Abstract

Performing label free coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) in endoscope imaging is a challenge, with huge potential clinical benefit. To date, this goal has remained inaccessible because of the inherent coherent Raman noise that is generated in the fiber itself. By developing double-clad hollow core photonic crystal fiber, we demonstrate coherent anti-Stokes Raman scattering and stimulated Raman scattering in an ‘endoscope-like’ scheme. Both the excitation beams and the collected CARS and SRS signals travel through the same fiber. No CARS and SRS signals are generated within the hollow core fiber even for temporally overlapping pump and Stokes beams, leading to excellent image quality. The CARS and SRS signals generated in the sample are coupled back into a high numerical aperture multimode cladding surrounding the central photonic crystal cladding. We demonstrate this scheme by imaging molecular vibrational bonds of organic crystal deposited on a glass surface.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Vibrationnal microscopy using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4014–4017 (1999).
  2. C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008).
    [CrossRef]
  3. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
    [CrossRef] [PubMed]
  4. P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” N. J. Phys. 11(3), 033026 (2009).
    [CrossRef]
  5. X. S. Xie, J. Yu, and W. Y. Yang, “Living cells as test tubes,” Science 312(5771), 228–230 (2006).
    [CrossRef] [PubMed]
  6. E. Gratton and M. Digman, “One photon up, one photon down,” Nat. Biotechnol. 27(2), 147–148 (2009).
    [CrossRef] [PubMed]
  7. F. Légaré, C. L. Evans, F. Ganikhanov, and X. S. Xie, “Towards CARS Endoscopy,” Opt. Express 14, 4427–4432 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-10-4427 .
  8. M. Balu, G. Liu, Z. Chen, B. J. Tromberg, and E. O. Potma, “Fiber delivered probe for efficient CARS imaging of tissues,” Opt. Express 18(3), 2380–2388 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-2380 .
    [CrossRef] [PubMed]
  9. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
    [CrossRef] [PubMed]
  10. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
    [CrossRef] [PubMed]
  11. G. Humbert, J. Knight, G. Bouwmans, P. Russell, D. Williams, P. Roberts, and B. Mangan, “Hollow core photonic crystal fibers for beam delivery,” Opt. Express 12(8), 1477–1484 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-8-1477 .
    [CrossRef] [PubMed]
  12. J. X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19(6), 1363–1375 (2002).
    [CrossRef]
  13. M. T. Myaing, J. Y. Ye, T. B. Norris, T. Thomas, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, and P. S. Russell, “Enhanced two-photon biosensing with double-clad photonic crystal fibers,” Opt. Lett. 28(14), 1224–1226 (2003).
    [CrossRef] [PubMed]
  14. L. Fu, X. Gan, and M. Gu, “Nonlinear optical microscopy based on double-clad photonic crystal fibers,” Opt. Express 13(14), 5528–5534 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-14-5528 .
    [CrossRef] [PubMed]
  15. F. Benabid, “Hollow-core photonic bandgap fiber: new light guidance for new science and technology,” Philos. T. Roy. Soc. A. 364(1849), 3439–3462 (2006).
    [CrossRef]
  16. S. Brustlein, P. Ferrand, N. Walther, S. Brasselet, C. Billaudeau, D. Marguet, and H. Rigneault, “Optical parametric oscillator-based light source for coherent Raman scattering microscopy: practical overview,” J. Biomed. Opt. 16(2), 021106 (2011).
    [CrossRef] [PubMed]
  17. M. Y. Jeong, H. M. Kim, S. J. Jeon, S. Brasselet, and B. R. Cho, “Octupolar Films with Significant Second-Harmonic Generation,” Adv. Mater. (Deerfield Beach Fla.) 19(16), 2107–2111 (2007).
    [CrossRef]
  18. T. Andersen, K. Hilligsøe, C. Nielsen, J. Thøgersen, K. Hansen, S. Keiding, and J. Larsen, “Continuous-wave wavelength conversion in a photonic crystal fiber with two zero-dispersion wavelengths,” Opt. Express 12(17), 4113–4122 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-17-4113 .
    [CrossRef] [PubMed]
  19. B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
    [CrossRef] [PubMed]

2011 (1)

S. Brustlein, P. Ferrand, N. Walther, S. Brasselet, C. Billaudeau, D. Marguet, and H. Rigneault, “Optical parametric oscillator-based light source for coherent Raman scattering microscopy: practical overview,” J. Biomed. Opt. 16(2), 021106 (2011).
[CrossRef] [PubMed]

2010 (2)

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

M. Balu, G. Liu, Z. Chen, B. J. Tromberg, and E. O. Potma, “Fiber delivered probe for efficient CARS imaging of tissues,” Opt. Express 18(3), 2380–2388 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-3-2380 .
[CrossRef] [PubMed]

2009 (2)

E. Gratton and M. Digman, “One photon up, one photon down,” Nat. Biotechnol. 27(2), 147–148 (2009).
[CrossRef] [PubMed]

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” N. J. Phys. 11(3), 033026 (2009).
[CrossRef]

2008 (2)

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008).
[CrossRef]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

2007 (1)

M. Y. Jeong, H. M. Kim, S. J. Jeon, S. Brasselet, and B. R. Cho, “Octupolar Films with Significant Second-Harmonic Generation,” Adv. Mater. (Deerfield Beach Fla.) 19(16), 2107–2111 (2007).
[CrossRef]

2006 (2)

F. Benabid, “Hollow-core photonic bandgap fiber: new light guidance for new science and technology,” Philos. T. Roy. Soc. A. 364(1849), 3439–3462 (2006).
[CrossRef]

X. S. Xie, J. Yu, and W. Y. Yang, “Living cells as test tubes,” Science 312(5771), 228–230 (2006).
[CrossRef] [PubMed]

2005 (2)

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

L. Fu, X. Gan, and M. Gu, “Nonlinear optical microscopy based on double-clad photonic crystal fibers,” Opt. Express 13(14), 5528–5534 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-14-5528 .
[CrossRef] [PubMed]

2004 (2)

2003 (1)

2002 (1)

1999 (2)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Vibrationnal microscopy using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4014–4017 (1999).

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Andersen, T.

Baker, J. R.

Balu, M.

Benabid, F.

F. Benabid, “Hollow-core photonic bandgap fiber: new light guidance for new science and technology,” Philos. T. Roy. Soc. A. 364(1849), 3439–3462 (2006).
[CrossRef]

Billaudeau, C.

S. Brustlein, P. Ferrand, N. Walther, S. Brasselet, C. Billaudeau, D. Marguet, and H. Rigneault, “Optical parametric oscillator-based light source for coherent Raman scattering microscopy: practical overview,” J. Biomed. Opt. 16(2), 021106 (2011).
[CrossRef] [PubMed]

Birks, T. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Bouwmans, G.

Brasselet, S.

S. Brustlein, P. Ferrand, N. Walther, S. Brasselet, C. Billaudeau, D. Marguet, and H. Rigneault, “Optical parametric oscillator-based light source for coherent Raman scattering microscopy: practical overview,” J. Biomed. Opt. 16(2), 021106 (2011).
[CrossRef] [PubMed]

M. Y. Jeong, H. M. Kim, S. J. Jeon, S. Brasselet, and B. R. Cho, “Octupolar Films with Significant Second-Harmonic Generation,” Adv. Mater. (Deerfield Beach Fla.) 19(16), 2107–2111 (2007).
[CrossRef]

Brustlein, S.

S. Brustlein, P. Ferrand, N. Walther, S. Brasselet, C. Billaudeau, D. Marguet, and H. Rigneault, “Optical parametric oscillator-based light source for coherent Raman scattering microscopy: practical overview,” J. Biomed. Opt. 16(2), 021106 (2011).
[CrossRef] [PubMed]

Chen, Z.

Cheng, J. X.

Cheung, E. L. M.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Cho, B. R.

M. Y. Jeong, H. M. Kim, S. J. Jeon, S. Brasselet, and B. R. Cho, “Octupolar Films with Significant Second-Harmonic Generation,” Adv. Mater. (Deerfield Beach Fla.) 19(16), 2107–2111 (2007).
[CrossRef]

Cocker, E. D.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Digman, M.

E. Gratton and M. Digman, “One photon up, one photon down,” Nat. Biotechnol. 27(2), 147–148 (2009).
[CrossRef] [PubMed]

Evans, C. L.

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008).
[CrossRef]

Ferrand, P.

S. Brustlein, P. Ferrand, N. Walther, S. Brasselet, C. Billaudeau, D. Marguet, and H. Rigneault, “Optical parametric oscillator-based light source for coherent Raman scattering microscopy: practical overview,” J. Biomed. Opt. 16(2), 021106 (2011).
[CrossRef] [PubMed]

Flusberg, B. A.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Freudiger, C. W.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Fu, L.

Gan, X.

Gratton, E.

E. Gratton and M. Digman, “One photon up, one photon down,” Nat. Biotechnol. 27(2), 147–148 (2009).
[CrossRef] [PubMed]

Gu, M.

Hansen, K.

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Hilligsøe, K.

Holtom, G. R.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Vibrationnal microscopy using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4014–4017 (1999).

Humbert, G.

Jeon, S. J.

M. Y. Jeong, H. M. Kim, S. J. Jeon, S. Brasselet, and B. R. Cho, “Octupolar Films with Significant Second-Harmonic Generation,” Adv. Mater. (Deerfield Beach Fla.) 19(16), 2107–2111 (2007).
[CrossRef]

Jeong, M. Y.

M. Y. Jeong, H. M. Kim, S. J. Jeon, S. Brasselet, and B. R. Cho, “Octupolar Films with Significant Second-Harmonic Generation,” Adv. Mater. (Deerfield Beach Fla.) 19(16), 2107–2111 (2007).
[CrossRef]

Jung, J. C.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Keiding, S.

Kim, H. M.

M. Y. Jeong, H. M. Kim, S. J. Jeon, S. Brasselet, and B. R. Cho, “Octupolar Films with Significant Second-Harmonic Generation,” Adv. Mater. (Deerfield Beach Fla.) 19(16), 2107–2111 (2007).
[CrossRef]

Knight, J.

Knight, J. C.

M. T. Myaing, J. Y. Ye, T. B. Norris, T. Thomas, J. R. Baker, W. J. Wadsworth, G. Bouwmans, J. C. Knight, and P. S. Russell, “Enhanced two-photon biosensing with double-clad photonic crystal fibers,” Opt. Lett. 28(14), 1224–1226 (2003).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Kovalev, A.

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” N. J. Phys. 11(3), 033026 (2009).
[CrossRef]

Larsen, J.

Liu, G.

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Mangan, B.

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Marguet, D.

S. Brustlein, P. Ferrand, N. Walther, S. Brasselet, C. Billaudeau, D. Marguet, and H. Rigneault, “Optical parametric oscillator-based light source for coherent Raman scattering microscopy: practical overview,” J. Biomed. Opt. 16(2), 021106 (2011).
[CrossRef] [PubMed]

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Myaing, M. T.

Nandakumar, P.

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” N. J. Phys. 11(3), 033026 (2009).
[CrossRef]

Nielsen, C.

Norris, T. B.

Piyawattanametha, W.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Potma, E. O.

Reichman, J.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

Rigneault, H.

S. Brustlein, P. Ferrand, N. Walther, S. Brasselet, C. Billaudeau, D. Marguet, and H. Rigneault, “Optical parametric oscillator-based light source for coherent Raman scattering microscopy: practical overview,” J. Biomed. Opt. 16(2), 021106 (2011).
[CrossRef] [PubMed]

Roberts, P.

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Russell, P.

Russell, P. S.

Russell, P. St. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

Saar, B. G.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Schnitzer, M. J.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Stanley, C. M.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

Thøgersen, J.

Thomas, T.

Tromberg, B. J.

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Volkmer, A.

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” N. J. Phys. 11(3), 033026 (2009).
[CrossRef]

J. X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19(6), 1363–1375 (2002).
[CrossRef]

Wadsworth, W. J.

Walther, N.

S. Brustlein, P. Ferrand, N. Walther, S. Brasselet, C. Billaudeau, D. Marguet, and H. Rigneault, “Optical parametric oscillator-based light source for coherent Raman scattering microscopy: practical overview,” J. Biomed. Opt. 16(2), 021106 (2011).
[CrossRef] [PubMed]

Williams, D.

Xie, X. S.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008).
[CrossRef]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

X. S. Xie, J. Yu, and W. Y. Yang, “Living cells as test tubes,” Science 312(5771), 228–230 (2006).
[CrossRef] [PubMed]

J. X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B 19(6), 1363–1375 (2002).
[CrossRef]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Vibrationnal microscopy using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4014–4017 (1999).

Yang, W. Y.

X. S. Xie, J. Yu, and W. Y. Yang, “Living cells as test tubes,” Science 312(5771), 228–230 (2006).
[CrossRef] [PubMed]

Ye, J. Y.

Yu, J.

X. S. Xie, J. Yu, and W. Y. Yang, “Living cells as test tubes,” Science 312(5771), 228–230 (2006).
[CrossRef] [PubMed]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Vibrationnal microscopy using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4014–4017 (1999).

Adv. Mater. (Deerfield Beach Fla.) (1)

M. Y. Jeong, H. M. Kim, S. J. Jeon, S. Brasselet, and B. R. Cho, “Octupolar Films with Significant Second-Harmonic Generation,” Adv. Mater. (Deerfield Beach Fla.) 19(16), 2107–2111 (2007).
[CrossRef]

Annu Rev Anal Chem (Palo Alto Calif) (1)

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008).
[CrossRef]

J. Biomed. Opt. (1)

S. Brustlein, P. Ferrand, N. Walther, S. Brasselet, C. Billaudeau, D. Marguet, and H. Rigneault, “Optical parametric oscillator-based light source for coherent Raman scattering microscopy: practical overview,” J. Biomed. Opt. 16(2), 021106 (2011).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

N. J. Phys. (1)

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” N. J. Phys. 11(3), 033026 (2009).
[CrossRef]

Nat. Biotechnol. (1)

E. Gratton and M. Digman, “One photon up, one photon down,” Nat. Biotechnol. 27(2), 147–148 (2009).
[CrossRef] [PubMed]

Nat. Methods (1)

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Philos. T. Roy. Soc. A. (1)

F. Benabid, “Hollow-core photonic bandgap fiber: new light guidance for new science and technology,” Philos. T. Roy. Soc. A. 364(1849), 3439–3462 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Vibrationnal microscopy using coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4014–4017 (1999).

Science (4)

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[CrossRef] [PubMed]

X. S. Xie, J. Yu, and W. Y. Yang, “Living cells as test tubes,” Science 312(5771), 228–230 (2006).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Other (1)

F. Légaré, C. L. Evans, F. Ganikhanov, and X. S. Xie, “Towards CARS Endoscopy,” Opt. Express 14, 4427–4432 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-10-4427 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

CRS contrasts and photonic crystal fiber design. (a) Scheme of the CARS and SRS processes, λP, λS, λAS stand for the pump, Stokes and anti-Stokes beams respectively and ΩR for the molecular vibrational resonance. (b) SEM image of the double-clad silica hollow core photonic crystal fiber (HC-PCF). (c) Fiber transmission loss in dB/m. (d) 1064nm near field image confined into the hollow core, Scale bar is 10 μm in figures (b) and (d).

Fig. 2
Fig. 2

CARS and SRS experimental setup. APD for avalanche photodiode; M for silver mirrors; P for polarizer; L for NIR achromatic doublets, AOM for acousto-optic modulator and D for dichroic filter. Inset: Excitation pump and Stokes beams are sent into the 5 µm diameter hollow core, Epi and backscattered CARS and SRS signal are collected through the silica double cladding (red ring in SEM fiber picture).

Fig. 3
Fig. 3

CARS and spontaneous Raman spectra of TTB crystals. (a) CARS (solid line) and Raman spectra (dashed line) offset for clarity. (b) Spectral response in the resonant CARS situation R + NR + TPEF at 953 cm−1 (λp = 966 nm) (blue line) and in the nonresonant resonant NR + TPEF at 915 cm−1 (λs = 969.6 nm) (green line). The black dashed line shows the spectral response when the excitation beams are focused out of the crystal (λp = 966 nm - resonant situation). Dashed areas shows the blocking filters used.

Fig. 4
Fig. 4

CARS images of TTB crystals recorded using double-clad HC-PCF fiber for excitation beams delivery and signal collection. (a,b) Nonresonant Resonant CARS situation at 915 cm−1 containing TPEF signal (NR + TPEF). (c,d) Resonant CARS situation at 953 cm−1 containing the resonant, nonresonant resonant CARS and TPEF (R + NR + TPEF). (e, f) Resonant CARS signal at 953 cm−1 obtained with simple subtraction (R + NR + TPEF)-(NR + TPEF). Scale bar is 25 µm. 200 x 200 pixels. 50 µs/pixel, pump and Stokes power: 10mW.

Fig. 5
Fig. 5

SRS images of TTB crystals recorded using double-clad HC-PCF fiber for excitation beams delivery and signal collection. (a) Nonresonant Resonant SRS situation at 915 cm−1 (NR). (b) Resonant SRS situation at 968 cm−1 (R). (c) Direct subtraction (R-NR). (d) SRS spectrum (♦) taken for point M in (b) and normalized Raman spectrum (solid line). The dashed line is the Raman spectrum that has been offset and superimposed to the SRS measured points. Scale bar is 10 µm. 45 x 60 pixels. 50 ms/pixel, pump and Stokes power: 10mW.

Metrics