Abstract

We propose a novel scheme of surface plasmon polariton (SPP) amplification that is based on a minority carrier injection in a Schottky diode. This scheme uses compact electrical pumping instead of bulky optical pumping. Compact size and a planar structure of the proposed amplifier allow one to utilize it in integrated plasmonic circuits and couple it easily to passive plasmonic devices. Moreover, this technique can be used to obtain surface plasmon lasing.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  2. M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science 328(5977), 440–441 (2010).
    [CrossRef] [PubMed]
  3. A. V. Krasavin and A. V. Zayats, “Silicon-based plasmonic waveguides,” Opt. Express 18(11), 11791–11799 (2010).
    [CrossRef] [PubMed]
  4. J. A. Conway, S. Sahni, and T. Szkopek, “Plasmonic interconnects versus conventional interconnects: a comparison of latency, crosstalk and energy costs,” Opt. Express 15(8), 4474–4484 (2007).
    [CrossRef] [PubMed]
  5. M. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12(17), 4072–4079 (2004).
    [CrossRef] [PubMed]
  6. J. Seidel, S. Grafström, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94(17), 177401 (2005).
    [CrossRef] [PubMed]
  7. M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16(2), 1385–1392 (2008).
    [CrossRef] [PubMed]
  8. A. Kumar, S. F. Yu, X. F. Li, and S. P. Lau, “Surface plasmonic lasing via the amplification of coupled surface plasmon waves inside dielectric-metal-dielectric waveguides,” Opt. Express 16(20), 16113–16123 (2008).
    [CrossRef] [PubMed]
  9. I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
    [CrossRef]
  10. I. Radko, M. G. Nielsen, O. Albrektsen, and S. I. Bozhevolnyi, “Stimulated emission of surface plasmon polaritons by lead-sulphide quantum dots at near infra-red wavelengths,” Opt. Express 18(18), 18633–18641 (2010).
    [CrossRef] [PubMed]
  11. M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett. 8(11), 3998–4001 (2008).
    [CrossRef] [PubMed]
  12. M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).
    [CrossRef]
  13. A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, and A. V. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11(6), 2231–2235 (2011), doi:.
    [CrossRef] [PubMed]
  14. P. M. Bolger, W. Dickson, A. V. Krasavin, L. Liebscher, S. G. Hickey, D. V. Skryabin, and A. V. Zayats, “Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length,” Opt. Lett. 35(8), 1197–1199 (2010).
    [CrossRef] [PubMed]
  15. H. C. Card and B. L. Smith, “Green injection luminescence from forward-biased Au-GaP Schottky barriers,” J. Appl. Phys. 42(13), 5863 (1971).
    [CrossRef]
  16. D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
    [CrossRef]
  17. N. K. Dutta and Q. Wang, Semiconductor Optical Amplifiers (World Scientific, 2006).
  18. H. C. Casey and M. B. Panish, Heterostructure Lasers, Part A (Academic, 1978).
  19. C. R. Crowell and S. M. Sze, “Current transport in metal-semiconductor barriers,” Solid-State Electron. 9(11-12), 1035–1048 (1966).
    [CrossRef]
  20. S. M. Sze, Physics of Semiconductor Devices (Wiley, 1981).
  21. J. Racko, D. Donoval, M. Barus, V. Nagl, and A. Grmanova, “Revised theory of current transport through the Schottky structure,” Solid-State Electron. 35(7), 913–919 (1992).
    [CrossRef]
  22. M. A. Green and J. Shewchun, “Minority carrier effects upon the small signal and steady-state properties of Schottky diodes,” Solid-State Electron. 16(10), 1141–1150 (1973).
    [CrossRef]
  23. R. K. Ahrenkiel, R. Ellingson, S. Johnston, and M. Wanlass, “Recombination lifetime of In0.53Ga0.47As as a function of doping density,” Appl. Phys. Lett. 72(26), 3470–3472 (1998).
    [CrossRef]
  24. D. Yu. Fedyanin, A. V. Arsenin, and D. N. Chigrin, “Semiconductor surface plasmon amplifier Based on a Schottky barrier diode,” AIP Conf. Proc. 1291, 112–114 (2010).
    [CrossRef]
  25. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  26. D. Yu. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Backward waves in planar insulator-metal-insulator waveguide structures,” J. Opt. 12(1), 015002 (2010).
    [CrossRef]
  27. D. Yu. Fedyanin and A. V. Arsenin, “Stored light in a plasmonic nanocavity based on extremely-small-energy-velocity modes,” Photonics Nanostruct. Fundam. Appl. 8(4), 264–272 (2010).
    [CrossRef]
  28. L. Coldren and S. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).
  29. B. I. Halperin and M. Lax, “Impurity-band tails in the high-density limit. I. Minimum counting methods,” Phys. Rev. 148(2), 722–740 (1966).
    [CrossRef]
  30. E. O. Kane, “Thomas-Fermi approach to impure semiconductor band structure,” Phys. Rev. 131(1), 79–88 (1963).
    [CrossRef]
  31. F. Stern, “Band-tail model for optical absorption and for the mobility edge in amorphous silicon,” Phys. Rev. B 3(8), 2636–2645 (1971).
    [CrossRef]
  32. H. C. Casey and F. Stern, “Concentration-dependent absorption and spontaneous emission on heavily doped GaAs,” J. Appl. Phys. 47(2), 631–643 (1976).
    [CrossRef]
  33. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
    [CrossRef] [PubMed]
  34. M. Uda, A. Nakamura, T. Yamamoto, and Y. Fujimoto, “Work function of polycrystalline Ag, Au and Al,” J. Electron Spectrosc. Relat. Phenom. 88-91, 643–648 (1998).
    [CrossRef]
  35. S. Adachi, Properties of Semiconductor Alloys: Group-IV, III–V and II–VI Semiconductors (Wiley, 2009).
  36. Yu. A. Goldberg and N. M. Schmidt, Handbook Series on Semiconductor Parameters, Vol. 2 (World Scientific, 1999).

2011 (1)

A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, and A. V. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11(6), 2231–2235 (2011), doi:.
[CrossRef] [PubMed]

2010 (9)

M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).
[CrossRef]

M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science 328(5977), 440–441 (2010).
[CrossRef] [PubMed]

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[CrossRef]

P. M. Bolger, W. Dickson, A. V. Krasavin, L. Liebscher, S. G. Hickey, D. V. Skryabin, and A. V. Zayats, “Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length,” Opt. Lett. 35(8), 1197–1199 (2010).
[CrossRef] [PubMed]

A. V. Krasavin and A. V. Zayats, “Silicon-based plasmonic waveguides,” Opt. Express 18(11), 11791–11799 (2010).
[CrossRef] [PubMed]

I. Radko, M. G. Nielsen, O. Albrektsen, and S. I. Bozhevolnyi, “Stimulated emission of surface plasmon polaritons by lead-sulphide quantum dots at near infra-red wavelengths,” Opt. Express 18(18), 18633–18641 (2010).
[CrossRef] [PubMed]

D. Yu. Fedyanin, A. V. Arsenin, and D. N. Chigrin, “Semiconductor surface plasmon amplifier Based on a Schottky barrier diode,” AIP Conf. Proc. 1291, 112–114 (2010).
[CrossRef]

D. Yu. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Backward waves in planar insulator-metal-insulator waveguide structures,” J. Opt. 12(1), 015002 (2010).
[CrossRef]

D. Yu. Fedyanin and A. V. Arsenin, “Stored light in a plasmonic nanocavity based on extremely-small-energy-velocity modes,” Photonics Nanostruct. Fundam. Appl. 8(4), 264–272 (2010).
[CrossRef]

2008 (4)

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[CrossRef]

M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16(2), 1385–1392 (2008).
[CrossRef] [PubMed]

A. Kumar, S. F. Yu, X. F. Li, and S. P. Lau, “Surface plasmonic lasing via the amplification of coupled surface plasmon waves inside dielectric-metal-dielectric waveguides,” Opt. Express 16(20), 16113–16123 (2008).
[CrossRef] [PubMed]

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett. 8(11), 3998–4001 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

2005 (1)

J. Seidel, S. Grafström, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94(17), 177401 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[CrossRef] [PubMed]

1998 (2)

M. Uda, A. Nakamura, T. Yamamoto, and Y. Fujimoto, “Work function of polycrystalline Ag, Au and Al,” J. Electron Spectrosc. Relat. Phenom. 88-91, 643–648 (1998).
[CrossRef]

R. K. Ahrenkiel, R. Ellingson, S. Johnston, and M. Wanlass, “Recombination lifetime of In0.53Ga0.47As as a function of doping density,” Appl. Phys. Lett. 72(26), 3470–3472 (1998).
[CrossRef]

1992 (1)

J. Racko, D. Donoval, M. Barus, V. Nagl, and A. Grmanova, “Revised theory of current transport through the Schottky structure,” Solid-State Electron. 35(7), 913–919 (1992).
[CrossRef]

1976 (1)

H. C. Casey and F. Stern, “Concentration-dependent absorption and spontaneous emission on heavily doped GaAs,” J. Appl. Phys. 47(2), 631–643 (1976).
[CrossRef]

1973 (1)

M. A. Green and J. Shewchun, “Minority carrier effects upon the small signal and steady-state properties of Schottky diodes,” Solid-State Electron. 16(10), 1141–1150 (1973).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

1971 (2)

H. C. Card and B. L. Smith, “Green injection luminescence from forward-biased Au-GaP Schottky barriers,” J. Appl. Phys. 42(13), 5863 (1971).
[CrossRef]

F. Stern, “Band-tail model for optical absorption and for the mobility edge in amorphous silicon,” Phys. Rev. B 3(8), 2636–2645 (1971).
[CrossRef]

1966 (2)

B. I. Halperin and M. Lax, “Impurity-band tails in the high-density limit. I. Minimum counting methods,” Phys. Rev. 148(2), 722–740 (1966).
[CrossRef]

C. R. Crowell and S. M. Sze, “Current transport in metal-semiconductor barriers,” Solid-State Electron. 9(11-12), 1035–1048 (1966).
[CrossRef]

1963 (1)

E. O. Kane, “Thomas-Fermi approach to impure semiconductor band structure,” Phys. Rev. 131(1), 79–88 (1963).
[CrossRef]

Adegoke, J. A.

Ahrenkiel, R. K.

R. K. Ahrenkiel, R. Ellingson, S. Johnston, and M. Wanlass, “Recombination lifetime of In0.53Ga0.47As as a function of doping density,” Appl. Phys. Lett. 72(26), 3470–3472 (1998).
[CrossRef]

Albrektsen, O.

Ambati, M.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett. 8(11), 3998–4001 (2008).
[CrossRef] [PubMed]

Arsenin, A. V.

D. Yu. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Backward waves in planar insulator-metal-insulator waveguide structures,” J. Opt. 12(1), 015002 (2010).
[CrossRef]

D. Yu. Fedyanin, A. V. Arsenin, and D. N. Chigrin, “Semiconductor surface plasmon amplifier Based on a Schottky barrier diode,” AIP Conf. Proc. 1291, 112–114 (2010).
[CrossRef]

D. Yu. Fedyanin and A. V. Arsenin, “Stored light in a plasmonic nanocavity based on extremely-small-energy-velocity modes,” Photonics Nanostruct. Fundam. Appl. 8(4), 264–272 (2010).
[CrossRef]

Aussenegg, F. R.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[CrossRef]

Bahoura, M.

Bartal, G.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett. 8(11), 3998–4001 (2008).
[CrossRef] [PubMed]

Barus, M.

J. Racko, D. Donoval, M. Barus, V. Nagl, and A. Grmanova, “Revised theory of current transport through the Schottky structure,” Solid-State Electron. 35(7), 913–919 (1992).
[CrossRef]

Bergman, D. J.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[CrossRef] [PubMed]

Berini, P.

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[CrossRef]

Bolger, P. M.

A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, and A. V. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11(6), 2231–2235 (2011), doi:.
[CrossRef] [PubMed]

P. M. Bolger, W. Dickson, A. V. Krasavin, L. Liebscher, S. G. Hickey, D. V. Skryabin, and A. V. Zayats, “Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length,” Opt. Lett. 35(8), 1197–1199 (2010).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

Brongersma, M. L.

M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science 328(5977), 440–441 (2010).
[CrossRef] [PubMed]

Card, H. C.

H. C. Card and B. L. Smith, “Green injection luminescence from forward-biased Au-GaP Schottky barriers,” J. Appl. Phys. 42(13), 5863 (1971).
[CrossRef]

Casey, H. C.

H. C. Casey and F. Stern, “Concentration-dependent absorption and spontaneous emission on heavily doped GaAs,” J. Appl. Phys. 47(2), 631–643 (1976).
[CrossRef]

Chigrin, D. N.

D. Yu. Fedyanin, A. V. Arsenin, and D. N. Chigrin, “Semiconductor surface plasmon amplifier Based on a Schottky barrier diode,” AIP Conf. Proc. 1291, 112–114 (2010).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Conway, J. A.

Crowell, C. R.

C. R. Crowell and S. M. Sze, “Current transport in metal-semiconductor barriers,” Solid-State Electron. 9(11-12), 1035–1048 (1966).
[CrossRef]

Danz, N.

M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).
[CrossRef]

De Leon, I.

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[CrossRef]

Dickson, W.

A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, and A. V. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11(6), 2231–2235 (2011), doi:.
[CrossRef] [PubMed]

P. M. Bolger, W. Dickson, A. V. Krasavin, L. Liebscher, S. G. Hickey, D. V. Skryabin, and A. V. Zayats, “Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length,” Opt. Lett. 35(8), 1197–1199 (2010).
[CrossRef] [PubMed]

Ditlbacher, H.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[CrossRef]

Donoval, D.

J. Racko, D. Donoval, M. Barus, V. Nagl, and A. Grmanova, “Revised theory of current transport through the Schottky structure,” Solid-State Electron. 35(7), 913–919 (1992).
[CrossRef]

Ellingson, R.

R. K. Ahrenkiel, R. Ellingson, S. Johnston, and M. Wanlass, “Recombination lifetime of In0.53Ga0.47As as a function of doping density,” Appl. Phys. Lett. 72(26), 3470–3472 (1998).
[CrossRef]

Eng, L.

J. Seidel, S. Grafström, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94(17), 177401 (2005).
[CrossRef] [PubMed]

Fainman, Y.

Fedyanin, D. Yu.

D. Yu. Fedyanin and A. V. Arsenin, “Stored light in a plasmonic nanocavity based on extremely-small-energy-velocity modes,” Photonics Nanostruct. Fundam. Appl. 8(4), 264–272 (2010).
[CrossRef]

D. Yu. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Backward waves in planar insulator-metal-insulator waveguide structures,” J. Opt. 12(1), 015002 (2010).
[CrossRef]

D. Yu. Fedyanin, A. V. Arsenin, and D. N. Chigrin, “Semiconductor surface plasmon amplifier Based on a Schottky barrier diode,” AIP Conf. Proc. 1291, 112–114 (2010).
[CrossRef]

Fujimoto, Y.

M. Uda, A. Nakamura, T. Yamamoto, and Y. Fujimoto, “Work function of polycrystalline Ag, Au and Al,” J. Electron Spectrosc. Relat. Phenom. 88-91, 643–648 (1998).
[CrossRef]

Galler, N.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[CrossRef]

Gather, M. C.

M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).
[CrossRef]

Genov, D. A.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett. 8(11), 3998–4001 (2008).
[CrossRef] [PubMed]

Gladun, A. D.

D. Yu. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Backward waves in planar insulator-metal-insulator waveguide structures,” J. Opt. 12(1), 015002 (2010).
[CrossRef]

Grafström, S.

J. Seidel, S. Grafström, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94(17), 177401 (2005).
[CrossRef] [PubMed]

Green, M. A.

M. A. Green and J. Shewchun, “Minority carrier effects upon the small signal and steady-state properties of Schottky diodes,” Solid-State Electron. 16(10), 1141–1150 (1973).
[CrossRef]

Grmanova, A.

J. Racko, D. Donoval, M. Barus, V. Nagl, and A. Grmanova, “Revised theory of current transport through the Schottky structure,” Solid-State Electron. 35(7), 913–919 (1992).
[CrossRef]

Halperin, B. I.

B. I. Halperin and M. Lax, “Impurity-band tails in the high-density limit. I. Minimum counting methods,” Phys. Rev. 148(2), 722–740 (1966).
[CrossRef]

Hickey, S. G.

Hohenau, A.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Johnston, S.

R. K. Ahrenkiel, R. Ellingson, S. Johnston, and M. Wanlass, “Recombination lifetime of In0.53Ga0.47As as a function of doping density,” Appl. Phys. Lett. 72(26), 3470–3472 (1998).
[CrossRef]

Kane, E. O.

E. O. Kane, “Thomas-Fermi approach to impure semiconductor band structure,” Phys. Rev. 131(1), 79–88 (1963).
[CrossRef]

Koller, D. M.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[CrossRef]

Krasavin, A. V.

Krenn, J. R.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[CrossRef]

Kumar, A.

Lau, S. P.

Lax, M.

B. I. Halperin and M. Lax, “Impurity-band tails in the high-density limit. I. Minimum counting methods,” Phys. Rev. 148(2), 722–740 (1966).
[CrossRef]

Leiman, V. G.

D. Yu. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Backward waves in planar insulator-metal-insulator waveguide structures,” J. Opt. 12(1), 015002 (2010).
[CrossRef]

Leitner, A.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[CrossRef]

Leosson, K.

M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).
[CrossRef]

Li, X. F.

Liebscher, L.

List, E. J. W.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[CrossRef]

Mayy, M.

Meerholz, K.

M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).
[CrossRef]

Nagl, V.

J. Racko, D. Donoval, M. Barus, V. Nagl, and A. Grmanova, “Revised theory of current transport through the Schottky structure,” Solid-State Electron. 35(7), 913–919 (1992).
[CrossRef]

Nakamura, A.

M. Uda, A. Nakamura, T. Yamamoto, and Y. Fujimoto, “Work function of polycrystalline Ag, Au and Al,” J. Electron Spectrosc. Relat. Phenom. 88-91, 643–648 (1998).
[CrossRef]

Nam, S. H.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett. 8(11), 3998–4001 (2008).
[CrossRef] [PubMed]

Nezhad, M.

Nielsen, M. G.

Noginov, M. A.

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Podolskiy, V. A.

Racko, J.

J. Racko, D. Donoval, M. Barus, V. Nagl, and A. Grmanova, “Revised theory of current transport through the Schottky structure,” Solid-State Electron. 35(7), 913–919 (1992).
[CrossRef]

Radko, I.

Reil, F.

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[CrossRef]

Reynolds, K.

Ritzo, B. A.

Sahni, S.

Seidel, J.

J. Seidel, S. Grafström, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94(17), 177401 (2005).
[CrossRef] [PubMed]

Shalaev, V. M.

M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science 328(5977), 440–441 (2010).
[CrossRef] [PubMed]

Shewchun, J.

M. A. Green and J. Shewchun, “Minority carrier effects upon the small signal and steady-state properties of Schottky diodes,” Solid-State Electron. 16(10), 1141–1150 (1973).
[CrossRef]

Skryabin, D. V.

Smith, B. L.

H. C. Card and B. L. Smith, “Green injection luminescence from forward-biased Au-GaP Schottky barriers,” J. Appl. Phys. 42(13), 5863 (1971).
[CrossRef]

Stern, F.

H. C. Casey and F. Stern, “Concentration-dependent absorption and spontaneous emission on heavily doped GaAs,” J. Appl. Phys. 47(2), 631–643 (1976).
[CrossRef]

F. Stern, “Band-tail model for optical absorption and for the mobility edge in amorphous silicon,” Phys. Rev. B 3(8), 2636–2645 (1971).
[CrossRef]

Stockman, M. I.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[CrossRef] [PubMed]

Sze, S. M.

C. R. Crowell and S. M. Sze, “Current transport in metal-semiconductor barriers,” Solid-State Electron. 9(11-12), 1035–1048 (1966).
[CrossRef]

Szkopek, T.

Tetz, K.

Uda, M.

M. Uda, A. Nakamura, T. Yamamoto, and Y. Fujimoto, “Work function of polycrystalline Ag, Au and Al,” J. Electron Spectrosc. Relat. Phenom. 88-91, 643–648 (1998).
[CrossRef]

Ulin-Avila, E.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett. 8(11), 3998–4001 (2008).
[CrossRef] [PubMed]

Vo, T. P.

A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, and A. V. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11(6), 2231–2235 (2011), doi:.
[CrossRef] [PubMed]

Wanlass, M.

R. K. Ahrenkiel, R. Ellingson, S. Johnston, and M. Wanlass, “Recombination lifetime of In0.53Ga0.47As as a function of doping density,” Appl. Phys. Lett. 72(26), 3470–3472 (1998).
[CrossRef]

Yamamoto, T.

M. Uda, A. Nakamura, T. Yamamoto, and Y. Fujimoto, “Work function of polycrystalline Ag, Au and Al,” J. Electron Spectrosc. Relat. Phenom. 88-91, 643–648 (1998).
[CrossRef]

Yu, S. F.

Zayats, A. V.

Zhang, X.

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett. 8(11), 3998–4001 (2008).
[CrossRef] [PubMed]

Zhu, G.

AIP Conf. Proc. (1)

D. Yu. Fedyanin, A. V. Arsenin, and D. N. Chigrin, “Semiconductor surface plasmon amplifier Based on a Schottky barrier diode,” AIP Conf. Proc. 1291, 112–114 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

R. K. Ahrenkiel, R. Ellingson, S. Johnston, and M. Wanlass, “Recombination lifetime of In0.53Ga0.47As as a function of doping density,” Appl. Phys. Lett. 72(26), 3470–3472 (1998).
[CrossRef]

J. Appl. Phys. (2)

H. C. Casey and F. Stern, “Concentration-dependent absorption and spontaneous emission on heavily doped GaAs,” J. Appl. Phys. 47(2), 631–643 (1976).
[CrossRef]

H. C. Card and B. L. Smith, “Green injection luminescence from forward-biased Au-GaP Schottky barriers,” J. Appl. Phys. 42(13), 5863 (1971).
[CrossRef]

J. Electron Spectrosc. Relat. Phenom. (1)

M. Uda, A. Nakamura, T. Yamamoto, and Y. Fujimoto, “Work function of polycrystalline Ag, Au and Al,” J. Electron Spectrosc. Relat. Phenom. 88-91, 643–648 (1998).
[CrossRef]

J. Opt. (1)

D. Yu. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Backward waves in planar insulator-metal-insulator waveguide structures,” J. Opt. 12(1), 015002 (2010).
[CrossRef]

Nano Lett. (2)

A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, and A. V. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11(6), 2231–2235 (2011), doi:.
[CrossRef] [PubMed]

M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett. 8(11), 3998–4001 (2008).
[CrossRef] [PubMed]

Nat. Photonics (3)

M. C. Gather, K. Meerholz, N. Danz, and K. Leosson, “Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer,” Nat. Photonics 4(7), 457–461 (2010).
[CrossRef]

I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics 4(6), 382–387 (2010).
[CrossRef]

D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon emitting diode,” Nat. Photonics 2(11), 684–687 (2008).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Photonics Nanostruct. Fundam. Appl. (1)

D. Yu. Fedyanin and A. V. Arsenin, “Stored light in a plasmonic nanocavity based on extremely-small-energy-velocity modes,” Photonics Nanostruct. Fundam. Appl. 8(4), 264–272 (2010).
[CrossRef]

Phys. Rev. (2)

B. I. Halperin and M. Lax, “Impurity-band tails in the high-density limit. I. Minimum counting methods,” Phys. Rev. 148(2), 722–740 (1966).
[CrossRef]

E. O. Kane, “Thomas-Fermi approach to impure semiconductor band structure,” Phys. Rev. 131(1), 79–88 (1963).
[CrossRef]

Phys. Rev. B (2)

F. Stern, “Band-tail model for optical absorption and for the mobility edge in amorphous silicon,” Phys. Rev. B 3(8), 2636–2645 (1971).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (2)

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003).
[CrossRef] [PubMed]

J. Seidel, S. Grafström, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94(17), 177401 (2005).
[CrossRef] [PubMed]

Science (2)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science 328(5977), 440–441 (2010).
[CrossRef] [PubMed]

Solid-State Electron. (3)

J. Racko, D. Donoval, M. Barus, V. Nagl, and A. Grmanova, “Revised theory of current transport through the Schottky structure,” Solid-State Electron. 35(7), 913–919 (1992).
[CrossRef]

M. A. Green and J. Shewchun, “Minority carrier effects upon the small signal and steady-state properties of Schottky diodes,” Solid-State Electron. 16(10), 1141–1150 (1973).
[CrossRef]

C. R. Crowell and S. M. Sze, “Current transport in metal-semiconductor barriers,” Solid-State Electron. 9(11-12), 1035–1048 (1966).
[CrossRef]

Other (6)

S. M. Sze, Physics of Semiconductor Devices (Wiley, 1981).

S. Adachi, Properties of Semiconductor Alloys: Group-IV, III–V and II–VI Semiconductors (Wiley, 2009).

Yu. A. Goldberg and N. M. Schmidt, Handbook Series on Semiconductor Parameters, Vol. 2 (World Scientific, 1999).

L. Coldren and S. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).

N. K. Dutta and Q. Wang, Semiconductor Optical Amplifiers (World Scientific, 2006).

H. C. Casey and M. B. Panish, Heterostructure Lasers, Part A (Academic, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Sketch of the ideal Schottky barrier diode and schematic band diagram under zero bias, L = 400 nm, ψ M = 5.4 eV [34,35], ε st = 13.94 [36], χ e = 4.5 eV [36], E g = 0.75 eV that correspond to Ga0.47In0.53As at T = 300 K and donor concentration N d = 9.3 × 1017 cm−3. (b) Carrier density distribution and (c) band diagram under zero bias.

Fig. 2
Fig. 2

Quasi-Fermi levels at V = 0.8 V (a) and V = 0.85 V (b).

Fig. 3
Fig. 3

(a) Schematic view of the SPP propagation along the metal-semiconductor interface. (b) Dependence of the material gain on the minority carrier density in In0.53Ga0.47As at a light wavelength of 1.7 µm. (c) Gain spectra of In0.53Ga0.47As.

Fig. 4
Fig. 4

Gain, current density (dashed lines correspond to the electron current and solid lines to the hole current) and carrier density distribution across the active region of the plasmonic waveguide at four different biases for two different values of the power per unit guide width.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

F e F h ω E g .
F e | z = L = F h | z = L = E fs | V = 0 + V = F m + V = V
{ J n | z = 0 = e υ nr ( n | z = 0 n 0 ) J p | z = 0 = e υ pr ( p | z = 0 p 0 )
{ d ϕ / d z = E z d E z / d z = 4 π e ( p n + N d ) / ε st d n d z = 1 e D n J n μ n n D n E z d p d z = 1 e D p J p + μ p p D p E z d J n / d z = e U d J p / d z = e U
U stim = g S / ω ,
g ( F e , F h ) = 4 π 2 e 2 c n ¯ m e 0 2 ω | M b | 2 + | M env ( E , E ω ) | 2 ρ c ( E E c ) ρ v ( E v E + ω ) [ 1 1 + exp ( ( E F e ) / k B T ) 1 1 + exp ( ( E ω F h ) / k B T ) ] d E ,

Metrics