]

Emanuel, M. A.

C.-F. Hsu, P. S. Zory, C.-H. Wu, and M. A. Emanuel, “Coulomb enhancement in InGaAs-GaAs quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 158–165 (1997).
[CrossRef]

Fan, W.

Y. Ding, W. Fan, D. Xu, C. Tong, Y. Liu, and L. Zhao, “Low threshold current density, low resistance oxide-confined VCSEL fabricated by a dielectric-free approach,” Appl. Phys. B 98(4), 773–778 (2010).
[CrossRef]

Feng, Y.

Ghosh, C. L.

J.-F. Seurin, G. Xu, V. Khalfin, A. Miglo, J. D. Wynn, P. Pradhan, C. L. Ghosh, and L. A. D'Asaro, “Progress in high-power high-efficiency VCSEL arrays,” Proc. SPIE 7229, 722903 (2009).
[CrossRef]

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D'Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

Giddings, R. P.

Goldberg, L.

Grabherr, M.

M. Grabherr, M. Miller, R. Jaeger, D. Wiedenmann, and R. King, “Commercial VCSELs reach 0.1 W cw output power,” Proc. SPIE 5364, 174–182 (2004).
[CrossRef]

M. Grabherr, R. Jager, M. Miller, C. Thalmaier, J. Herlein, R. Michalzik, and K. J. Ebeling, “Bottom-emitting VCSEL's for high-CW optical output power,” IEEE Photon. Technol. Lett. 10(8), 1061–1063 (1998).
[CrossRef]

Hao, Y.-Q.

Herlein, J.

M. Grabherr, R. Jager, M. Miller, C. Thalmaier, J. Herlein, R. Michalzik, and K. J. Ebeling, “Bottom-emitting VCSEL's for high-CW optical output power,” IEEE Photon. Technol. Lett. 10(8), 1061–1063 (1998).
[CrossRef]

Hong, Y.

Hsu, C.-F.

C.-F. Hsu, P. S. Zory, C.-H. Wu, and M. A. Emanuel, “Coulomb enhancement in InGaAs-GaAs quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 158–165 (1997).
[CrossRef]

Hu, Y.

Hugues-Salas, E.

Hurtado, A.

Iakovlev, V.

Iga, K.

K. Iga, “Vertical-cavity surface-emitting laser: Its conception and evolution,” Jpn. J. Appl. Phys. 47(1), 1–10 (2008).
[CrossRef]

K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron. 24(9), 1845–1855 (1988).
[CrossRef]

H. Soda, Y. Motegi, and K. Iga, “GaInAsP/InP surface emitting injection lasers with short cavity length,” IEEE J. Quantum Electron. 19(6), 1035–1041 (1983).
[CrossRef]

Jaeger, R.

M. Grabherr, M. Miller, R. Jaeger, D. Wiedenmann, and R. King, “Commercial VCSELs reach 0.1 W cw output power,” Proc. SPIE 5364, 174–182 (2004).
[CrossRef]

Jager, R.

M. Grabherr, R. Jager, M. Miller, C. Thalmaier, J. Herlein, R. Michalzik, and K. J. Ebeling, “Bottom-emitting VCSEL's for high-CW optical output power,” IEEE Photon. Technol. Lett. 10(8), 1061–1063 (1998).
[CrossRef]

Jin, X. Q.

Jow, M.-Y.

Y.-K. Kuo, J.-R. Chen, M.-Y. Jow, C.-Z. Wu, B.-J. Pong, and C.-C. Chen, “Optimization of oxide-confinement and active layers for high-speed 850-nm VCSELs,” Proc. SPIE 6132, 61320M (2006).
[CrossRef]

Kapon, E.

Katayama, T.

Kawaguchi, H.

Keating, T.

J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and experiment of In1-xGaxAsyP1-y and In1-x-yGaxAlyAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35(5), 771–782 (1999).
[CrossRef]

Khalfin, V.

J.-F. Seurin, G. Xu, V. Khalfin, A. Miglo, J. D. Wynn, P. Pradhan, C. L. Ghosh, and L. A. D'Asaro, “Progress in high-power high-efficiency VCSEL arrays,” Proc. SPIE 7229, 722903 (2009).
[CrossRef]

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D'Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

King, R.

M. Grabherr, M. Miller, R. Jaeger, D. Wiedenmann, and R. King, “Commercial VCSELs reach 0.1 W cw output power,” Proc. SPIE 5364, 174–182 (2004).
[CrossRef]

Kinoshita, S.

K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron. 24(9), 1845–1855 (1988).
[CrossRef]

Koyama, F.

K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron. 24(9), 1845–1855 (1988).
[CrossRef]

Kuo, Y. K.

Y. K. Kuo, J. R. Chen, M. L. Chen, and B. T. Liou, “Numerical study on strained InGaAsP/InGaP quantum wells for 850-nm vertical-cavity surface-emitting lasers,” Appl. Phys. B 86(4), 623–631 (2007).
[CrossRef]

Kuo, Y.-K.

Y.-K. Kuo, J.-R. Chen, M.-Y. Jow, C.-Z. Wu, B.-J. Pong, and C.-C. Chen, “Optimization of oxide-confinement and active layers for high-speed 850-nm VCSELs,” Proc. SPIE 6132, 61320M (2006).
[CrossRef]

Liou, B. T.

Y. K. Kuo, J. R. Chen, M. L. Chen, and B. T. Liou, “Numerical study on strained InGaAsP/InGaP quantum wells for 850-nm vertical-cavity surface-emitting lasers,” Appl. Phys. B 86(4), 623–631 (2007).
[CrossRef]

Liu, D.

Liu, G.-J.

Liu, Y.

Z. Wang, Y. Ning, Y. Zhang, J. Shi, X. Zhang, L. Zhang, W. Wang, D. Liu, Y. Hu, H. Cong, L. Qin, Y. Liu, and L. Wang, “High power and good beam quality of two-dimensional VCSEL array with integrated GaAs microlens array,” Opt. Express 18(23), 23900–23905 (2010).
[CrossRef] [PubMed]

Y. Ding, W. Fan, D. Xu, C. Tong, Y. Liu, and L. Zhao, “Low threshold current density, low resistance oxide-confined VCSEL fabricated by a dielectric-free approach,” Appl. Phys. B 98(4), 773–778 (2010).
[CrossRef]

Lu, B.

B. Lu, P. Zhou, J. Cheng, K. J. Malloy, and J. C. Zolper, “High temperature pulsed and continuous-wave operation and thermally stable threshold characteristics of vertical-cavity surface-emitting lasers grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 65(11), 1337–1339 (1994).
[CrossRef]

Luo, Y.

Malloy, K. J.

B. Lu, P. Zhou, J. Cheng, K. J. Malloy, and J. C. Zolper, “High temperature pulsed and continuous-wave operation and thermally stable threshold characteristics of vertical-cavity surface-emitting lasers grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 65(11), 1337–1339 (1994).
[CrossRef]

Matthews, J. W.

J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers: I. Misfit dislocations,” J. Cryst. Growth 27, 118–125 (1974).

McIntosh, C.

Mereuta, A.

Michalzik, R.

M. Grabherr, R. Jager, M. Miller, C. Thalmaier, J. Herlein, R. Michalzik, and K. J. Ebeling, “Bottom-emitting VCSEL's for high-CW optical output power,” IEEE Photon. Technol. Lett. 10(8), 1061–1063 (1998).
[CrossRef]

Miglo, A.

J.-F. Seurin, G. Xu, V. Khalfin, A. Miglo, J. D. Wynn, P. Pradhan, C. L. Ghosh, and L. A. D'Asaro, “Progress in high-power high-efficiency VCSEL arrays,” Proc. SPIE 7229, 722903 (2009).
[CrossRef]

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D'Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

Miller, M.

M. Grabherr, M. Miller, R. Jaeger, D. Wiedenmann, and R. King, “Commercial VCSELs reach 0.1 W cw output power,” Proc. SPIE 5364, 174–182 (2004).
[CrossRef]

M. Grabherr, R. Jager, M. Miller, C. Thalmaier, J. Herlein, R. Michalzik, and K. J. Ebeling, “Bottom-emitting VCSEL's for high-CW optical output power,” IEEE Photon. Technol. Lett. 10(8), 1061–1063 (1998).
[CrossRef]

Minch, J.

J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and experiment of In1-xGaxAsyP1-y and In1-x-yGaxAlyAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35(5), 771–782 (1999).
[CrossRef]

Motegi, Y.

H. Soda, Y. Motegi, and K. Iga, “GaInAsP/InP surface emitting injection lasers with short cavity length,” IEEE J. Quantum Electron. 19(6), 1035–1041 (1983).
[CrossRef]

Mutter, L.

Ning, Y.

Panajotov, K.

A. Valle, M. Sciamanna, and K. Panajotov, “Nonlinear dynamics of the polarization of multitransverse mode vertical-cavity surface-emitting lasers under current modulation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(4), 046206 (2007).
[CrossRef] [PubMed]

Park, S. H.

J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and experiment of In1-xGaxAsyP1-y and In1-x-yGaxAlyAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35(5), 771–782 (1999).
[CrossRef]

Pesquera, L.

Piprek, J.

J. Piprek, Y. A. Akulova, D. I. Babic, L. A. Coldren, and J. E. Bowers, “Minimum temperature sensitivity of 1.55 μm vertical-cavity lasers at −30 nm gain offset,” Appl. Phys. Lett. 72(15), 1814–1816 (1998).
[CrossRef]

Pong, B.-J.

Y.-K. Kuo, J.-R. Chen, M.-Y. Jow, C.-Z. Wu, B.-J. Pong, and C.-C. Chen, “Optimization of oxide-confinement and active layers for high-speed 850-nm VCSELs,” Proc. SPIE 6132, 61320M (2006).
[CrossRef]

Pradhan, P.

J.-F. Seurin, G. Xu, V. Khalfin, A. Miglo, J. D. Wynn, P. Pradhan, C. L. Ghosh, and L. A. D'Asaro, “Progress in high-power high-efficiency VCSEL arrays,” Proc. SPIE 7229, 722903 (2009).
[CrossRef]

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D'Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

Qin, L.

Qu, Y.

Quirce, A.

Sakaguchi, J.

Sciamanna, M.

A. Valle, M. Sciamanna, and K. Panajotov, “Nonlinear dynamics of the polarization of multitransverse mode vertical-cavity surface-emitting lasers under current modulation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(4), 046206 (2007).
[CrossRef] [PubMed]

Seurin, J. F.

L. A. D'Asaro, J. F. Seurin, and J. D. Wynn, “High-power, high-efficiency VCSELs pursue the goal,” Photon. Spectra 39, 62–66 (2005).

Seurin, J.-F.

J.-F. Seurin, G. Xu, V. Khalfin, A. Miglo, J. D. Wynn, P. Pradhan, C. L. Ghosh, and L. A. D'Asaro, “Progress in high-power high-efficiency VCSEL arrays,” Proc. SPIE 7229, 722903 (2009).
[CrossRef]

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D'Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

Shi, J.

Shu, C.

Shun Lien, C.

C. Chih-Sheng and C. Shun Lien, “Modeling of strained quantum-well lasers with spin-orbit coupling,” IEEE J. Sel. Top. Quantum Electron. 1(2), 218–229 (1995).
[CrossRef]

Sirbu, A.

Soda, H.

H. Soda, Y. Motegi, and K. Iga, “GaInAsP/InP surface emitting injection lasers with short cavity length,” IEEE J. Quantum Electron. 19(6), 1035–1041 (1983).
[CrossRef]

Song, Y.

P. Zhang, Y. Song, J. Tian, X. Zhang, and Z. Zhang, “Gain characteristics of the InGaAs strained quantum wells with GaAs, AlGaAs, and GaAsP barriers in vertical-external-cavity surface-emitting lasers,” J. Appl. Phys. 105(5), 053103 (2009).
[CrossRef]

Tang, J. M.

Thalmaier, C.

M. Grabherr, R. Jager, M. Miller, C. Thalmaier, J. Herlein, R. Michalzik, and K. J. Ebeling, “Bottom-emitting VCSEL's for high-CW optical output power,” IEEE Photon. Technol. Lett. 10(8), 1061–1063 (1998).
[CrossRef]

Tian, J.

P. Zhang, Y. Song, J. Tian, X. Zhang, and Z. Zhang, “Gain characteristics of the InGaAs strained quantum wells with GaAs, AlGaAs, and GaAsP barriers in vertical-external-cavity surface-emitting lasers,” J. Appl. Phys. 105(5), 053103 (2009).
[CrossRef]

Tong, C.

Y. Ding, W. Fan, D. Xu, C. Tong, Y. Liu, and L. Zhao, “Low threshold current density, low resistance oxide-confined VCSEL fabricated by a dielectric-free approach,” Appl. Phys. B 98(4), 773–778 (2010).
[CrossRef]

Valle, A.

A. Hurtado, A. Quirce, A. Valle, L. Pesquera, and M. J. Adams, “Nonlinear dynamics induced by parallel and orthogonal optical injection in 1550 nm Vertical-Cavity Surface-Emitting Lasers (VCSELs),” Opt. Express 18(9), 9423–9428 (2010).
[CrossRef] [PubMed]

A. Valle, M. Sciamanna, and K. Panajotov, “Nonlinear dynamics of the polarization of multitransverse mode vertical-cavity surface-emitting lasers under current modulation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(4), 046206 (2007).
[CrossRef] [PubMed]

Van de Walle, C. G.

C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B Condens. Matter 39(3), 1871–1883 (1989).
[CrossRef] [PubMed]

Wang, L.

Wang, W.

Wang, X.-H.

Wang, Y.-X.

Wang, Z.

Wei, J. L.

Wiedenmann, D.

M. Grabherr, M. Miller, R. Jaeger, D. Wiedenmann, and R. King, “Commercial VCSELs reach 0.1 W cw output power,” Proc. SPIE 5364, 174–182 (2004).
[CrossRef]

Wu, C.-H.

C.-F. Hsu, P. S. Zory, C.-H. Wu, and M. A. Emanuel, “Coulomb enhancement in InGaAs-GaAs quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 158–165 (1997).
[CrossRef]

Wu, C.-Z.

Y.-K. Kuo, J.-R. Chen, M.-Y. Jow, C.-Z. Wu, B.-J. Pong, and C.-C. Chen, “Optimization of oxide-confinement and active layers for high-speed 850-nm VCSELs,” Proc. SPIE 6132, 61320M (2006).
[CrossRef]

Wynn, J. D.

J.-F. Seurin, G. Xu, V. Khalfin, A. Miglo, J. D. Wynn, P. Pradhan, C. L. Ghosh, and L. A. D'Asaro, “Progress in high-power high-efficiency VCSEL arrays,” Proc. SPIE 7229, 722903 (2009).
[CrossRef]

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D'Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

L. A. D'Asaro, J. F. Seurin, and J. D. Wynn, “High-power, high-efficiency VCSELs pursue the goal,” Photon. Spectra 39, 62–66 (2005).

Xu, D.

Y. Ding, W. Fan, D. Xu, C. Tong, Y. Liu, and L. Zhao, “Low threshold current density, low resistance oxide-confined VCSEL fabricated by a dielectric-free approach,” Appl. Phys. B 98(4), 773–778 (2010).
[CrossRef]

Xu, G.

J.-F. Seurin, G. Xu, V. Khalfin, A. Miglo, J. D. Wynn, P. Pradhan, C. L. Ghosh, and L. A. D'Asaro, “Progress in high-power high-efficiency VCSEL arrays,” Proc. SPIE 7229, 722903 (2009).
[CrossRef]

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D'Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

Yan, C.-L.

Zhang, L.

Zhang, P.

P. Zhang, Y. Song, J. Tian, X. Zhang, and Z. Zhang, “Gain characteristics of the InGaAs strained quantum wells with GaAs, AlGaAs, and GaAsP barriers in vertical-external-cavity surface-emitting lasers,” J. Appl. Phys. 105(5), 053103 (2009).
[CrossRef]

Zhang, X.

Z. Wang, Y. Ning, Y. Zhang, J. Shi, X. Zhang, L. Zhang, W. Wang, D. Liu, Y. Hu, H. Cong, L. Qin, Y. Liu, and L. Wang, “High power and good beam quality of two-dimensional VCSEL array with integrated GaAs microlens array,” Opt. Express 18(23), 23900–23905 (2010).
[CrossRef] [PubMed]

P. Zhang, Y. Song, J. Tian, X. Zhang, and Z. Zhang, “Gain characteristics of the InGaAs strained quantum wells with GaAs, AlGaAs, and GaAsP barriers in vertical-external-cavity surface-emitting lasers,” J. Appl. Phys. 105(5), 053103 (2009).
[CrossRef]

Zhang, Y.

Zhang, Z.

P. Zhang, Y. Song, J. Tian, X. Zhang, and Z. Zhang, “Gain characteristics of the InGaAs strained quantum wells with GaAs, AlGaAs, and GaAsP barriers in vertical-external-cavity surface-emitting lasers,” J. Appl. Phys. 105(5), 053103 (2009).
[CrossRef]

Zhao, L.

Y. Ding, W. Fan, D. Xu, C. Tong, Y. Liu, and L. Zhao, “Low threshold current density, low resistance oxide-confined VCSEL fabricated by a dielectric-free approach,” Appl. Phys. B 98(4), 773–778 (2010).
[CrossRef]

Zhao, Y.-J.

Zheng, X.

Zhou, P.

B. Lu, P. Zhou, J. Cheng, K. J. Malloy, and J. C. Zolper, “High temperature pulsed and continuous-wave operation and thermally stable threshold characteristics of vertical-cavity surface-emitting lasers grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 65(11), 1337–1339 (1994).
[CrossRef]

Zolper, J. C.

B. Lu, P. Zhou, J. Cheng, K. J. Malloy, and J. C. Zolper, “High temperature pulsed and continuous-wave operation and thermally stable threshold characteristics of vertical-cavity surface-emitting lasers grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 65(11), 1337–1339 (1994).
[CrossRef]

Zory, P. S.

C.-F. Hsu, P. S. Zory, C.-H. Wu, and M. A. Emanuel, “Coulomb enhancement in InGaAs-GaAs quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 158–165 (1997).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

Y. Ding, W. Fan, D. Xu, C. Tong, Y. Liu, and L. Zhao, “Low threshold current density, low resistance oxide-confined VCSEL fabricated by a dielectric-free approach,” Appl. Phys. B 98(4), 773–778 (2010).
[CrossRef]

Y. K. Kuo, J. R. Chen, M. L. Chen, and B. T. Liou, “Numerical study on strained InGaAsP/InGaP quantum wells for 850-nm vertical-cavity surface-emitting lasers,” Appl. Phys. B 86(4), 623–631 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

B. Lu, P. Zhou, J. Cheng, K. J. Malloy, and J. C. Zolper, “High temperature pulsed and continuous-wave operation and thermally stable threshold characteristics of vertical-cavity surface-emitting lasers grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 65(11), 1337–1339 (1994).
[CrossRef]

J. Piprek, Y. A. Akulova, D. I. Babic, L. A. Coldren, and J. E. Bowers, “Minimum temperature sensitivity of 1.55 μm vertical-cavity lasers at −30 nm gain offset,” Appl. Phys. Lett. 72(15), 1814–1816 (1998).
[CrossRef]

IEEE J. Quantum Electron. (3)

H. Soda, Y. Motegi, and K. Iga, “GaInAsP/InP surface emitting injection lasers with short cavity length,” IEEE J. Quantum Electron. 19(6), 1035–1041 (1983).
[CrossRef]

K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron. 24(9), 1845–1855 (1988).
[CrossRef]

J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and experiment of In1-xGaxAsyP1-y and In1-x-yGaxAlyAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35(5), 771–782 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

C.-F. Hsu, P. S. Zory, C.-H. Wu, and M. A. Emanuel, “Coulomb enhancement in InGaAs-GaAs quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 158–165 (1997).
[CrossRef]

C. Chih-Sheng and C. Shun Lien, “Modeling of strained quantum-well lasers with spin-orbit coupling,” IEEE J. Sel. Top. Quantum Electron. 1(2), 218–229 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Grabherr, R. Jager, M. Miller, C. Thalmaier, J. Herlein, R. Michalzik, and K. J. Ebeling, “Bottom-emitting VCSEL's for high-CW optical output power,” IEEE Photon. Technol. Lett. 10(8), 1061–1063 (1998).
[CrossRef]

J. Appl. Phys. (1)

P. Zhang, Y. Song, J. Tian, X. Zhang, and Z. Zhang, “Gain characteristics of the InGaAs strained quantum wells with GaAs, AlGaAs, and GaAsP barriers in vertical-external-cavity surface-emitting lasers,” J. Appl. Phys. 105(5), 053103 (2009).
[CrossRef]

J. Cryst. Growth (1)

J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers: I. Misfit dislocations,” J. Cryst. Growth 27, 118–125 (1974).

Jpn. J. Appl. Phys. (1)

K. Iga, “Vertical-cavity surface-emitting laser: Its conception and evolution,” Jpn. J. Appl. Phys. 47(1), 1–10 (2008).
[CrossRef]

Opt. Express (6)

Photon. Spectra (1)

L. A. D'Asaro, J. F. Seurin, and J. D. Wynn, “High-power, high-efficiency VCSELs pursue the goal,” Photon. Spectra 39, 62–66 (2005).

Phys. Rev. B Condens. Matter (1)

C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B Condens. Matter 39(3), 1871–1883 (1989).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

A. Valle, M. Sciamanna, and K. Panajotov, “Nonlinear dynamics of the polarization of multitransverse mode vertical-cavity surface-emitting lasers under current modulation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(4), 046206 (2007).
[CrossRef] [PubMed]

Proc. SPIE (4)

M. Grabherr, M. Miller, R. Jaeger, D. Wiedenmann, and R. King, “Commercial VCSELs reach 0.1 W cw output power,” Proc. SPIE 5364, 174–182 (2004).
[CrossRef]

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D'Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

J.-F. Seurin, G. Xu, V. Khalfin, A. Miglo, J. D. Wynn, P. Pradhan, C. L. Ghosh, and L. A. D'Asaro, “Progress in high-power high-efficiency VCSEL arrays,” Proc. SPIE 7229, 722903 (2009).
[CrossRef]

Y.-K. Kuo, J.-R. Chen, M.-Y. Jow, C.-Z. Wu, B.-J. Pong, and C.-C. Chen, “Optimization of oxide-confinement and active layers for high-speed 850-nm VCSELs,” Proc. SPIE 6132, 61320M (2006).
[CrossRef]

Other (4)

L. Solymar and D. Walsh, Lectures on the Electrical Properties of Materials (Oxford University Press, 1985).

S. F. Yu, Analysis and Design of Vertical Cavity Surface Emitting Lasers (Wiley-Interscience, 2003).

S. Adachi, Properties of Semiconductor Alloys: Group-IV, III–V and II–VI Semiconductors (Wiley, 2009).

PICS3D by Crosslight Software, Inc., Burnaby, Canada, 2005, http://www.crosslight.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Energy levels of (a) unstrained GaAs well, (b) tensilely strained GaAs0.87P0.13 well, and (c) compressively strained In0.14Ga0.74Al0.12As well with the Al0.3Ga0.7As barrier.

Fig. 2
Fig. 2

Emission wavelength of (a) unstrained GaAs well, (b) tensilely strained GaAsP well, and (c) compressively strained InGaAlAs well with the Al0.3Ga0.7As barrier.

Fig. 3
Fig. 3

Material gain of (a) unstrained GaAs well with width of 4nm and Al0.3Ga0.7As barrier, (b) tensilely strained GaAs0.87P0.13 well with width of 13nm and Al0.3Ga0.7As barrier, and (c) compressively strained In0.14Ga0.74Al0.12As well with width of 6nm and Al0.3Ga0.7As barrier.

Fig. 4
Fig. 4

Peak material gain versus operating temperature for the three QWs.

Fig. 5
Fig. 5

Gain peak wavelength versus operating temperature for the three QWs.

Fig. 6
Fig. 6

Threshold current density of the unstrained GaAs, the tensilely strained GaAs0.87P0.13 and the compressively strained In0.14Ga0.74Al0.12As quantum-well VCSELs.

Fig. 7
Fig. 7

Output power of (a) unstrained GaAs, (b) tensilely strained GaAs0.87P0.13, and (c) compressively strained In0.14Ga0.74Al0.12As quantum-well VCSELs with different apertures.

Tables (4)

Tables Icon

Table 1 Parameters of the Binary Semiconductors Used in this Study

Tables Icon

Table 2 Parameters Used in the Calculation of Output Power

Tables Icon

Table 3 Theoretical Results of Effective Mass, Strain, Bulk Bandgap, Band Offset and Critical Thickness

Tables Icon

Table 4 Detailed Information for the Structure of Each Active Region

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

P(GaAs x P 1-x ) = P(GaAs) x +  P(GaP) ( 1 x ) ,
P(In 1-x-y Ga x Al y As) = P(InAs) ( 1 x y ) + P(GaAs) x + P(AlAs) y .
E g 0 ( GaAs x P 1-x ) = 2.75 1.54 x + 0.21 x 2 eV,
E g0 ( In 1-x-y Ga x Al y As ) = 0.36 + 2.093 y + 0.629 x + 0.577 y 2 + 0.436 x 2 + 1.013 x y 2.0 x y ( 1 x y ) eV.
ε = ε x x = ε y y = a 0 a a ,
ε z z = C 12 C 11 ( ε x x + ε y y ) = 2 C 12 C 11 ε .
δ E c = a c ( ε x x + ε y y + ε z z ) ,
δ E l h = a ν ( ε x x + ε y y + ε z z ) b 2 ( ε x x + ε y y 2 ε z z ) ,
δ E h h = a ν ( ε x x + ε y y + ε z z ) + b 2 ( ε x x + ε y y 2 ε z z ) ,
E c l h ( GaAsP ) = E g 0 ( x ) + δ E c δ E l h ,
E c h h ( InGaAlAs ) = E g 0 ( x , y ) + δ E c δ E h h ,
m z = { 1 / ( γ 1 + 2 γ 2 ) , 1 / ( γ 1 2 γ 2 ) , ( f o r l i g h t h o l e ) ( f o r h e a v y h o l e ) .
E v = { E v , a v + Δ 3 + δ E l h , ( t e n s i l e s t r a i n ) E v , a v + Δ 3 + δ E h h , ( c o m p r e s s i v e s t r a i n ) ,
Q c = Δ E c Δ E g = 1 E v w E v b E g b E g w ,
h c = a [ 1 C 12 4 ( C 11 + C 12 ) ] κ 2 π ε ( 1 + C 12 C 11 + C 12 ) [ ln ( 2 h c a + 1 ) ] ,
I t h = I s exp ( 2 a N n w L w [ α i n L + log ( 1 R ) ] ) ,
I s = q n w L w B b e f f N t 2 π r 2 ,
η d = η i log ( 1 / R ) α i n L + log ( 1 / R ) ,
P = h ν q ( I I t h ) η d ( 1 Δ T T o f f ) ,
Δ T = [ ( V 0 + I R d ) I P ] / ( 4 λ c r ) ,
cos ( k ( L w + L b ) ) = cos ( k b L b ) cos ( k w L w ) k w 2 + k b 2 2 k w k b sin ( k b L b ) sin ( k w L w ) ,
k b = i 2 m b ( V E ) / , k w = 2 m w E / ,
E = h c λ = { E g + E c 1 + E v 1 E c l h + E c 1 + E l h 1 E c h h + E c 1 + E h h 1 ,
g 0 ( E c v ) = π e 2 ε 0 c 3 m 0 2 n a v j , i ( 1 / E c v ) | M j i ( E c v ) | 2 ρ r , j i [ f e ( E c j k + f n ( E v j k ) 1 ) ] ,

Metrics