Abstract

This paper proposes a novel conjugate-driven frequency shift keying (FSK) modulated wavelength division multiplexing passive network (WDM-PON) with variable-rate multicast services. Optical orthogonal frequency division multiplexing (OFDM) is adopted for multicast overlay services with different rate requirements. A differential detection is used for the demodulation of FSK signal, which can eliminate the crosstalk from the OFDM signal. A total 40-Gb/s FSK point to point (P2P) signal and 6.3-Gb/s OFDM overlay with three kinds of variable-rate multicast services are experimentally demonstrated. A physical-layer adaptive identification is proposed for the variable-rate multicast services. After 25km single mode fiber (SMF) transmission, the power penalties of FSK P2P signal and OFDM multicast overlay are 1.3dB and 1.7dB respectively.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Chen, L. Wosinska, C. Machuca, and M. Jaeger, “Cost vs. reliability performance study of fiber access network architectures,” IEEE Commun. Mag. 48(2), 56–65 (2010).
    [CrossRef]
  2. M. Dueser, “Optical network architecture,” in Proc.OFC, paper.OMN1 (2011).
  3. K. Grobe and J.-P. Elbers, “PON in adolescence: from TDMA to WDM-PON,” IEEE Commun. Mag. 46(1), 26–34 (2008).
    [CrossRef]
  4. F. J. Effenberger; “The XG-PON System: Cost Effective 10 Gb/s Access,” J. Lightwave Technol. 29(4), 403–409 (2011).
    [CrossRef]
  5. T. Kodama, N. Kataoka, N. Wada, G. Cincotti, X. Wang, T. Miyazaki, and K. Kitayama, “High-security 2.5 Gbps, polarization multiplexed 256-ary OCDM using a single multi-port encoder/decoder,” Opt. Express 18(20), 21376–21385 (2010).
    [CrossRef] [PubMed]
  6. G. Manzacca, X. Wang, N. Wada, G. Cincotti, and K.-I. Kitayama, “Comparative Study of Multiencoding Schemes for OCDM Using a Single Multiport Optical Encoder/Decoder,” Photon. Technol. Lett. 19(8), 559–561 (2007).
    [CrossRef]
  7. N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s Optical Access Based on Optical Orthogonal Frequency Division Multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
    [CrossRef]
  8. P. Winzer, “Beyond 100G Ethernet,” IEEE Commun. Mag. 48(7), 26–30 (2010).
    [CrossRef]
  9. J. McDonough, “Moving Standards to 100 GbE and Beyond,” IEEE Commun. Mag. 45(11), 6–9 (2007).
    [CrossRef]
  10. G. –K. Chang, A. Chowdhury, J. Zhensheng, and H.-C. Chien, “Key Technologies of WDM-PON for Future Converged Optical Broadband Access Networks,” J. OPT. COMMUN,” NETW 1(4), c35–c50 (2009).
  11. J. Yu, Z. Jia, P. N. Ji, and T. Wang, “40-Gb/s Wavelength-Division-Multiplexing Passive Optical Network with Centralized Lightwave Source,” in Proc. OFC, paper.OTuH8(2008).
  12. C.-W. Chow, C.-H. Yeh, C.-H. Wang, F.-Y. Shih, C.-L. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Opt. Express 16(16), 12096–12101 (2008).
    [CrossRef] [PubMed]
  13. G. Contestabile, M. Presi, and E. Ciaramella, “All-Optical Regeneration of 40 Gb/s Constant Envelope Alternative Modulation Formats,” IEEE J. Quantum Electron. 46(3), 340–346 (2010).
    [CrossRef]
  14. W. Idler, A. Klekamp, R. Dischler, and B. Wedding, “Advantages of Frequency Shift Keying in 10 Gb/s Systems”, in Proc.LEOS, USA, paper.FD3(2004).
  15. J. J. Martínez and I. G. G. Juan, “Novel WDM-PON Architecture Based on a Spectrally Efficient IM-FSK Scheme Using DMLs and RSOAs,” J. Lightwave Technol. 26(3), 350–356 (2008).
    [CrossRef]
  16. Y. Qiu and C. –K. Chan, “A WDM Passive Optical Network with Polarization-Assisted Multicast Overlay Control,”, IEEE Photon. Technol. Lett. 21(16), 1133–1135 (2009).
    [CrossRef]
  17. L. Cai, Z. Liu, S. Xiao, Z. Min, R. Li, and W. Hu, “Video-Service-Overlaid Wavelength-Division-Multiplexed Passive Optical Network,” IEEE Photon. Technol. Lett. 21(14), 990–992 (2009).
    [CrossRef]
  18. C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal-Remodulated Wired/Wireless Access Using Reflective Semiconductor Optical Amplifier With Wireless Signal Broadcast,” IEEE Photon. Technol. Lett. 21(19), 1459–1461 (2009).
    [CrossRef]
  19. X. Liu and F. Buchali, “Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM,” Opt. Express 16(26), 21944–21957 (2008).
    [CrossRef] [PubMed]
  20. J. L. Wei, E. Hugues-Salas, R. P. Giddings, X. Q. Jin, X. Zheng, S. Mansoor, and J. M. Tang, “Wavelength reused bidirectional transmission of adaptively modulated optical OFDM signals in WDM-PONs incorporating SOA and RSOA intensity modulators,” Opt. Express 18(10), 9791–9808 (2010).
    [CrossRef] [PubMed]
  21. J. M. Tang, P. M. Lane, and K. Alan Shore, ““High-Speed Transmission of Adaptively Modulated Optical OFDM Signals Over Multimode Fibers Using Directly Modulated DFBs,” J. Lightw. Technol. 24(1), 429–441 (2006).
    [CrossRef]
  22. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express 17(11), 9421–9427 (2009).
    [CrossRef] [PubMed]
  23. J. J. Martínez, I. G. G. Juan, A. L. Lucia, A. V. Velasco, J. C. Aguado, and Á. L. B. María, “Novel WDM-PON Architecture Based on a Spectrally Efficient IM-FSK Scheme Using DMLs and RSOAs,” J. Lightwave Technol. 26(3), 350–356 (2008).
    [CrossRef]

2011 (1)

2010 (6)

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s Optical Access Based on Optical Orthogonal Frequency Division Multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[CrossRef]

P. Winzer, “Beyond 100G Ethernet,” IEEE Commun. Mag. 48(7), 26–30 (2010).
[CrossRef]

G. Contestabile, M. Presi, and E. Ciaramella, “All-Optical Regeneration of 40 Gb/s Constant Envelope Alternative Modulation Formats,” IEEE J. Quantum Electron. 46(3), 340–346 (2010).
[CrossRef]

J. Chen, L. Wosinska, C. Machuca, and M. Jaeger, “Cost vs. reliability performance study of fiber access network architectures,” IEEE Commun. Mag. 48(2), 56–65 (2010).
[CrossRef]

J. L. Wei, E. Hugues-Salas, R. P. Giddings, X. Q. Jin, X. Zheng, S. Mansoor, and J. M. Tang, “Wavelength reused bidirectional transmission of adaptively modulated optical OFDM signals in WDM-PONs incorporating SOA and RSOA intensity modulators,” Opt. Express 18(10), 9791–9808 (2010).
[CrossRef] [PubMed]

T. Kodama, N. Kataoka, N. Wada, G. Cincotti, X. Wang, T. Miyazaki, and K. Kitayama, “High-security 2.5 Gbps, polarization multiplexed 256-ary OCDM using a single multi-port encoder/decoder,” Opt. Express 18(20), 21376–21385 (2010).
[CrossRef] [PubMed]

2009 (5)

Y. Qiu and C. –K. Chan, “A WDM Passive Optical Network with Polarization-Assisted Multicast Overlay Control,”, IEEE Photon. Technol. Lett. 21(16), 1133–1135 (2009).
[CrossRef]

L. Cai, Z. Liu, S. Xiao, Z. Min, R. Li, and W. Hu, “Video-Service-Overlaid Wavelength-Division-Multiplexed Passive Optical Network,” IEEE Photon. Technol. Lett. 21(14), 990–992 (2009).
[CrossRef]

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal-Remodulated Wired/Wireless Access Using Reflective Semiconductor Optical Amplifier With Wireless Signal Broadcast,” IEEE Photon. Technol. Lett. 21(19), 1459–1461 (2009).
[CrossRef]

G. –K. Chang, A. Chowdhury, J. Zhensheng, and H.-C. Chien, “Key Technologies of WDM-PON for Future Converged Optical Broadband Access Networks,” J. OPT. COMMUN,” NETW 1(4), c35–c50 (2009).

Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express 17(11), 9421–9427 (2009).
[CrossRef] [PubMed]

2008 (5)

2007 (2)

G. Manzacca, X. Wang, N. Wada, G. Cincotti, and K.-I. Kitayama, “Comparative Study of Multiencoding Schemes for OCDM Using a Single Multiport Optical Encoder/Decoder,” Photon. Technol. Lett. 19(8), 559–561 (2007).
[CrossRef]

J. McDonough, “Moving Standards to 100 GbE and Beyond,” IEEE Commun. Mag. 45(11), 6–9 (2007).
[CrossRef]

2006 (1)

J. M. Tang, P. M. Lane, and K. Alan Shore, ““High-Speed Transmission of Adaptively Modulated Optical OFDM Signals Over Multimode Fibers Using Directly Modulated DFBs,” J. Lightw. Technol. 24(1), 429–441 (2006).
[CrossRef]

Aguado, J. C.

Alan Shore, K.

J. M. Tang, P. M. Lane, and K. Alan Shore, ““High-Speed Transmission of Adaptively Modulated Optical OFDM Signals Over Multimode Fibers Using Directly Modulated DFBs,” J. Lightw. Technol. 24(1), 429–441 (2006).
[CrossRef]

Buchali, F.

Cai, L.

L. Cai, Z. Liu, S. Xiao, Z. Min, R. Li, and W. Hu, “Video-Service-Overlaid Wavelength-Division-Multiplexed Passive Optical Network,” IEEE Photon. Technol. Lett. 21(14), 990–992 (2009).
[CrossRef]

Chan, C. –K.

Y. Qiu and C. –K. Chan, “A WDM Passive Optical Network with Polarization-Assisted Multicast Overlay Control,”, IEEE Photon. Technol. Lett. 21(16), 1133–1135 (2009).
[CrossRef]

Chang, G. –K.

G. –K. Chang, A. Chowdhury, J. Zhensheng, and H.-C. Chien, “Key Technologies of WDM-PON for Future Converged Optical Broadband Access Networks,” J. OPT. COMMUN,” NETW 1(4), c35–c50 (2009).

Chen, J.

J. Chen, L. Wosinska, C. Machuca, and M. Jaeger, “Cost vs. reliability performance study of fiber access network architectures,” IEEE Commun. Mag. 48(2), 56–65 (2010).
[CrossRef]

Chen, S.

Chi, S.

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal-Remodulated Wired/Wireless Access Using Reflective Semiconductor Optical Amplifier With Wireless Signal Broadcast,” IEEE Photon. Technol. Lett. 21(19), 1459–1461 (2009).
[CrossRef]

C.-W. Chow, C.-H. Yeh, C.-H. Wang, F.-Y. Shih, C.-L. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Opt. Express 16(16), 12096–12101 (2008).
[CrossRef] [PubMed]

Chien, H.-C.

G. –K. Chang, A. Chowdhury, J. Zhensheng, and H.-C. Chien, “Key Technologies of WDM-PON for Future Converged Optical Broadband Access Networks,” J. OPT. COMMUN,” NETW 1(4), c35–c50 (2009).

Chow, C. W.

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal-Remodulated Wired/Wireless Access Using Reflective Semiconductor Optical Amplifier With Wireless Signal Broadcast,” IEEE Photon. Technol. Lett. 21(19), 1459–1461 (2009).
[CrossRef]

Chow, C.-W.

Chowdhury, A.

G. –K. Chang, A. Chowdhury, J. Zhensheng, and H.-C. Chien, “Key Technologies of WDM-PON for Future Converged Optical Broadband Access Networks,” J. OPT. COMMUN,” NETW 1(4), c35–c50 (2009).

Ciaramella, E.

G. Contestabile, M. Presi, and E. Ciaramella, “All-Optical Regeneration of 40 Gb/s Constant Envelope Alternative Modulation Formats,” IEEE J. Quantum Electron. 46(3), 340–346 (2010).
[CrossRef]

Cincotti, G.

T. Kodama, N. Kataoka, N. Wada, G. Cincotti, X. Wang, T. Miyazaki, and K. Kitayama, “High-security 2.5 Gbps, polarization multiplexed 256-ary OCDM using a single multi-port encoder/decoder,” Opt. Express 18(20), 21376–21385 (2010).
[CrossRef] [PubMed]

G. Manzacca, X. Wang, N. Wada, G. Cincotti, and K.-I. Kitayama, “Comparative Study of Multiencoding Schemes for OCDM Using a Single Multiport Optical Encoder/Decoder,” Photon. Technol. Lett. 19(8), 559–561 (2007).
[CrossRef]

Contestabile, G.

G. Contestabile, M. Presi, and E. Ciaramella, “All-Optical Regeneration of 40 Gb/s Constant Envelope Alternative Modulation Formats,” IEEE J. Quantum Electron. 46(3), 340–346 (2010).
[CrossRef]

Cvijetic, N.

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s Optical Access Based on Optical Orthogonal Frequency Division Multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[CrossRef]

Effenberger, F. J.

Elbers, J.-P.

K. Grobe and J.-P. Elbers, “PON in adolescence: from TDMA to WDM-PON,” IEEE Commun. Mag. 46(1), 26–34 (2008).
[CrossRef]

Giddings, R. P.

Grobe, K.

K. Grobe and J.-P. Elbers, “PON in adolescence: from TDMA to WDM-PON,” IEEE Commun. Mag. 46(1), 26–34 (2008).
[CrossRef]

Hu, J.

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s Optical Access Based on Optical Orthogonal Frequency Division Multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[CrossRef]

Hu, W.

L. Cai, Z. Liu, S. Xiao, Z. Min, R. Li, and W. Hu, “Video-Service-Overlaid Wavelength-Division-Multiplexed Passive Optical Network,” IEEE Photon. Technol. Lett. 21(14), 990–992 (2009).
[CrossRef]

Hugues-Salas, E.

Jaeger, M.

J. Chen, L. Wosinska, C. Machuca, and M. Jaeger, “Cost vs. reliability performance study of fiber access network architectures,” IEEE Commun. Mag. 48(2), 56–65 (2010).
[CrossRef]

Jin, X. Q.

Juan, I. G. G.

Kataoka, N.

Kitayama, K.

Kitayama, K.-I.

G. Manzacca, X. Wang, N. Wada, G. Cincotti, and K.-I. Kitayama, “Comparative Study of Multiencoding Schemes for OCDM Using a Single Multiport Optical Encoder/Decoder,” Photon. Technol. Lett. 19(8), 559–561 (2007).
[CrossRef]

Kodama, T.

Lane, P. M.

J. M. Tang, P. M. Lane, and K. Alan Shore, ““High-Speed Transmission of Adaptively Modulated Optical OFDM Signals Over Multimode Fibers Using Directly Modulated DFBs,” J. Lightw. Technol. 24(1), 429–441 (2006).
[CrossRef]

Li, R.

L. Cai, Z. Liu, S. Xiao, Z. Min, R. Li, and W. Hu, “Video-Service-Overlaid Wavelength-Division-Multiplexed Passive Optical Network,” IEEE Photon. Technol. Lett. 21(14), 990–992 (2009).
[CrossRef]

Liu, X.

Liu, Z.

L. Cai, Z. Liu, S. Xiao, Z. Min, R. Li, and W. Hu, “Video-Service-Overlaid Wavelength-Division-Multiplexed Passive Optical Network,” IEEE Photon. Technol. Lett. 21(14), 990–992 (2009).
[CrossRef]

Lucia, A. L.

Ma, Y.

Machuca, C.

J. Chen, L. Wosinska, C. Machuca, and M. Jaeger, “Cost vs. reliability performance study of fiber access network architectures,” IEEE Commun. Mag. 48(2), 56–65 (2010).
[CrossRef]

Mansoor, S.

Manzacca, G.

G. Manzacca, X. Wang, N. Wada, G. Cincotti, and K.-I. Kitayama, “Comparative Study of Multiencoding Schemes for OCDM Using a Single Multiport Optical Encoder/Decoder,” Photon. Technol. Lett. 19(8), 559–561 (2007).
[CrossRef]

María, Á. L. B.

Martínez, J. J.

McDonough, J.

J. McDonough, “Moving Standards to 100 GbE and Beyond,” IEEE Commun. Mag. 45(11), 6–9 (2007).
[CrossRef]

Min, Z.

L. Cai, Z. Liu, S. Xiao, Z. Min, R. Li, and W. Hu, “Video-Service-Overlaid Wavelength-Division-Multiplexed Passive Optical Network,” IEEE Photon. Technol. Lett. 21(14), 990–992 (2009).
[CrossRef]

Miyazaki, T.

Pan, C.-L.

Presi, M.

G. Contestabile, M. Presi, and E. Ciaramella, “All-Optical Regeneration of 40 Gb/s Constant Envelope Alternative Modulation Formats,” IEEE J. Quantum Electron. 46(3), 340–346 (2010).
[CrossRef]

Qian, D.

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s Optical Access Based on Optical Orthogonal Frequency Division Multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[CrossRef]

Qiu, Y.

Y. Qiu and C. –K. Chan, “A WDM Passive Optical Network with Polarization-Assisted Multicast Overlay Control,”, IEEE Photon. Technol. Lett. 21(16), 1133–1135 (2009).
[CrossRef]

Shieh, W.

Shih, F. Y.

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal-Remodulated Wired/Wireless Access Using Reflective Semiconductor Optical Amplifier With Wireless Signal Broadcast,” IEEE Photon. Technol. Lett. 21(19), 1459–1461 (2009).
[CrossRef]

Shih, F.-Y.

Tang, J. M.

J. L. Wei, E. Hugues-Salas, R. P. Giddings, X. Q. Jin, X. Zheng, S. Mansoor, and J. M. Tang, “Wavelength reused bidirectional transmission of adaptively modulated optical OFDM signals in WDM-PONs incorporating SOA and RSOA intensity modulators,” Opt. Express 18(10), 9791–9808 (2010).
[CrossRef] [PubMed]

J. M. Tang, P. M. Lane, and K. Alan Shore, ““High-Speed Transmission of Adaptively Modulated Optical OFDM Signals Over Multimode Fibers Using Directly Modulated DFBs,” J. Lightw. Technol. 24(1), 429–441 (2006).
[CrossRef]

Tang, Y.

Velasco, A. V.

Wada, N.

T. Kodama, N. Kataoka, N. Wada, G. Cincotti, X. Wang, T. Miyazaki, and K. Kitayama, “High-security 2.5 Gbps, polarization multiplexed 256-ary OCDM using a single multi-port encoder/decoder,” Opt. Express 18(20), 21376–21385 (2010).
[CrossRef] [PubMed]

G. Manzacca, X. Wang, N. Wada, G. Cincotti, and K.-I. Kitayama, “Comparative Study of Multiencoding Schemes for OCDM Using a Single Multiport Optical Encoder/Decoder,” Photon. Technol. Lett. 19(8), 559–561 (2007).
[CrossRef]

Wang, C. H.

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal-Remodulated Wired/Wireless Access Using Reflective Semiconductor Optical Amplifier With Wireless Signal Broadcast,” IEEE Photon. Technol. Lett. 21(19), 1459–1461 (2009).
[CrossRef]

Wang, C.-H.

Wang, X.

T. Kodama, N. Kataoka, N. Wada, G. Cincotti, X. Wang, T. Miyazaki, and K. Kitayama, “High-security 2.5 Gbps, polarization multiplexed 256-ary OCDM using a single multi-port encoder/decoder,” Opt. Express 18(20), 21376–21385 (2010).
[CrossRef] [PubMed]

G. Manzacca, X. Wang, N. Wada, G. Cincotti, and K.-I. Kitayama, “Comparative Study of Multiencoding Schemes for OCDM Using a Single Multiport Optical Encoder/Decoder,” Photon. Technol. Lett. 19(8), 559–561 (2007).
[CrossRef]

Wei, J. L.

Winzer, P.

P. Winzer, “Beyond 100G Ethernet,” IEEE Commun. Mag. 48(7), 26–30 (2010).
[CrossRef]

Wosinska, L.

J. Chen, L. Wosinska, C. Machuca, and M. Jaeger, “Cost vs. reliability performance study of fiber access network architectures,” IEEE Commun. Mag. 48(2), 56–65 (2010).
[CrossRef]

Xiao, S.

L. Cai, Z. Liu, S. Xiao, Z. Min, R. Li, and W. Hu, “Video-Service-Overlaid Wavelength-Division-Multiplexed Passive Optical Network,” IEEE Photon. Technol. Lett. 21(14), 990–992 (2009).
[CrossRef]

Yang, Q.

Yeh, C. H.

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal-Remodulated Wired/Wireless Access Using Reflective Semiconductor Optical Amplifier With Wireless Signal Broadcast,” IEEE Photon. Technol. Lett. 21(19), 1459–1461 (2009).
[CrossRef]

Yeh, C.-H.

Zheng, X.

Zhensheng, J.

G. –K. Chang, A. Chowdhury, J. Zhensheng, and H.-C. Chien, “Key Technologies of WDM-PON for Future Converged Optical Broadband Access Networks,” J. OPT. COMMUN,” NETW 1(4), c35–c50 (2009).

IEEE Commun. Mag. (5)

J. Chen, L. Wosinska, C. Machuca, and M. Jaeger, “Cost vs. reliability performance study of fiber access network architectures,” IEEE Commun. Mag. 48(2), 56–65 (2010).
[CrossRef]

K. Grobe and J.-P. Elbers, “PON in adolescence: from TDMA to WDM-PON,” IEEE Commun. Mag. 46(1), 26–34 (2008).
[CrossRef]

N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s Optical Access Based on Optical Orthogonal Frequency Division Multiplexing,” IEEE Commun. Mag. 48(7), 70–77 (2010).
[CrossRef]

P. Winzer, “Beyond 100G Ethernet,” IEEE Commun. Mag. 48(7), 26–30 (2010).
[CrossRef]

J. McDonough, “Moving Standards to 100 GbE and Beyond,” IEEE Commun. Mag. 45(11), 6–9 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. Contestabile, M. Presi, and E. Ciaramella, “All-Optical Regeneration of 40 Gb/s Constant Envelope Alternative Modulation Formats,” IEEE J. Quantum Electron. 46(3), 340–346 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

Y. Qiu and C. –K. Chan, “A WDM Passive Optical Network with Polarization-Assisted Multicast Overlay Control,”, IEEE Photon. Technol. Lett. 21(16), 1133–1135 (2009).
[CrossRef]

L. Cai, Z. Liu, S. Xiao, Z. Min, R. Li, and W. Hu, “Video-Service-Overlaid Wavelength-Division-Multiplexed Passive Optical Network,” IEEE Photon. Technol. Lett. 21(14), 990–992 (2009).
[CrossRef]

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal-Remodulated Wired/Wireless Access Using Reflective Semiconductor Optical Amplifier With Wireless Signal Broadcast,” IEEE Photon. Technol. Lett. 21(19), 1459–1461 (2009).
[CrossRef]

J. Lightw. Technol. (1)

J. M. Tang, P. M. Lane, and K. Alan Shore, ““High-Speed Transmission of Adaptively Modulated Optical OFDM Signals Over Multimode Fibers Using Directly Modulated DFBs,” J. Lightw. Technol. 24(1), 429–441 (2006).
[CrossRef]

J. Lightwave Technol. (3)

NETW (1)

G. –K. Chang, A. Chowdhury, J. Zhensheng, and H.-C. Chien, “Key Technologies of WDM-PON for Future Converged Optical Broadband Access Networks,” J. OPT. COMMUN,” NETW 1(4), c35–c50 (2009).

Opt. Express (5)

Photon. Technol. Lett. (1)

G. Manzacca, X. Wang, N. Wada, G. Cincotti, and K.-I. Kitayama, “Comparative Study of Multiencoding Schemes for OCDM Using a Single Multiport Optical Encoder/Decoder,” Photon. Technol. Lett. 19(8), 559–561 (2007).
[CrossRef]

Other (3)

M. Dueser, “Optical network architecture,” in Proc.OFC, paper.OMN1 (2011).

J. Yu, Z. Jia, P. N. Ji, and T. Wang, “40-Gb/s Wavelength-Division-Multiplexing Passive Optical Network with Centralized Lightwave Source,” in Proc. OFC, paper.OTuH8(2008).

W. Idler, A. Klekamp, R. Dischler, and B. Wedding, “Advantages of Frequency Shift Keying in 10 Gb/s Systems”, in Proc.LEOS, USA, paper.FD3(2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The principle of proposed FSK modulated WDM-PON architecture with OFDM multicast services (DML: directly modulated laser; LO: local oscillator; MZM: Mach-Zehnder modulator).

Fig. 2
Fig. 2

The principle of differential FSK demodulation (FBG: fiber Bragg grating).

Fig. 3
Fig. 3

Experimental setup of the proposed architecture and subcarriers distribution of the channel (AWG: arbitrary waveform generator; SMF: single mode fiber; TDS: real time digital sample scope; BERT: bit error rate tester).

Fig. 4
Fig. 4

The electrical waveforms of FSK tones: (a) respective tones; (b) FSK signal (resolution: 100ps/div).

Fig. 5
Fig. 5

The block diagrams of variable-rate multicast services: (a) OFDM generation; (b) OFDM demodulation (P/S: parallel-to-serial; IFFT: inverse fast Fourier transform).

Fig. 6
Fig. 6

Spectra at the corresponding points in Fig. 2: (a) electrical spectrum of RF OFDM signal; (b) before EDFA; (c) after TOF; (d) FBG transmitted light; (e) FBG reflected light. (resolution: 0.01nm)

Fig. 7
Fig. 7

The measured BER curves and eye diagrams of FSK P2P signal before and after transmission (resolution: 50ps/div).

Fig. 8
Fig. 8

The measured BER curves of OFDM multicast signal before and after transmission.

Fig. 9
Fig. 9

The measured constellations of three kinds of multicast services before and after transmission.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E ( t ) = p ( t ) + γ s ( t ) e j ( 2 π f 1 t + φ 1 ) + p ¯ ( t ) + γ s ( t ) e j ( 2 π f 2 t + φ 2 ) + n A S E ( t )
s ( t ) = k = 1 N C k ( t ) exp ( j 2 π f k t ) , f k = f R F + k 1 T s
{ i 1 ( t ) = | p ( t ) + γ s ( t ) e j ( 2 π f 1 t + φ 1 ) | 2 = p ( t ) + γ s ( t ) i 2 ( t ) = | p ¯ ( t ) + γ s ( t ) e j ( 2 π f 2 t + φ 2 ) | 2 = p ¯ ( t ) + γ s ( t )
i ( t ) = i 1 ( t ) i 2 ( t ) = 2 p ( t )
i O F D M ( t ) = | E ( t ) | 2 = p ( t ) + γ s ( t ) + p ¯ ( t ) + γ s ( t ) = 2 γ s ( t )

Metrics