Abstract

The formation of GaSb nanopillars by low energy ion sputtering is studied in real-time by spectroscopic Mueller matrix ellipsometry, from the initial formation in the smooth substrate until nanopillars with a height of 200 – 300 nm are formed. As the nanopillar height increased above 100 nm, coupling between orthogonal polarization modes was observed. Ex situ angle resolved Mueller polarimetry measurements revealed a 180° azimuth rotation symmetry in the off-diagonal Mueller elements, which can be explained by a biaxial material with different dielectric functions εx and εy in a plane parallel to the substrate. This polarization coupling can be caused by a tendency for local direction dependent alignment of the pillars, and such a tendency is confirmed by scanning electron microscopy. Such observations have not been made for GaSb nanopillars shorter than 100 nm, which have optical properties that can be modeled as a uniaxial effective medium.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. S. Nerbø, S. Le Roy, M. Kildemo, and E. Søndergård, “Real-time in situ spectroscopic ellipsometry of gasb nanostructures during sputtering,” Appl. Phys. Lett. 94, 213105 (2009).
    [CrossRef]
  2. S. Le Roy, E. Søndergård, I. S. Nerbø, M. Kildemo, and M. Plapp, “Diffuse-interface model for nanopatterning induced by self-sustained ion-etch masking,” Phys. Rev. B 81, 161401 (2010).
    [CrossRef]
  3. S. Le Roy, E. Søndergård, I. S. Nerbø, and M. Kildemo, “In-situ and real time study of the formation of nanopatterns on gasb by ion abrasion,” Phys. Rev. B (2011), in submission.
  4. H. G. Tompkins and E. A. Irene, Handbook of Ellipsometry (William Andrew Publishing and Springer-Verlag GmbH and Co., 2005).
    [CrossRef]
  5. N. J. Podraza, C. Chen, I. An, G. M. Ferreira, P. I. Rovira, R. Messier, and R. W. Collins, “Analysis of the optical properties and structure of sculptured thin films from spectroscopic mueller matrix ellipsometry,” Thin Solid Films 455–456, 571–575 (2004).
  6. G. Beydaghyan, C. Buzea, Y. Cui, C. Elliott, and K. Robbie, “Ex situ ellipsometric investigation of nanocolumns inclination angle of obliquely evaporated silicon thin films,” Appl. Phys. Lett. 87, 153103 (2005).
    [CrossRef]
  7. B. Gallas, N. Guth, J. Rivory, H. Arwin, R. Magnusson, G. Guida, J. Yang, and K. Robbie, “Nanostructured chiral silver thin films: a route to metamaterials at optical frequencies,” Thin Solid Films , (2010), in production.
  8. D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of Cr columnar thin films,” Opt. Lett. 34, 992 (2009).
    [CrossRef] [PubMed]
  9. I. S. Nerbø, S. Le Roy, M. Foldyna, M. Kildemo, and E. Søndergård, “Characterization of inclined GaSb nanopillars by Mueller matrix ellipsometry,” J. Appl. Phys. 108, 014307 (2010).
    [CrossRef]
  10. M. Ranjan, T. W. H. Oates, S. Facsko, and W. Möller, “Optical properties of silver nanowire arrays with 35 nm periodicity,” Opt. Lett. 35, 2576–2578 (2010).
    [CrossRef] [PubMed]
  11. D. Aspnes, J. Harbison, A. Studna, and L. Florez, “Reflectance-difference spectroscopy system for real-time measurements of crystal growth,” Appl. Phys. Lett. 52, 957–959 (1988).
    [CrossRef]
  12. J. Bremer and O. Hunderi, “Ras studies of laterally nanostructured surfaces,” Phys. Stat. Solidi A 184, 89–100 (2001).
    [CrossRef]
  13. W. Richter, “In-situ observation of movpe epitaxial growth,” Appl. Phys. A 75, 129–140 (2002).
    [CrossRef]
  14. F. Everts, H. Wormeester, and B. Poelsema, “Optical anisotropy induced by ion bombardment of Ag(001),” Phys. Rev. B 78, 155419 (2008).
    [CrossRef]
  15. C. Chen, M. Horn, S. Pursel, C. Ross, and R. Collins, “The ultimate in real-time ellipsometry: multichannel mueller matrix spectroscopy,” Appl. Surface Sci. 253, 38–46 (2006).
    [CrossRef]
  16. E. Collett, Polarized Light: Fundamentals and Applications (Marcel Dekker, Inc., 2003).
  17. P. Hauge, “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surface Sci. 96, 81–107 (1980).
    [CrossRef]
  18. D. W. Berreman, “Optics in stratified and anisotropic media: 4x4-matrix formulation,” J. Opt. Soc. Am. 62, 502–510 (1972).
    [CrossRef]
  19. M. Schubert, “Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems,” Phys. Rev. B 53, 4265–4274 (1996).
    [CrossRef]
  20. A. De Martino, S. Ben Hatit, and M. Foldyna, “Mueller polarimetry in the back focal plane,” in “Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series ,” (2007), vol. 6518.
  21. B. H. Ibrahim, S. B. Hatit, and A. De Martino, “Angle resolved mueller polarimetry with a high numerical aperture and characterization of transparent biaxial samples,” Appl. Opt. 48, 5025–5034 (2009).
    [CrossRef] [PubMed]
  22. S. B. Hatit, M. Foldyna, A. De Martino, and B. Drévillon, “Angle-resolved mueller polarimeter using a microscope objective,” Phys. Stat. Solidi A 205, 743–747 (2008).
    [CrossRef]
  23. I. S. Nerbø, M. Kildemo, S. Le Roy, I. Simonsen, E. Søndergård, L. Holt, and J. Walmsley, “Characterisation of nanostructured GaSb : comparison between large-area optical and local direct microscopic techniques,” Appl. Opt. 47, 5130–5139 (2008).
    [CrossRef] [PubMed]
  24. T. Yamaguchi, S. Yoshida, and A. Kinbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films 21, 173–187 (1974).
    [CrossRef]
  25. E. Fort, C. Ricolleau, and J. Sau-Pueyo, “Dichroic thin films of silver nanoparticle chain arrays on facetted alumina templates,” Nano Lett. 3, 65–67 (2003).
    [CrossRef]
  26. S. Camelio, D. Babonneau, D. Lantiat, L. Simonot, and F. Pailloux, “Anisotropic optical properties of silver nanoparticle arrays on rippled dielectric surfaces produced by low-energy ion erosion,” Phys. Rev. B 80, 1–10 (2009).
    [CrossRef]
  27. C. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513–3534 (1977).
    [CrossRef]
  28. S. Le Roy, E. Barthel, N. Brun, A. Lelarge, and E. Søndergård, “Self-sustained etch masking: a new concept to initiate the formation of nanopatterns during ion erosion,” J. Appl. Phys. 106, 094308 (2009).
    [CrossRef]
  29. J. E. Spanier and I. P. Herman, “Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous sic films,” Phys. Rev. B 61, 10437–10450 (2000).
    [CrossRef]

2010 (3)

S. Le Roy, E. Søndergård, I. S. Nerbø, M. Kildemo, and M. Plapp, “Diffuse-interface model for nanopatterning induced by self-sustained ion-etch masking,” Phys. Rev. B 81, 161401 (2010).
[CrossRef]

I. S. Nerbø, S. Le Roy, M. Foldyna, M. Kildemo, and E. Søndergård, “Characterization of inclined GaSb nanopillars by Mueller matrix ellipsometry,” J. Appl. Phys. 108, 014307 (2010).
[CrossRef]

M. Ranjan, T. W. H. Oates, S. Facsko, and W. Möller, “Optical properties of silver nanowire arrays with 35 nm periodicity,” Opt. Lett. 35, 2576–2578 (2010).
[CrossRef] [PubMed]

2009 (5)

D. Schmidt, B. Booso, T. Hofmann, E. Schubert, A. Sarangan, and M. Schubert, “Generalized ellipsometry for monoclinic absorbing materials: determination of optical constants of Cr columnar thin films,” Opt. Lett. 34, 992 (2009).
[CrossRef] [PubMed]

I. S. Nerbø, S. Le Roy, M. Kildemo, and E. Søndergård, “Real-time in situ spectroscopic ellipsometry of gasb nanostructures during sputtering,” Appl. Phys. Lett. 94, 213105 (2009).
[CrossRef]

B. H. Ibrahim, S. B. Hatit, and A. De Martino, “Angle resolved mueller polarimetry with a high numerical aperture and characterization of transparent biaxial samples,” Appl. Opt. 48, 5025–5034 (2009).
[CrossRef] [PubMed]

S. Camelio, D. Babonneau, D. Lantiat, L. Simonot, and F. Pailloux, “Anisotropic optical properties of silver nanoparticle arrays on rippled dielectric surfaces produced by low-energy ion erosion,” Phys. Rev. B 80, 1–10 (2009).
[CrossRef]

S. Le Roy, E. Barthel, N. Brun, A. Lelarge, and E. Søndergård, “Self-sustained etch masking: a new concept to initiate the formation of nanopatterns during ion erosion,” J. Appl. Phys. 106, 094308 (2009).
[CrossRef]

2008 (3)

S. B. Hatit, M. Foldyna, A. De Martino, and B. Drévillon, “Angle-resolved mueller polarimeter using a microscope objective,” Phys. Stat. Solidi A 205, 743–747 (2008).
[CrossRef]

I. S. Nerbø, M. Kildemo, S. Le Roy, I. Simonsen, E. Søndergård, L. Holt, and J. Walmsley, “Characterisation of nanostructured GaSb : comparison between large-area optical and local direct microscopic techniques,” Appl. Opt. 47, 5130–5139 (2008).
[CrossRef] [PubMed]

F. Everts, H. Wormeester, and B. Poelsema, “Optical anisotropy induced by ion bombardment of Ag(001),” Phys. Rev. B 78, 155419 (2008).
[CrossRef]

2007 (1)

A. De Martino, S. Ben Hatit, and M. Foldyna, “Mueller polarimetry in the back focal plane,” in “Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series ,” (2007), vol. 6518.

2006 (1)

C. Chen, M. Horn, S. Pursel, C. Ross, and R. Collins, “The ultimate in real-time ellipsometry: multichannel mueller matrix spectroscopy,” Appl. Surface Sci. 253, 38–46 (2006).
[CrossRef]

2005 (1)

G. Beydaghyan, C. Buzea, Y. Cui, C. Elliott, and K. Robbie, “Ex situ ellipsometric investigation of nanocolumns inclination angle of obliquely evaporated silicon thin films,” Appl. Phys. Lett. 87, 153103 (2005).
[CrossRef]

2004 (1)

N. J. Podraza, C. Chen, I. An, G. M. Ferreira, P. I. Rovira, R. Messier, and R. W. Collins, “Analysis of the optical properties and structure of sculptured thin films from spectroscopic mueller matrix ellipsometry,” Thin Solid Films 455–456, 571–575 (2004).

2003 (1)

E. Fort, C. Ricolleau, and J. Sau-Pueyo, “Dichroic thin films of silver nanoparticle chain arrays on facetted alumina templates,” Nano Lett. 3, 65–67 (2003).
[CrossRef]

2002 (1)

W. Richter, “In-situ observation of movpe epitaxial growth,” Appl. Phys. A 75, 129–140 (2002).
[CrossRef]

2001 (1)

J. Bremer and O. Hunderi, “Ras studies of laterally nanostructured surfaces,” Phys. Stat. Solidi A 184, 89–100 (2001).
[CrossRef]

2000 (1)

J. E. Spanier and I. P. Herman, “Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous sic films,” Phys. Rev. B 61, 10437–10450 (2000).
[CrossRef]

1996 (1)

M. Schubert, “Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems,” Phys. Rev. B 53, 4265–4274 (1996).
[CrossRef]

1988 (1)

D. Aspnes, J. Harbison, A. Studna, and L. Florez, “Reflectance-difference spectroscopy system for real-time measurements of crystal growth,” Appl. Phys. Lett. 52, 957–959 (1988).
[CrossRef]

1980 (1)

P. Hauge, “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surface Sci. 96, 81–107 (1980).
[CrossRef]

1977 (1)

C. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513–3534 (1977).
[CrossRef]

1974 (1)

T. Yamaguchi, S. Yoshida, and A. Kinbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films 21, 173–187 (1974).
[CrossRef]

1972 (1)

An, I.

N. J. Podraza, C. Chen, I. An, G. M. Ferreira, P. I. Rovira, R. Messier, and R. W. Collins, “Analysis of the optical properties and structure of sculptured thin films from spectroscopic mueller matrix ellipsometry,” Thin Solid Films 455–456, 571–575 (2004).

Aspnes, D.

D. Aspnes, J. Harbison, A. Studna, and L. Florez, “Reflectance-difference spectroscopy system for real-time measurements of crystal growth,” Appl. Phys. Lett. 52, 957–959 (1988).
[CrossRef]

Babonneau, D.

S. Camelio, D. Babonneau, D. Lantiat, L. Simonot, and F. Pailloux, “Anisotropic optical properties of silver nanoparticle arrays on rippled dielectric surfaces produced by low-energy ion erosion,” Phys. Rev. B 80, 1–10 (2009).
[CrossRef]

Barthel, E.

S. Le Roy, E. Barthel, N. Brun, A. Lelarge, and E. Søndergård, “Self-sustained etch masking: a new concept to initiate the formation of nanopatterns during ion erosion,” J. Appl. Phys. 106, 094308 (2009).
[CrossRef]

Ben Hatit, S.

A. De Martino, S. Ben Hatit, and M. Foldyna, “Mueller polarimetry in the back focal plane,” in “Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series ,” (2007), vol. 6518.

Berreman, D. W.

Beydaghyan, G.

G. Beydaghyan, C. Buzea, Y. Cui, C. Elliott, and K. Robbie, “Ex situ ellipsometric investigation of nanocolumns inclination angle of obliquely evaporated silicon thin films,” Appl. Phys. Lett. 87, 153103 (2005).
[CrossRef]

Booso, B.

Bremer, J.

J. Bremer and O. Hunderi, “Ras studies of laterally nanostructured surfaces,” Phys. Stat. Solidi A 184, 89–100 (2001).
[CrossRef]

Brun, N.

S. Le Roy, E. Barthel, N. Brun, A. Lelarge, and E. Søndergård, “Self-sustained etch masking: a new concept to initiate the formation of nanopatterns during ion erosion,” J. Appl. Phys. 106, 094308 (2009).
[CrossRef]

Buzea, C.

G. Beydaghyan, C. Buzea, Y. Cui, C. Elliott, and K. Robbie, “Ex situ ellipsometric investigation of nanocolumns inclination angle of obliquely evaporated silicon thin films,” Appl. Phys. Lett. 87, 153103 (2005).
[CrossRef]

Camelio, S.

S. Camelio, D. Babonneau, D. Lantiat, L. Simonot, and F. Pailloux, “Anisotropic optical properties of silver nanoparticle arrays on rippled dielectric surfaces produced by low-energy ion erosion,” Phys. Rev. B 80, 1–10 (2009).
[CrossRef]

Chen, C.

C. Chen, M. Horn, S. Pursel, C. Ross, and R. Collins, “The ultimate in real-time ellipsometry: multichannel mueller matrix spectroscopy,” Appl. Surface Sci. 253, 38–46 (2006).
[CrossRef]

N. J. Podraza, C. Chen, I. An, G. M. Ferreira, P. I. Rovira, R. Messier, and R. W. Collins, “Analysis of the optical properties and structure of sculptured thin films from spectroscopic mueller matrix ellipsometry,” Thin Solid Films 455–456, 571–575 (2004).

Collett, E.

E. Collett, Polarized Light: Fundamentals and Applications (Marcel Dekker, Inc., 2003).

Collins, R.

C. Chen, M. Horn, S. Pursel, C. Ross, and R. Collins, “The ultimate in real-time ellipsometry: multichannel mueller matrix spectroscopy,” Appl. Surface Sci. 253, 38–46 (2006).
[CrossRef]

Collins, R. W.

N. J. Podraza, C. Chen, I. An, G. M. Ferreira, P. I. Rovira, R. Messier, and R. W. Collins, “Analysis of the optical properties and structure of sculptured thin films from spectroscopic mueller matrix ellipsometry,” Thin Solid Films 455–456, 571–575 (2004).

Cui, Y.

G. Beydaghyan, C. Buzea, Y. Cui, C. Elliott, and K. Robbie, “Ex situ ellipsometric investigation of nanocolumns inclination angle of obliquely evaporated silicon thin films,” Appl. Phys. Lett. 87, 153103 (2005).
[CrossRef]

De Martino, A.

B. H. Ibrahim, S. B. Hatit, and A. De Martino, “Angle resolved mueller polarimetry with a high numerical aperture and characterization of transparent biaxial samples,” Appl. Opt. 48, 5025–5034 (2009).
[CrossRef] [PubMed]

S. B. Hatit, M. Foldyna, A. De Martino, and B. Drévillon, “Angle-resolved mueller polarimeter using a microscope objective,” Phys. Stat. Solidi A 205, 743–747 (2008).
[CrossRef]

A. De Martino, S. Ben Hatit, and M. Foldyna, “Mueller polarimetry in the back focal plane,” in “Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series ,” (2007), vol. 6518.

Drévillon, B.

S. B. Hatit, M. Foldyna, A. De Martino, and B. Drévillon, “Angle-resolved mueller polarimeter using a microscope objective,” Phys. Stat. Solidi A 205, 743–747 (2008).
[CrossRef]

Elliott, C.

G. Beydaghyan, C. Buzea, Y. Cui, C. Elliott, and K. Robbie, “Ex situ ellipsometric investigation of nanocolumns inclination angle of obliquely evaporated silicon thin films,” Appl. Phys. Lett. 87, 153103 (2005).
[CrossRef]

Everts, F.

F. Everts, H. Wormeester, and B. Poelsema, “Optical anisotropy induced by ion bombardment of Ag(001),” Phys. Rev. B 78, 155419 (2008).
[CrossRef]

Facsko, S.

Ferreira, G. M.

N. J. Podraza, C. Chen, I. An, G. M. Ferreira, P. I. Rovira, R. Messier, and R. W. Collins, “Analysis of the optical properties and structure of sculptured thin films from spectroscopic mueller matrix ellipsometry,” Thin Solid Films 455–456, 571–575 (2004).

Florez, L.

D. Aspnes, J. Harbison, A. Studna, and L. Florez, “Reflectance-difference spectroscopy system for real-time measurements of crystal growth,” Appl. Phys. Lett. 52, 957–959 (1988).
[CrossRef]

Foldyna, M.

I. S. Nerbø, S. Le Roy, M. Foldyna, M. Kildemo, and E. Søndergård, “Characterization of inclined GaSb nanopillars by Mueller matrix ellipsometry,” J. Appl. Phys. 108, 014307 (2010).
[CrossRef]

S. B. Hatit, M. Foldyna, A. De Martino, and B. Drévillon, “Angle-resolved mueller polarimeter using a microscope objective,” Phys. Stat. Solidi A 205, 743–747 (2008).
[CrossRef]

A. De Martino, S. Ben Hatit, and M. Foldyna, “Mueller polarimetry in the back focal plane,” in “Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series ,” (2007), vol. 6518.

Fort, E.

E. Fort, C. Ricolleau, and J. Sau-Pueyo, “Dichroic thin films of silver nanoparticle chain arrays on facetted alumina templates,” Nano Lett. 3, 65–67 (2003).
[CrossRef]

Granqvist, C.

C. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513–3534 (1977).
[CrossRef]

Harbison, J.

D. Aspnes, J. Harbison, A. Studna, and L. Florez, “Reflectance-difference spectroscopy system for real-time measurements of crystal growth,” Appl. Phys. Lett. 52, 957–959 (1988).
[CrossRef]

Hatit, S. B.

B. H. Ibrahim, S. B. Hatit, and A. De Martino, “Angle resolved mueller polarimetry with a high numerical aperture and characterization of transparent biaxial samples,” Appl. Opt. 48, 5025–5034 (2009).
[CrossRef] [PubMed]

S. B. Hatit, M. Foldyna, A. De Martino, and B. Drévillon, “Angle-resolved mueller polarimeter using a microscope objective,” Phys. Stat. Solidi A 205, 743–747 (2008).
[CrossRef]

Hauge, P.

P. Hauge, “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surface Sci. 96, 81–107 (1980).
[CrossRef]

Herman, I. P.

J. E. Spanier and I. P. Herman, “Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous sic films,” Phys. Rev. B 61, 10437–10450 (2000).
[CrossRef]

Hofmann, T.

Holt, L.

Horn, M.

C. Chen, M. Horn, S. Pursel, C. Ross, and R. Collins, “The ultimate in real-time ellipsometry: multichannel mueller matrix spectroscopy,” Appl. Surface Sci. 253, 38–46 (2006).
[CrossRef]

Hunderi, O.

J. Bremer and O. Hunderi, “Ras studies of laterally nanostructured surfaces,” Phys. Stat. Solidi A 184, 89–100 (2001).
[CrossRef]

C. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513–3534 (1977).
[CrossRef]

Ibrahim, B. H.

Irene, E. A.

H. G. Tompkins and E. A. Irene, Handbook of Ellipsometry (William Andrew Publishing and Springer-Verlag GmbH and Co., 2005).
[CrossRef]

Kildemo, M.

S. Le Roy, E. Søndergård, I. S. Nerbø, M. Kildemo, and M. Plapp, “Diffuse-interface model for nanopatterning induced by self-sustained ion-etch masking,” Phys. Rev. B 81, 161401 (2010).
[CrossRef]

I. S. Nerbø, S. Le Roy, M. Foldyna, M. Kildemo, and E. Søndergård, “Characterization of inclined GaSb nanopillars by Mueller matrix ellipsometry,” J. Appl. Phys. 108, 014307 (2010).
[CrossRef]

I. S. Nerbø, S. Le Roy, M. Kildemo, and E. Søndergård, “Real-time in situ spectroscopic ellipsometry of gasb nanostructures during sputtering,” Appl. Phys. Lett. 94, 213105 (2009).
[CrossRef]

I. S. Nerbø, M. Kildemo, S. Le Roy, I. Simonsen, E. Søndergård, L. Holt, and J. Walmsley, “Characterisation of nanostructured GaSb : comparison between large-area optical and local direct microscopic techniques,” Appl. Opt. 47, 5130–5139 (2008).
[CrossRef] [PubMed]

Kinbara, A.

T. Yamaguchi, S. Yoshida, and A. Kinbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films 21, 173–187 (1974).
[CrossRef]

Lantiat, D.

S. Camelio, D. Babonneau, D. Lantiat, L. Simonot, and F. Pailloux, “Anisotropic optical properties of silver nanoparticle arrays on rippled dielectric surfaces produced by low-energy ion erosion,” Phys. Rev. B 80, 1–10 (2009).
[CrossRef]

Le Roy, S.

I. S. Nerbø, S. Le Roy, M. Foldyna, M. Kildemo, and E. Søndergård, “Characterization of inclined GaSb nanopillars by Mueller matrix ellipsometry,” J. Appl. Phys. 108, 014307 (2010).
[CrossRef]

S. Le Roy, E. Søndergård, I. S. Nerbø, M. Kildemo, and M. Plapp, “Diffuse-interface model for nanopatterning induced by self-sustained ion-etch masking,” Phys. Rev. B 81, 161401 (2010).
[CrossRef]

I. S. Nerbø, S. Le Roy, M. Kildemo, and E. Søndergård, “Real-time in situ spectroscopic ellipsometry of gasb nanostructures during sputtering,” Appl. Phys. Lett. 94, 213105 (2009).
[CrossRef]

S. Le Roy, E. Barthel, N. Brun, A. Lelarge, and E. Søndergård, “Self-sustained etch masking: a new concept to initiate the formation of nanopatterns during ion erosion,” J. Appl. Phys. 106, 094308 (2009).
[CrossRef]

I. S. Nerbø, M. Kildemo, S. Le Roy, I. Simonsen, E. Søndergård, L. Holt, and J. Walmsley, “Characterisation of nanostructured GaSb : comparison between large-area optical and local direct microscopic techniques,” Appl. Opt. 47, 5130–5139 (2008).
[CrossRef] [PubMed]

Lelarge, A.

S. Le Roy, E. Barthel, N. Brun, A. Lelarge, and E. Søndergård, “Self-sustained etch masking: a new concept to initiate the formation of nanopatterns during ion erosion,” J. Appl. Phys. 106, 094308 (2009).
[CrossRef]

Messier, R.

N. J. Podraza, C. Chen, I. An, G. M. Ferreira, P. I. Rovira, R. Messier, and R. W. Collins, “Analysis of the optical properties and structure of sculptured thin films from spectroscopic mueller matrix ellipsometry,” Thin Solid Films 455–456, 571–575 (2004).

Möller, W.

Nerbø, I. S.

S. Le Roy, E. Søndergård, I. S. Nerbø, M. Kildemo, and M. Plapp, “Diffuse-interface model for nanopatterning induced by self-sustained ion-etch masking,” Phys. Rev. B 81, 161401 (2010).
[CrossRef]

I. S. Nerbø, S. Le Roy, M. Foldyna, M. Kildemo, and E. Søndergård, “Characterization of inclined GaSb nanopillars by Mueller matrix ellipsometry,” J. Appl. Phys. 108, 014307 (2010).
[CrossRef]

I. S. Nerbø, S. Le Roy, M. Kildemo, and E. Søndergård, “Real-time in situ spectroscopic ellipsometry of gasb nanostructures during sputtering,” Appl. Phys. Lett. 94, 213105 (2009).
[CrossRef]

I. S. Nerbø, M. Kildemo, S. Le Roy, I. Simonsen, E. Søndergård, L. Holt, and J. Walmsley, “Characterisation of nanostructured GaSb : comparison between large-area optical and local direct microscopic techniques,” Appl. Opt. 47, 5130–5139 (2008).
[CrossRef] [PubMed]

Oates, T. W. H.

Pailloux, F.

S. Camelio, D. Babonneau, D. Lantiat, L. Simonot, and F. Pailloux, “Anisotropic optical properties of silver nanoparticle arrays on rippled dielectric surfaces produced by low-energy ion erosion,” Phys. Rev. B 80, 1–10 (2009).
[CrossRef]

Plapp, M.

S. Le Roy, E. Søndergård, I. S. Nerbø, M. Kildemo, and M. Plapp, “Diffuse-interface model for nanopatterning induced by self-sustained ion-etch masking,” Phys. Rev. B 81, 161401 (2010).
[CrossRef]

Podraza, N. J.

N. J. Podraza, C. Chen, I. An, G. M. Ferreira, P. I. Rovira, R. Messier, and R. W. Collins, “Analysis of the optical properties and structure of sculptured thin films from spectroscopic mueller matrix ellipsometry,” Thin Solid Films 455–456, 571–575 (2004).

Poelsema, B.

F. Everts, H. Wormeester, and B. Poelsema, “Optical anisotropy induced by ion bombardment of Ag(001),” Phys. Rev. B 78, 155419 (2008).
[CrossRef]

Pursel, S.

C. Chen, M. Horn, S. Pursel, C. Ross, and R. Collins, “The ultimate in real-time ellipsometry: multichannel mueller matrix spectroscopy,” Appl. Surface Sci. 253, 38–46 (2006).
[CrossRef]

Ranjan, M.

Richter, W.

W. Richter, “In-situ observation of movpe epitaxial growth,” Appl. Phys. A 75, 129–140 (2002).
[CrossRef]

Ricolleau, C.

E. Fort, C. Ricolleau, and J. Sau-Pueyo, “Dichroic thin films of silver nanoparticle chain arrays on facetted alumina templates,” Nano Lett. 3, 65–67 (2003).
[CrossRef]

Robbie, K.

G. Beydaghyan, C. Buzea, Y. Cui, C. Elliott, and K. Robbie, “Ex situ ellipsometric investigation of nanocolumns inclination angle of obliquely evaporated silicon thin films,” Appl. Phys. Lett. 87, 153103 (2005).
[CrossRef]

Ross, C.

C. Chen, M. Horn, S. Pursel, C. Ross, and R. Collins, “The ultimate in real-time ellipsometry: multichannel mueller matrix spectroscopy,” Appl. Surface Sci. 253, 38–46 (2006).
[CrossRef]

Rovira, P. I.

N. J. Podraza, C. Chen, I. An, G. M. Ferreira, P. I. Rovira, R. Messier, and R. W. Collins, “Analysis of the optical properties and structure of sculptured thin films from spectroscopic mueller matrix ellipsometry,” Thin Solid Films 455–456, 571–575 (2004).

Sarangan, A.

Sau-Pueyo, J.

E. Fort, C. Ricolleau, and J. Sau-Pueyo, “Dichroic thin films of silver nanoparticle chain arrays on facetted alumina templates,” Nano Lett. 3, 65–67 (2003).
[CrossRef]

Schmidt, D.

Schubert, E.

Schubert, M.

Simonot, L.

S. Camelio, D. Babonneau, D. Lantiat, L. Simonot, and F. Pailloux, “Anisotropic optical properties of silver nanoparticle arrays on rippled dielectric surfaces produced by low-energy ion erosion,” Phys. Rev. B 80, 1–10 (2009).
[CrossRef]

Simonsen, I.

Søndergård, E.

I. S. Nerbø, S. Le Roy, M. Foldyna, M. Kildemo, and E. Søndergård, “Characterization of inclined GaSb nanopillars by Mueller matrix ellipsometry,” J. Appl. Phys. 108, 014307 (2010).
[CrossRef]

S. Le Roy, E. Søndergård, I. S. Nerbø, M. Kildemo, and M. Plapp, “Diffuse-interface model for nanopatterning induced by self-sustained ion-etch masking,” Phys. Rev. B 81, 161401 (2010).
[CrossRef]

I. S. Nerbø, S. Le Roy, M. Kildemo, and E. Søndergård, “Real-time in situ spectroscopic ellipsometry of gasb nanostructures during sputtering,” Appl. Phys. Lett. 94, 213105 (2009).
[CrossRef]

S. Le Roy, E. Barthel, N. Brun, A. Lelarge, and E. Søndergård, “Self-sustained etch masking: a new concept to initiate the formation of nanopatterns during ion erosion,” J. Appl. Phys. 106, 094308 (2009).
[CrossRef]

I. S. Nerbø, M. Kildemo, S. Le Roy, I. Simonsen, E. Søndergård, L. Holt, and J. Walmsley, “Characterisation of nanostructured GaSb : comparison between large-area optical and local direct microscopic techniques,” Appl. Opt. 47, 5130–5139 (2008).
[CrossRef] [PubMed]

Spanier, J. E.

J. E. Spanier and I. P. Herman, “Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous sic films,” Phys. Rev. B 61, 10437–10450 (2000).
[CrossRef]

Studna, A.

D. Aspnes, J. Harbison, A. Studna, and L. Florez, “Reflectance-difference spectroscopy system for real-time measurements of crystal growth,” Appl. Phys. Lett. 52, 957–959 (1988).
[CrossRef]

Tompkins, H. G.

H. G. Tompkins and E. A. Irene, Handbook of Ellipsometry (William Andrew Publishing and Springer-Verlag GmbH and Co., 2005).
[CrossRef]

Walmsley, J.

Wormeester, H.

F. Everts, H. Wormeester, and B. Poelsema, “Optical anisotropy induced by ion bombardment of Ag(001),” Phys. Rev. B 78, 155419 (2008).
[CrossRef]

Yamaguchi, T.

T. Yamaguchi, S. Yoshida, and A. Kinbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films 21, 173–187 (1974).
[CrossRef]

Yoshida, S.

T. Yamaguchi, S. Yoshida, and A. Kinbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films 21, 173–187 (1974).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. A (1)

W. Richter, “In-situ observation of movpe epitaxial growth,” Appl. Phys. A 75, 129–140 (2002).
[CrossRef]

Appl. Phys. Lett. (3)

D. Aspnes, J. Harbison, A. Studna, and L. Florez, “Reflectance-difference spectroscopy system for real-time measurements of crystal growth,” Appl. Phys. Lett. 52, 957–959 (1988).
[CrossRef]

I. S. Nerbø, S. Le Roy, M. Kildemo, and E. Søndergård, “Real-time in situ spectroscopic ellipsometry of gasb nanostructures during sputtering,” Appl. Phys. Lett. 94, 213105 (2009).
[CrossRef]

G. Beydaghyan, C. Buzea, Y. Cui, C. Elliott, and K. Robbie, “Ex situ ellipsometric investigation of nanocolumns inclination angle of obliquely evaporated silicon thin films,” Appl. Phys. Lett. 87, 153103 (2005).
[CrossRef]

Appl. Surface Sci. (1)

C. Chen, M. Horn, S. Pursel, C. Ross, and R. Collins, “The ultimate in real-time ellipsometry: multichannel mueller matrix spectroscopy,” Appl. Surface Sci. 253, 38–46 (2006).
[CrossRef]

J. Appl. Phys. (2)

I. S. Nerbø, S. Le Roy, M. Foldyna, M. Kildemo, and E. Søndergård, “Characterization of inclined GaSb nanopillars by Mueller matrix ellipsometry,” J. Appl. Phys. 108, 014307 (2010).
[CrossRef]

S. Le Roy, E. Barthel, N. Brun, A. Lelarge, and E. Søndergård, “Self-sustained etch masking: a new concept to initiate the formation of nanopatterns during ion erosion,” J. Appl. Phys. 106, 094308 (2009).
[CrossRef]

J. Opt. Soc. Am. (1)

Nano Lett. (1)

E. Fort, C. Ricolleau, and J. Sau-Pueyo, “Dichroic thin films of silver nanoparticle chain arrays on facetted alumina templates,” Nano Lett. 3, 65–67 (2003).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. B (6)

S. Le Roy, E. Søndergård, I. S. Nerbø, M. Kildemo, and M. Plapp, “Diffuse-interface model for nanopatterning induced by self-sustained ion-etch masking,” Phys. Rev. B 81, 161401 (2010).
[CrossRef]

F. Everts, H. Wormeester, and B. Poelsema, “Optical anisotropy induced by ion bombardment of Ag(001),” Phys. Rev. B 78, 155419 (2008).
[CrossRef]

S. Camelio, D. Babonneau, D. Lantiat, L. Simonot, and F. Pailloux, “Anisotropic optical properties of silver nanoparticle arrays on rippled dielectric surfaces produced by low-energy ion erosion,” Phys. Rev. B 80, 1–10 (2009).
[CrossRef]

C. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B 16, 3513–3534 (1977).
[CrossRef]

M. Schubert, “Polarization-dependent optical parameters of arbitrarily anisotropic homogeneous layered systems,” Phys. Rev. B 53, 4265–4274 (1996).
[CrossRef]

J. E. Spanier and I. P. Herman, “Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous sic films,” Phys. Rev. B 61, 10437–10450 (2000).
[CrossRef]

Phys. Stat. Solidi A (2)

S. B. Hatit, M. Foldyna, A. De Martino, and B. Drévillon, “Angle-resolved mueller polarimeter using a microscope objective,” Phys. Stat. Solidi A 205, 743–747 (2008).
[CrossRef]

J. Bremer and O. Hunderi, “Ras studies of laterally nanostructured surfaces,” Phys. Stat. Solidi A 184, 89–100 (2001).
[CrossRef]

Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (1)

A. De Martino, S. Ben Hatit, and M. Foldyna, “Mueller polarimetry in the back focal plane,” in “Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series ,” (2007), vol. 6518.

Surface Sci. (1)

P. Hauge, “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surface Sci. 96, 81–107 (1980).
[CrossRef]

Thin Solid Films (2)

T. Yamaguchi, S. Yoshida, and A. Kinbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films 21, 173–187 (1974).
[CrossRef]

N. J. Podraza, C. Chen, I. An, G. M. Ferreira, P. I. Rovira, R. Messier, and R. W. Collins, “Analysis of the optical properties and structure of sculptured thin films from spectroscopic mueller matrix ellipsometry,” Thin Solid Films 455–456, 571–575 (2004).

Other (4)

B. Gallas, N. Guth, J. Rivory, H. Arwin, R. Magnusson, G. Guida, J. Yang, and K. Robbie, “Nanostructured chiral silver thin films: a route to metamaterials at optical frequencies,” Thin Solid Films , (2010), in production.

S. Le Roy, E. Søndergård, I. S. Nerbø, and M. Kildemo, “In-situ and real time study of the formation of nanopatterns on gasb by ion abrasion,” Phys. Rev. B (2011), in submission.

H. G. Tompkins and E. A. Irene, Handbook of Ellipsometry (William Andrew Publishing and Springer-Verlag GmbH and Co., 2005).
[CrossRef]

E. Collett, Polarized Light: Fundamentals and Applications (Marcel Dekker, Inc., 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Real-time Mueller matrix measurement of GaSb nanopillars, presented at three different photon energies. The 2.6 eV photon energy measurement is not presented for a sputtering time higher than 400 s, as after this time the surface becomes highly anti-reflective, and the optical signal becomes too low at high energies.

Fig. 2
Fig. 2

Absolute values of the off-diagonal Jones elements, normalized by rss , derived from real-time Mueller matrix measurements of the formation of GaSb nanopillars, at photon energies of 2.6 eV (blue), 2.0 eV (black) and 1.5 eV (red).

Fig. 3
Fig. 3

Reflected intensity change from GaSb during sputtering, normalized by the reflected intensity before sputtering. The values are equal to the change in intensity refletance for unpolarized light (Mueller element M 11).

Fig. 4
Fig. 4

Angle resolved Mueller matrix elements m 13 (a) and m 14 (b), and simulations of m 13 (c) and m 14 (d) for reflection from a biaxial effective medium. All at a wavelength of 633 nm. ( m 13 = Re [ r pp r ps * + r sp r ss * ] / M 11 and m 14 = Im [ r pp r ps * + r sp r ss * ] / M 11 ).

Fig. 5
Fig. 5

(a) Power spectral density of the normal view SEM image (magnified), (b) GaSb pillars made by normal incidence sputtering, crosssection SEM image, and (c) normal view SEM image. The direction corresponding to the line in the power spectral density is denoted by the white arrow, together with the plane of incidence of the in situ Mueller matrix measurements.

Fig. 6
Fig. 6

Thickness of an graded anisotropic effective medium layer fitted to in situ Mueller matrix measurements of GaSb during sputtering, together with the error function χ 2. In the beginning a uniaxial model was applied (solid line), after 3 minutes a biaxial model (dots) was found to better represent the pillars.

Fig. 7
Fig. 7

Fitted Mueller matrix (solid) and experimental measurements (dots) at 2.0 eV.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

[ E p E s ] out = [ r pp r ps r sp r ss ] [ E p E s ] inc ,
f GaSb ɛ GaSb ɛ ii ɛ ii + L i ( ɛ GaSb ɛ ii ) + f v ɛ v ɛ ii ɛ ii + L i ( ɛ v ɛ ii ) = 0 ,
f GaSb ( n ) = π 12 d 2 ( n ) ,

Metrics