Abstract

Buried channel waveguides have been fabricated in Nd:GGG crystals by using the femtosecond laser inscription. The waveguides are confined between two filaments with propagation losses of 2.0 dB/cm. Stable continuous wave laser oscillation at ~1061 nm has been demonstrated at room temperature. Under 808 nm optical excitation, a pump threshold of 29 mW and a slope efficiency of 25% have been obtained.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998).
    [CrossRef]
  2. J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
    [CrossRef]
  3. G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
    [CrossRef]
  4. Y. Yao, Y. Tan, N. Dong, F. Chen, and A. A. Bettiol, “Continuous wave Nd:YAG channel waveguide laser produced by focused proton beam writing,” Opt. Express 18(24), 24516–24521 (2010).
    [CrossRef] [PubMed]
  5. T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010).
    [CrossRef]
  6. J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
    [CrossRef] [PubMed]
  7. T. Calmano, A.-G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103(1), 1–4 (2011).
    [CrossRef]
  8. Y. Tan, F. Chen, J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett. 97(3), 031119–031121 (2010).
    [CrossRef]
  9. Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010).
    [CrossRef] [PubMed]
  10. F. M. Bain, A. A. Lagatsky, R. R. Thomson, N. D. Psaila, N. V. Kuleshov, A. K. Kar, W. Sibbett, and C. T. A. Brown, “Ultrafast laser inscribed Yb:KGd(WO4)2 and Yb:KY(WO4)2 channel waveguide lasers,” Opt. Express 17(25), 22417–22422 (2009).
    [CrossRef]
  11. M. Pollnau, C. Grivas, L. Laversenne, J. S. Wilkinson, R. W. Eason, and D. P. Shepherd, “Ti:Sapphire waveguide lasers,” Laser Phys. Lett. 4(8), 560–571 (2007).
    [CrossRef]
  12. N. V. Baburin, B. I. Galagan, Y. K. Danileiko, N. N. Il’ichev, A. V. Masalov, V. Y. Molchanov, and V. A. Chikov, “Two-frequency mode-locked lasing in a monoblock diode-pumped Nd3+:GGG laser,” IEEE Quant. Electron. 31(4), 303–304 (2001).
    [CrossRef]
  13. Z. Jia, X. Tao, C. Dong, X. Cheng, W. Zhang, F. Xu, and M. Jiang, “Study on crystal growth of large size Nd3+:Gd3Ga5O12 (Nd3+:GGG) by Czochralski method,” J. Cryst. Growth 292(2), 386–390 (2006).
    [CrossRef]
  14. L. J. Qin, D. Y. Tang, G. Q. Xie, C. M. Dong, Z. T. Jia, and X. T. Tao, “High-power continuous wave and passively Q-switched laser operations of a Nd:GGG crystal,” Laser Phys. Lett. 5(2), 100–103 (2008).
    [CrossRef]
  15. F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: Fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci. 33(3), 165–182 (2008).
    [CrossRef]
  16. F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
    [CrossRef]
  17. S. J. Field, D. C. Hanna, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend, and L. Zhang, “Ion-implanted Nd:GGG channel waveguide laser,” Opt. Lett. 17(1), 52–54 (1992).
    [CrossRef] [PubMed]
  18. Y. Ren, N. Dong, Y. Tan, J. Guan, F. Chen, and Q. Lu, “Continuous Wave Laser Generation in Proton Implanted Nd:GGG Planar Waveguides,” J. Lightwave Technol. 28, 3578–3581 (2010).
  19. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [CrossRef]
  20. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101, 05111–05114 (2009).
    [CrossRef]
  21. M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3(6), 535–544 (2009).
    [CrossRef]
  22. F. Fusari, R. R. Thomson, G. Jose, F. M. Bain, A. A. Lagatsky, N. D. Psaila, A. K. Kar, A. Jha, W. Sibbett, and C. T. A. Brown, “Lasing action at around 1.9 μm from an ultrafast laser inscribed Tm-doped glass waveguide,” Opt. Lett. 36(9), 1566–1568 (2011).
    [CrossRef] [PubMed]
  23. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
    [CrossRef] [PubMed]
  24. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
    [CrossRef]
  25. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
    [CrossRef]
  26. J. Burghoff, H. Hartung, S. Nolte, and A. Tunnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys., A Mater. Sci. Process. 86(2), 165–170 (2006).
    [CrossRef]
  27. I. Mansour and F. Caccavale, “An improved procedure to calculate the refractive index profile from the measured near-field intensity,” J. Lightwave Technol. 14(3), 423–428 (1996).
    [CrossRef]
  28. G. A. Torchia, P. F. Meilán, A. Rodenas, D. Jaque, C. Mendez, and L. Roso, “Femtosecond laser written surface waveguides fabricated in Nd:YAG ceramics,” Opt. Express 15(20), 13266–13271 (2007).
    [CrossRef] [PubMed]
  29. B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express 11(9), 1070–1079 (2003).
    [CrossRef] [PubMed]
  30. D. Jaque, U. Caldiño, J. J. Romero, and J. García Solé, “Influence of Nd concentration on continuous wave laser properties of Ca3Ga2Ge3O12:Nd3+ laser garnet crystal,” J. Appl. Phys. 86, 6617–6623 (1999).
    [CrossRef]
  31. J. J. Romero, D. Jaque, U. Caldiño, G. Boulon, Y. Guyot, and J. García Solé, “Stimulated emission, excited state absorption and laser performance optimization of the Nd3+: Ca3Ga2Ge3O12 laser system,” J. Appl. Phys. 91, 1754–1760 (2002).
    [CrossRef]

2011 (2)

T. Calmano, A.-G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103(1), 1–4 (2011).
[CrossRef]

F. Fusari, R. R. Thomson, G. Jose, F. M. Bain, A. A. Lagatsky, N. D. Psaila, A. K. Kar, A. Jha, W. Sibbett, and C. T. A. Brown, “Lasing action at around 1.9 μm from an ultrafast laser inscribed Tm-doped glass waveguide,” Opt. Lett. 36(9), 1566–1568 (2011).
[CrossRef] [PubMed]

2010 (6)

2009 (4)

F. M. Bain, A. A. Lagatsky, R. R. Thomson, N. D. Psaila, N. V. Kuleshov, A. K. Kar, W. Sibbett, and C. T. A. Brown, “Ultrafast laser inscribed Yb:KGd(WO4)2 and Yb:KY(WO4)2 channel waveguide lasers,” Opt. Express 17(25), 22417–22422 (2009).
[CrossRef]

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101, 05111–05114 (2009).
[CrossRef]

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3(6), 535–544 (2009).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[CrossRef]

2008 (4)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[CrossRef]

L. J. Qin, D. Y. Tang, G. Q. Xie, C. M. Dong, Z. T. Jia, and X. T. Tao, “High-power continuous wave and passively Q-switched laser operations of a Nd:GGG crystal,” Laser Phys. Lett. 5(2), 100–103 (2008).
[CrossRef]

F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: Fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci. 33(3), 165–182 (2008).
[CrossRef]

2007 (4)

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[CrossRef]

M. Pollnau, C. Grivas, L. Laversenne, J. S. Wilkinson, R. W. Eason, and D. P. Shepherd, “Ti:Sapphire waveguide lasers,” Laser Phys. Lett. 4(8), 560–571 (2007).
[CrossRef]

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
[CrossRef]

G. A. Torchia, P. F. Meilán, A. Rodenas, D. Jaque, C. Mendez, and L. Roso, “Femtosecond laser written surface waveguides fabricated in Nd:YAG ceramics,” Opt. Express 15(20), 13266–13271 (2007).
[CrossRef] [PubMed]

2006 (2)

J. Burghoff, H. Hartung, S. Nolte, and A. Tunnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys., A Mater. Sci. Process. 86(2), 165–170 (2006).
[CrossRef]

Z. Jia, X. Tao, C. Dong, X. Cheng, W. Zhang, F. Xu, and M. Jiang, “Study on crystal growth of large size Nd3+:Gd3Ga5O12 (Nd3+:GGG) by Czochralski method,” J. Cryst. Growth 292(2), 386–390 (2006).
[CrossRef]

2003 (1)

2002 (1)

J. J. Romero, D. Jaque, U. Caldiño, G. Boulon, Y. Guyot, and J. García Solé, “Stimulated emission, excited state absorption and laser performance optimization of the Nd3+: Ca3Ga2Ge3O12 laser system,” J. Appl. Phys. 91, 1754–1760 (2002).
[CrossRef]

2001 (1)

N. V. Baburin, B. I. Galagan, Y. K. Danileiko, N. N. Il’ichev, A. V. Masalov, V. Y. Molchanov, and V. A. Chikov, “Two-frequency mode-locked lasing in a monoblock diode-pumped Nd3+:GGG laser,” IEEE Quant. Electron. 31(4), 303–304 (2001).
[CrossRef]

1999 (1)

D. Jaque, U. Caldiño, J. J. Romero, and J. García Solé, “Influence of Nd concentration on continuous wave laser properties of Ca3Ga2Ge3O12:Nd3+ laser garnet crystal,” J. Appl. Phys. 86, 6617–6623 (1999).
[CrossRef]

1998 (1)

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998).
[CrossRef]

1996 (2)

I. Mansour and F. Caccavale, “An improved procedure to calculate the refractive index profile from the measured near-field intensity,” J. Lightwave Technol. 14(3), 423–428 (1996).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21(21), 1729–1731 (1996).
[CrossRef] [PubMed]

1992 (1)

1985 (1)

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[CrossRef]

Ams, M.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3(6), 535–544 (2009).
[CrossRef]

Baburin, N. V.

N. V. Baburin, B. I. Galagan, Y. K. Danileiko, N. N. Il’ichev, A. V. Masalov, V. Y. Molchanov, and V. A. Chikov, “Two-frequency mode-locked lasing in a monoblock diode-pumped Nd3+:GGG laser,” IEEE Quant. Electron. 31(4), 303–304 (2001).
[CrossRef]

Bain, F. M.

Benayas, A.

Y. Tan, F. Chen, J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett. 97(3), 031119–031121 (2010).
[CrossRef]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[CrossRef]

Bettiol, A. A.

Boulon, G.

J. J. Romero, D. Jaque, U. Caldiño, G. Boulon, Y. Guyot, and J. García Solé, “Stimulated emission, excited state absorption and laser performance optimization of the Nd3+: Ca3Ga2Ge3O12 laser system,” J. Appl. Phys. 91, 1754–1760 (2002).
[CrossRef]

Brown, C. T. A.

Burghoff, J.

J. Burghoff, H. Hartung, S. Nolte, and A. Tunnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys., A Mater. Sci. Process. 86(2), 165–170 (2006).
[CrossRef]

Caccavale, F.

I. Mansour and F. Caccavale, “An improved procedure to calculate the refractive index profile from the measured near-field intensity,” J. Lightwave Technol. 14(3), 423–428 (1996).
[CrossRef]

Caldiño, U.

J. J. Romero, D. Jaque, U. Caldiño, G. Boulon, Y. Guyot, and J. García Solé, “Stimulated emission, excited state absorption and laser performance optimization of the Nd3+: Ca3Ga2Ge3O12 laser system,” J. Appl. Phys. 91, 1754–1760 (2002).
[CrossRef]

D. Jaque, U. Caldiño, J. J. Romero, and J. García Solé, “Influence of Nd concentration on continuous wave laser properties of Ca3Ga2Ge3O12:Nd3+ laser garnet crystal,” J. Appl. Phys. 86, 6617–6623 (1999).
[CrossRef]

Calmano, T.

T. Calmano, A.-G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103(1), 1–4 (2011).
[CrossRef]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
[CrossRef] [PubMed]

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010).
[CrossRef]

Cantelar, E.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[CrossRef]

Chandler, P. J.

Chen, F.

Y. Ren, N. Dong, Y. Tan, J. Guan, F. Chen, and Q. Lu, “Continuous Wave Laser Generation in Proton Implanted Nd:GGG Planar Waveguides,” J. Lightwave Technol. 28, 3578–3581 (2010).

Y. Yao, Y. Tan, N. Dong, F. Chen, and A. A. Bettiol, “Continuous wave Nd:YAG channel waveguide laser produced by focused proton beam writing,” Opt. Express 18(24), 24516–24521 (2010).
[CrossRef] [PubMed]

Y. Tan, F. Chen, J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett. 97(3), 031119–031121 (2010).
[CrossRef]

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010).
[CrossRef] [PubMed]

F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: Fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci. 33(3), 165–182 (2008).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[CrossRef]

Cheng, X.

Z. Jia, X. Tao, C. Dong, X. Cheng, W. Zhang, F. Xu, and M. Jiang, “Study on crystal growth of large size Nd3+:Gd3Ga5O12 (Nd3+:GGG) by Czochralski method,” J. Cryst. Growth 292(2), 386–390 (2006).
[CrossRef]

Chikov, V. A.

N. V. Baburin, B. I. Galagan, Y. K. Danileiko, N. N. Il’ichev, A. V. Masalov, V. Y. Molchanov, and V. A. Chikov, “Two-frequency mode-locked lasing in a monoblock diode-pumped Nd3+:GGG laser,” IEEE Quant. Electron. 31(4), 303–304 (2001).
[CrossRef]

Danileiko, Y. K.

N. V. Baburin, B. I. Galagan, Y. K. Danileiko, N. N. Il’ichev, A. V. Masalov, V. Y. Molchanov, and V. A. Chikov, “Two-frequency mode-locked lasing in a monoblock diode-pumped Nd3+:GGG laser,” IEEE Quant. Electron. 31(4), 303–304 (2001).
[CrossRef]

Davis, K. M.

Dekker, P.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3(6), 535–544 (2009).
[CrossRef]

Dong, C.

Z. Jia, X. Tao, C. Dong, X. Cheng, W. Zhang, F. Xu, and M. Jiang, “Study on crystal growth of large size Nd3+:Gd3Ga5O12 (Nd3+:GGG) by Czochralski method,” J. Cryst. Growth 292(2), 386–390 (2006).
[CrossRef]

Dong, C. M.

L. J. Qin, D. Y. Tang, G. Q. Xie, C. M. Dong, Z. T. Jia, and X. T. Tao, “High-power continuous wave and passively Q-switched laser operations of a Nd:GGG crystal,” Laser Phys. Lett. 5(2), 100–103 (2008).
[CrossRef]

Dong, N.

Eason, R. W.

M. Pollnau, C. Grivas, L. Laversenne, J. S. Wilkinson, R. W. Eason, and D. P. Shepherd, “Ti:Sapphire waveguide lasers,” Laser Phys. Lett. 4(8), 560–571 (2007).
[CrossRef]

Field, S. J.

Franco, M.

Fredrich-Thornton, S. T.

T. Calmano, A.-G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103(1), 1–4 (2011).
[CrossRef]

Fusari, F.

Galagan, B. I.

N. V. Baburin, B. I. Galagan, Y. K. Danileiko, N. N. Il’ichev, A. V. Masalov, V. Y. Molchanov, and V. A. Chikov, “Two-frequency mode-locked lasing in a monoblock diode-pumped Nd3+:GGG laser,” IEEE Quant. Electron. 31(4), 303–304 (2001).
[CrossRef]

García Solé, J.

J. J. Romero, D. Jaque, U. Caldiño, G. Boulon, Y. Guyot, and J. García Solé, “Stimulated emission, excited state absorption and laser performance optimization of the Nd3+: Ca3Ga2Ge3O12 laser system,” J. Appl. Phys. 91, 1754–1760 (2002).
[CrossRef]

D. Jaque, U. Caldiño, J. J. Romero, and J. García Solé, “Influence of Nd concentration on continuous wave laser properties of Ca3Ga2Ge3O12:Nd3+ laser garnet crystal,” J. Appl. Phys. 86, 6617–6623 (1999).
[CrossRef]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Grivas, C.

M. Pollnau, C. Grivas, L. Laversenne, J. S. Wilkinson, R. W. Eason, and D. P. Shepherd, “Ti:Sapphire waveguide lasers,” Laser Phys. Lett. 4(8), 560–571 (2007).
[CrossRef]

Guan, J.

Guyot, Y.

J. J. Romero, D. Jaque, U. Caldiño, G. Boulon, Y. Guyot, and J. García Solé, “Stimulated emission, excited state absorption and laser performance optimization of the Nd3+: Ca3Ga2Ge3O12 laser system,” J. Appl. Phys. 91, 1754–1760 (2002).
[CrossRef]

Hanna, D. C.

Hartung, H.

J. Burghoff, H. Hartung, S. Nolte, and A. Tunnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys., A Mater. Sci. Process. 86(2), 165–170 (2006).
[CrossRef]

Hellmig, O.

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010).
[CrossRef]

Hirao, K.

Huber, G.

T. Calmano, A.-G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103(1), 1–4 (2011).
[CrossRef]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
[CrossRef] [PubMed]

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[CrossRef]

Il’ichev, N. N.

N. V. Baburin, B. I. Galagan, Y. K. Danileiko, N. N. Il’ichev, A. V. Masalov, V. Y. Molchanov, and V. A. Chikov, “Two-frequency mode-locked lasing in a monoblock diode-pumped Nd3+:GGG laser,” IEEE Quant. Electron. 31(4), 303–304 (2001).
[CrossRef]

Jaque, D.

Y. Tan, A. Rodenas, F. Chen, R. R. Thomson, A. K. Kar, D. Jaque, and Q. Lu, “70% slope efficiency from an ultrafast laser-written Nd:GdVO4 channel waveguide laser,” Opt. Express 18(24), 24994–24999 (2010).
[CrossRef] [PubMed]

Y. Tan, F. Chen, J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett. 97(3), 031119–031121 (2010).
[CrossRef]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[CrossRef]

G. A. Torchia, P. F. Meilán, A. Rodenas, D. Jaque, C. Mendez, and L. Roso, “Femtosecond laser written surface waveguides fabricated in Nd:YAG ceramics,” Opt. Express 15(20), 13266–13271 (2007).
[CrossRef] [PubMed]

J. J. Romero, D. Jaque, U. Caldiño, G. Boulon, Y. Guyot, and J. García Solé, “Stimulated emission, excited state absorption and laser performance optimization of the Nd3+: Ca3Ga2Ge3O12 laser system,” J. Appl. Phys. 91, 1754–1760 (2002).
[CrossRef]

D. Jaque, U. Caldiño, J. J. Romero, and J. García Solé, “Influence of Nd concentration on continuous wave laser properties of Ca3Ga2Ge3O12:Nd3+ laser garnet crystal,” J. Appl. Phys. 86, 6617–6623 (1999).
[CrossRef]

Jha, A.

Jia, Z.

Z. Jia, X. Tao, C. Dong, X. Cheng, W. Zhang, F. Xu, and M. Jiang, “Study on crystal growth of large size Nd3+:Gd3Ga5O12 (Nd3+:GGG) by Czochralski method,” J. Cryst. Growth 292(2), 386–390 (2006).
[CrossRef]

Jia, Z. T.

L. J. Qin, D. Y. Tang, G. Q. Xie, C. M. Dong, Z. T. Jia, and X. T. Tao, “High-power continuous wave and passively Q-switched laser operations of a Nd:GGG crystal,” Laser Phys. Lett. 5(2), 100–103 (2008).
[CrossRef]

Jiang, M.

Z. Jia, X. Tao, C. Dong, X. Cheng, W. Zhang, F. Xu, and M. Jiang, “Study on crystal growth of large size Nd3+:Gd3Ga5O12 (Nd3+:GGG) by Czochralski method,” J. Cryst. Growth 292(2), 386–390 (2006).
[CrossRef]

Jose, G.

Juodkazis, S.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101, 05111–05114 (2009).
[CrossRef]

Kar, A. K.

Kip, D.

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998).
[CrossRef]

Kuleshov, N. V.

Lagatsky, A. A.

Large, A. C.

Laversenne, L.

M. Pollnau, C. Grivas, L. Laversenne, J. S. Wilkinson, R. W. Eason, and D. P. Shepherd, “Ti:Sapphire waveguide lasers,” Laser Phys. Lett. 4(8), 560–571 (2007).
[CrossRef]

Lu, Q.

Mackenzie, J. I.

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
[CrossRef]

Mansour, I.

I. Mansour and F. Caccavale, “An improved procedure to calculate the refractive index profile from the measured near-field intensity,” J. Lightwave Technol. 14(3), 423–428 (1996).
[CrossRef]

Marshall, G. D.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3(6), 535–544 (2009).
[CrossRef]

Masalov, A. V.

N. V. Baburin, B. I. Galagan, Y. K. Danileiko, N. N. Il’ichev, A. V. Masalov, V. Y. Molchanov, and V. A. Chikov, “Two-frequency mode-locked lasing in a monoblock diode-pumped Nd3+:GGG laser,” IEEE Quant. Electron. 31(4), 303–304 (2001).
[CrossRef]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Meilán, P. F.

Mendez, C.

Misawa, H.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101, 05111–05114 (2009).
[CrossRef]

Miura, K.

Mizeikis, V.

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101, 05111–05114 (2009).
[CrossRef]

Molchanov, V. Y.

N. V. Baburin, B. I. Galagan, Y. K. Danileiko, N. N. Il’ichev, A. V. Masalov, V. Y. Molchanov, and V. A. Chikov, “Two-frequency mode-locked lasing in a monoblock diode-pumped Nd3+:GGG laser,” IEEE Quant. Electron. 31(4), 303–304 (2001).
[CrossRef]

Mysyrowicz, A.

Nolte, S.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[CrossRef]

J. Burghoff, H. Hartung, S. Nolte, and A. Tunnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys., A Mater. Sci. Process. 86(2), 165–170 (2006).
[CrossRef]

Paschke, A.-G.

T. Calmano, A.-G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103(1), 1–4 (2011).
[CrossRef]

Petermann, K.

T. Calmano, A.-G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103(1), 1–4 (2011).
[CrossRef]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
[CrossRef] [PubMed]

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[CrossRef]

Piper, J. A.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3(6), 535–544 (2009).
[CrossRef]

Pollnau, M.

M. Pollnau, C. Grivas, L. Laversenne, J. S. Wilkinson, R. W. Eason, and D. P. Shepherd, “Ti:Sapphire waveguide lasers,” Laser Phys. Lett. 4(8), 560–571 (2007).
[CrossRef]

Poumellec, B.

Prade, B.

Psaila, N. D.

Qin, L. J.

L. J. Qin, D. Y. Tang, G. Q. Xie, C. M. Dong, Z. T. Jia, and X. T. Tao, “High-power continuous wave and passively Q-switched laser operations of a Nd:GGG crystal,” Laser Phys. Lett. 5(2), 100–103 (2008).
[CrossRef]

Rademaker, K.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[CrossRef]

Regener, R.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[CrossRef]

Ren, Y.

Rodenas, A.

Romero, J. J.

J. J. Romero, D. Jaque, U. Caldiño, G. Boulon, Y. Guyot, and J. García Solé, “Stimulated emission, excited state absorption and laser performance optimization of the Nd3+: Ca3Ga2Ge3O12 laser system,” J. Appl. Phys. 91, 1754–1760 (2002).
[CrossRef]

D. Jaque, U. Caldiño, J. J. Romero, and J. García Solé, “Influence of Nd concentration on continuous wave laser properties of Ca3Ga2Ge3O12:Nd3+ laser garnet crystal,” J. Appl. Phys. 86, 6617–6623 (1999).
[CrossRef]

Roso, L.

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[CrossRef]

G. A. Torchia, P. F. Meilán, A. Rodenas, D. Jaque, C. Mendez, and L. Roso, “Femtosecond laser written surface waveguides fabricated in Nd:YAG ceramics,” Opt. Express 15(20), 13266–13271 (2007).
[CrossRef] [PubMed]

Shepherd, D. P.

M. Pollnau, C. Grivas, L. Laversenne, J. S. Wilkinson, R. W. Eason, and D. P. Shepherd, “Ti:Sapphire waveguide lasers,” Laser Phys. Lett. 4(8), 560–571 (2007).
[CrossRef]

S. J. Field, D. C. Hanna, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend, and L. Zhang, “Ion-implanted Nd:GGG channel waveguide laser,” Opt. Lett. 17(1), 52–54 (1992).
[CrossRef] [PubMed]

Sibbett, W.

Siebenmorgen, J.

T. Calmano, A.-G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103(1), 1–4 (2011).
[CrossRef]

J. Siebenmorgen, T. Calmano, K. Petermann, and G. Huber, “Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser,” Opt. Express 18(15), 16035–16041 (2010).
[CrossRef] [PubMed]

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[CrossRef]

Sohler, W.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[CrossRef]

Sudrie, L.

Sugimoto, N.

Tan, Y.

Tang, D. Y.

L. J. Qin, D. Y. Tang, G. Q. Xie, C. M. Dong, Z. T. Jia, and X. T. Tao, “High-power continuous wave and passively Q-switched laser operations of a Nd:GGG crystal,” Laser Phys. Lett. 5(2), 100–103 (2008).
[CrossRef]

Tao, X.

Z. Jia, X. Tao, C. Dong, X. Cheng, W. Zhang, F. Xu, and M. Jiang, “Study on crystal growth of large size Nd3+:Gd3Ga5O12 (Nd3+:GGG) by Czochralski method,” J. Cryst. Growth 292(2), 386–390 (2006).
[CrossRef]

Tao, X. T.

L. J. Qin, D. Y. Tang, G. Q. Xie, C. M. Dong, Z. T. Jia, and X. T. Tao, “High-power continuous wave and passively Q-switched laser operations of a Nd:GGG crystal,” Laser Phys. Lett. 5(2), 100–103 (2008).
[CrossRef]

Thomson, R. R.

Torchia, G. A.

Y. Tan, F. Chen, J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett. 97(3), 031119–031121 (2010).
[CrossRef]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[CrossRef]

G. A. Torchia, P. F. Meilán, A. Rodenas, D. Jaque, C. Mendez, and L. Roso, “Femtosecond laser written surface waveguides fabricated in Nd:YAG ceramics,” Opt. Express 15(20), 13266–13271 (2007).
[CrossRef] [PubMed]

Townsend, P. D.

Tropper, A. C.

Tunnermann, A.

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[CrossRef]

J. Burghoff, H. Hartung, S. Nolte, and A. Tunnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys., A Mater. Sci. Process. 86(2), 165–170 (2006).
[CrossRef]

Vázquez de Aldana, J. R.

Y. Tan, F. Chen, J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett. 97(3), 031119–031121 (2010).
[CrossRef]

Wang, K. M.

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[CrossRef]

Wang, X. L.

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[CrossRef]

Wilkinson, J. S.

M. Pollnau, C. Grivas, L. Laversenne, J. S. Wilkinson, R. W. Eason, and D. P. Shepherd, “Ti:Sapphire waveguide lasers,” Laser Phys. Lett. 4(8), 560–571 (2007).
[CrossRef]

Withford, M. J.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3(6), 535–544 (2009).
[CrossRef]

Xie, G. Q.

L. J. Qin, D. Y. Tang, G. Q. Xie, C. M. Dong, Z. T. Jia, and X. T. Tao, “High-power continuous wave and passively Q-switched laser operations of a Nd:GGG crystal,” Laser Phys. Lett. 5(2), 100–103 (2008).
[CrossRef]

Xu, F.

Z. Jia, X. Tao, C. Dong, X. Cheng, W. Zhang, F. Xu, and M. Jiang, “Study on crystal growth of large size Nd3+:Gd3Ga5O12 (Nd3+:GGG) by Czochralski method,” J. Cryst. Growth 292(2), 386–390 (2006).
[CrossRef]

Yagi, H.

T. Calmano, A.-G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103(1), 1–4 (2011).
[CrossRef]

Yao, Y.

Zhang, L.

Zhang, W.

Z. Jia, X. Tao, C. Dong, X. Cheng, W. Zhang, F. Xu, and M. Jiang, “Study on crystal growth of large size Nd3+:Gd3Ga5O12 (Nd3+:GGG) by Czochralski method,” J. Cryst. Growth 292(2), 386–390 (2006).
[CrossRef]

Appl. Phys. B (5)

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998).
[CrossRef]

T. Calmano, A.-G. Paschke, J. Siebenmorgen, S. T. Fredrich-Thornton, H. Yagi, K. Petermann, and G. Huber, “Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique,” Appl. Phys. B 103(1), 1–4 (2011).
[CrossRef]

T. Calmano, J. Siebenmorgen, O. Hellmig, K. Petermann, and G. Huber, “Nd:YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing,” Appl. Phys. B 100(1), 131–135 (2010).
[CrossRef]

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[CrossRef]

J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tunnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B 97(2), 251–255 (2009).
[CrossRef]

Appl. Phys. Lett. (2)

Y. Tan, F. Chen, J. R. Vázquez de Aldana, G. A. Torchia, A. Benayas, and D. Jaque, “Continuous wave laser generation at 1064 nm in femtosecond laser inscribed Nd:YVO4 channel waveguides,” Appl. Phys. Lett. 97(3), 031119–031121 (2010).
[CrossRef]

G. A. Torchia, A. Rodenas, A. Benayas, E. Cantelar, L. Roso, and D. Jaque, “Highly efficient laser action in femtosecond-written Nd:yttrium aluminum garnet ceramic waveguides,” Appl. Phys. Lett. 92(11), 111103 (2008).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

J. Burghoff, H. Hartung, S. Nolte, and A. Tunnermann, “Structural properties of femtosecond laser-induced modifications in LiNbO3,” Appl. Phys., A Mater. Sci. Process. 86(2), 165–170 (2006).
[CrossRef]

Crit. Rev. Solid State Mater. Sci. (1)

F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: Fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci. 33(3), 165–182 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
[CrossRef]

IEEE Quant. Electron. (1)

N. V. Baburin, B. I. Galagan, Y. K. Danileiko, N. N. Il’ichev, A. V. Masalov, V. Y. Molchanov, and V. A. Chikov, “Two-frequency mode-locked lasing in a monoblock diode-pumped Nd3+:GGG laser,” IEEE Quant. Electron. 31(4), 303–304 (2001).
[CrossRef]

J. Appl. Phys. (3)

S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys. 106(5), 051101, 05111–05114 (2009).
[CrossRef]

D. Jaque, U. Caldiño, J. J. Romero, and J. García Solé, “Influence of Nd concentration on continuous wave laser properties of Ca3Ga2Ge3O12:Nd3+ laser garnet crystal,” J. Appl. Phys. 86, 6617–6623 (1999).
[CrossRef]

J. J. Romero, D. Jaque, U. Caldiño, G. Boulon, Y. Guyot, and J. García Solé, “Stimulated emission, excited state absorption and laser performance optimization of the Nd3+: Ca3Ga2Ge3O12 laser system,” J. Appl. Phys. 91, 1754–1760 (2002).
[CrossRef]

J. Cryst. Growth (1)

Z. Jia, X. Tao, C. Dong, X. Cheng, W. Zhang, F. Xu, and M. Jiang, “Study on crystal growth of large size Nd3+:Gd3Ga5O12 (Nd3+:GGG) by Czochralski method,” J. Cryst. Growth 292(2), 386–390 (2006).
[CrossRef]

J. Lightwave Technol. (2)

Y. Ren, N. Dong, Y. Tan, J. Guan, F. Chen, and Q. Lu, “Continuous Wave Laser Generation in Proton Implanted Nd:GGG Planar Waveguides,” J. Lightwave Technol. 28, 3578–3581 (2010).

I. Mansour and F. Caccavale, “An improved procedure to calculate the refractive index profile from the measured near-field intensity,” J. Lightwave Technol. 14(3), 423–428 (1996).
[CrossRef]

Laser Photon. Rev. (1)

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, “Ultrafast laser written active devices,” Laser Photon. Rev. 3(6), 535–544 (2009).
[CrossRef]

Laser Phys. Lett. (2)

L. J. Qin, D. Y. Tang, G. Q. Xie, C. M. Dong, Z. T. Jia, and X. T. Tao, “High-power continuous wave and passively Q-switched laser operations of a Nd:GGG crystal,” Laser Phys. Lett. 5(2), 100–103 (2008).
[CrossRef]

M. Pollnau, C. Grivas, L. Laversenne, J. S. Wilkinson, R. W. Eason, and D. P. Shepherd, “Ti:Sapphire waveguide lasers,” Laser Phys. Lett. 4(8), 560–571 (2007).
[CrossRef]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[CrossRef]

Opt. Express (6)

Opt. Lett. (3)

Opt. Mater. (1)

F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Optical transmission microphotograph of the “double-filament” Nd:GGG waveguide. (b) Refractive index profile at the cross section of the Nd:GGG channel waveguide. (c) Measured near field-intensity distribution of the fundamental mode TM00 at 632.8 nm. (d) Calculated modal profile of the fundamental mode TM00.

Fig. 2
Fig. 2

Room temperature micro-luminescence spectra comparison of Nd3+ ions from the channel waveguide (red solid line) and bulk (blue dotted line) of the Nd:GGG sample, respectively

Fig. 3
Fig. 3

Spatial distribution of the (a) emitted intensity, (b) energy shift and (c) FWHM of the 4F3/24I9/2 Nd3+ emission line around 933 nm obtained from the end face of the waveguide. (d), (e) and (f) are the corresponding 1D profile of the selected black lines in the above pictures, respectively.

Fig. 4
Fig. 4

(a) The cw laser oscillation spectrum obtained from Nd:GGG waveguide with optical pumping at 808 nm. The inset shows the intensity distribution of the output light at 1061 nm. (b) The cw waveguide laser output power at 1061 nm as a function of absorbed pump power at 808 nm. The threshold is 29 mW, and the slope efficiency is 25%.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ n = sin 2 Θ m n

Metrics