Abstract

By depositing a nanoscale photoconductive layer on a stable photorefractive (PR) polymeric film, consisting of the polymer poly[N-vinylcarbazole] (PVK) doped with 4,4’-n-pentylcyanobiphenyl (5CB) and C60, both the response rate and beam coupling properties were improved greatly. Systematic measurements and observations unveiled the role played by the additive layer in preventing ion injection from the ITO layer into the PR film and hence in mitigating the charge compensation. A strong fanning effect and high diffraction orders at small angles have demonstrated the excellent PR property in the modified samples used. To demonstrate great potential of the PR composite in the updatable applications, real time double exposure interferometry was performed accordingly with good results.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev. 104(7), 3267–3314 (2004).
    [CrossRef] [PubMed]
  2. W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27(1), 585–623 (1997).
    [CrossRef]
  3. W. E. Moerner and S. M. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94(1), 127–155 (1994).
    [CrossRef]
  4. S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66(14), 1846–1849 (1991).
    [CrossRef] [PubMed]
  5. K. Meerholz, B. L. Volodin, B. Sandalphon, Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371(6497), 497–500 (1994).
    [CrossRef]
  6. S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
    [CrossRef] [PubMed]
  7. P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
    [CrossRef] [PubMed]
  8. M. Eralp, J. Thomas, S. Tay, G. Li, A. Schülzgen, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Submillisecond response of a photorefractive polymer under single nanosecond pulse exposure,” Appl. Phys. Lett. 89(11), 114105 (2006).
    [CrossRef]
  9. M. Eralp, J. Thomas, G. Li, S. Tay, A. Schülzgen, R. A. Norwood, N. Peyghambarian, and M. Yamamoto, “Photorefractive polymer device with video-rate response time operating at low voltages,” Opt. Lett. 31(10), 1408–1410 (2006).
    [CrossRef] [PubMed]
  10. C. Poga, D. M. Burland, T. Hanemann, Y. Jia, C. R. Moylan, J. J. Stankus, R. J. Twieg, and W. E. Moerner, “Photorefractivity in new organic polymeric materials,” Proc. SPIE 2526, 82–93 (1995).
    [CrossRef]
  11. W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 11(2), 320–330 (1994).
    [CrossRef]
  12. J. Zhang and K. D. Singer, “Homogeneous photorefractive polymer/nematogen composite,” Appl. Phys. Lett. 72(23), 2948–2950 (1998).
    [CrossRef]
  13. I. C. Khoo, H. Li, and Y. Liang, “Observation of orientational photorefractive effects in nematic liquid crystals,” Opt. Lett. 19(21), 1723–1725 (1994).
    [CrossRef] [PubMed]
  14. G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science 270(5243), 1794–1797 (1995).
    [CrossRef]
  15. I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep. 471(5-6), 221–267 (2009).
    [CrossRef]
  16. S. Bartkiewicz, A. Miniewicz, B. Sahraoui, and F. Kajzar, “Dynamic charge-carrier-mobility-mediated holography in thin layers of photoconducting polymers,” Appl. Phys. Lett. 81(20), 3705–3707 (2002).
    [CrossRef]
  17. L. Sznitko, A. Anczykowska, J. Mysliwiec, and S. Bartjiewicz, “Influence of grating period on kinetic of self-diffraction in nematic liquid crystal panel with photoconducting polymeric layer,” Appl. Phys. Lett. 96(11), 111106 (2010).
    [CrossRef]
  18. J. Zhang, V. Ostroverkhov, K. D. Singer, V. Reshetnyak, and Yu. Reznikov, “Electrically controlled surface diffraction gratings in nematic liquid crystals,” Opt. Lett. 25(6), 414–416 (2000).
    [CrossRef]
  19. X. Sun, Y. Pei, F. Yao, J. Zhang, and C. Hou, “Optical amplification in multilayer photorefractive liquid crystal films,” Appl. Phys. Lett. 90(20), 201115 (2007).
    [CrossRef]
  20. X. Sun, F. Yao, Y. Pei, and J. Zhang, “Light controlled diffraction gratings in C60-doped nematic liquid crystals,” J. Appl. Phys. 102(1), 013104 (2007).
    [CrossRef]
  21. J. Zhang and K. D. Singer, “Novel photorefractive liquid crystal polymer composites,” SPIE 3471, 14 (1998).
  22. I. Shiyanovskaya, K. D. Singer, V. Percec, T. K. Bera, Y. Miura, and M. Glodde, “Charge transport in hexagonal columnar liquid crystals self-organized from supramolecular cylinders based on acene-functionalized dendrons,” Phys. Rev. B 67(3), 035204 (2003).
    [CrossRef]

2010

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[CrossRef] [PubMed]

L. Sznitko, A. Anczykowska, J. Mysliwiec, and S. Bartjiewicz, “Influence of grating period on kinetic of self-diffraction in nematic liquid crystal panel with photoconducting polymeric layer,” Appl. Phys. Lett. 96(11), 111106 (2010).
[CrossRef]

2009

I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep. 471(5-6), 221–267 (2009).
[CrossRef]

2008

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

2007

X. Sun, Y. Pei, F. Yao, J. Zhang, and C. Hou, “Optical amplification in multilayer photorefractive liquid crystal films,” Appl. Phys. Lett. 90(20), 201115 (2007).
[CrossRef]

X. Sun, F. Yao, Y. Pei, and J. Zhang, “Light controlled diffraction gratings in C60-doped nematic liquid crystals,” J. Appl. Phys. 102(1), 013104 (2007).
[CrossRef]

2006

M. Eralp, J. Thomas, S. Tay, G. Li, A. Schülzgen, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Submillisecond response of a photorefractive polymer under single nanosecond pulse exposure,” Appl. Phys. Lett. 89(11), 114105 (2006).
[CrossRef]

M. Eralp, J. Thomas, G. Li, S. Tay, A. Schülzgen, R. A. Norwood, N. Peyghambarian, and M. Yamamoto, “Photorefractive polymer device with video-rate response time operating at low voltages,” Opt. Lett. 31(10), 1408–1410 (2006).
[CrossRef] [PubMed]

2004

O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev. 104(7), 3267–3314 (2004).
[CrossRef] [PubMed]

2003

I. Shiyanovskaya, K. D. Singer, V. Percec, T. K. Bera, Y. Miura, and M. Glodde, “Charge transport in hexagonal columnar liquid crystals self-organized from supramolecular cylinders based on acene-functionalized dendrons,” Phys. Rev. B 67(3), 035204 (2003).
[CrossRef]

2002

S. Bartkiewicz, A. Miniewicz, B. Sahraoui, and F. Kajzar, “Dynamic charge-carrier-mobility-mediated holography in thin layers of photoconducting polymers,” Appl. Phys. Lett. 81(20), 3705–3707 (2002).
[CrossRef]

2000

1998

J. Zhang and K. D. Singer, “Homogeneous photorefractive polymer/nematogen composite,” Appl. Phys. Lett. 72(23), 2948–2950 (1998).
[CrossRef]

J. Zhang and K. D. Singer, “Novel photorefractive liquid crystal polymer composites,” SPIE 3471, 14 (1998).

1997

W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27(1), 585–623 (1997).
[CrossRef]

1995

C. Poga, D. M. Burland, T. Hanemann, Y. Jia, C. R. Moylan, J. J. Stankus, R. J. Twieg, and W. E. Moerner, “Photorefractivity in new organic polymeric materials,” Proc. SPIE 2526, 82–93 (1995).
[CrossRef]

G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science 270(5243), 1794–1797 (1995).
[CrossRef]

1994

K. Meerholz, B. L. Volodin, B. Sandalphon, Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371(6497), 497–500 (1994).
[CrossRef]

W. E. Moerner and S. M. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94(1), 127–155 (1994).
[CrossRef]

W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 11(2), 320–330 (1994).
[CrossRef]

I. C. Khoo, H. Li, and Y. Liang, “Observation of orientational photorefractive effects in nematic liquid crystals,” Opt. Lett. 19(21), 1723–1725 (1994).
[CrossRef] [PubMed]

1991

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66(14), 1846–1849 (1991).
[CrossRef] [PubMed]

Anczykowska, A.

L. Sznitko, A. Anczykowska, J. Mysliwiec, and S. Bartjiewicz, “Influence of grating period on kinetic of self-diffraction in nematic liquid crystal panel with photoconducting polymeric layer,” Appl. Phys. Lett. 96(11), 111106 (2010).
[CrossRef]

Bablumian, A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Bartjiewicz, S.

L. Sznitko, A. Anczykowska, J. Mysliwiec, and S. Bartjiewicz, “Influence of grating period on kinetic of self-diffraction in nematic liquid crystal panel with photoconducting polymeric layer,” Appl. Phys. Lett. 96(11), 111106 (2010).
[CrossRef]

Bartkiewicz, S.

S. Bartkiewicz, A. Miniewicz, B. Sahraoui, and F. Kajzar, “Dynamic charge-carrier-mobility-mediated holography in thin layers of photoconducting polymers,” Appl. Phys. Lett. 81(20), 3705–3707 (2002).
[CrossRef]

Bera, T. K.

I. Shiyanovskaya, K. D. Singer, V. Percec, T. K. Bera, Y. Miura, and M. Glodde, “Charge transport in hexagonal columnar liquid crystals self-organized from supramolecular cylinders based on acene-functionalized dendrons,” Phys. Rev. B 67(3), 035204 (2003).
[CrossRef]

Bjorklund, G. C.

Blanche, P.-A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Burland, D. M.

C. Poga, D. M. Burland, T. Hanemann, Y. Jia, C. R. Moylan, J. J. Stankus, R. J. Twieg, and W. E. Moerner, “Photorefractivity in new organic polymeric materials,” Proc. SPIE 2526, 82–93 (1995).
[CrossRef]

Christenson, C.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Ducharme, S.

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66(14), 1846–1849 (1991).
[CrossRef] [PubMed]

Eralp, M.

M. Eralp, J. Thomas, S. Tay, G. Li, A. Schülzgen, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Submillisecond response of a photorefractive polymer under single nanosecond pulse exposure,” Appl. Phys. Lett. 89(11), 114105 (2006).
[CrossRef]

M. Eralp, J. Thomas, G. Li, S. Tay, A. Schülzgen, R. A. Norwood, N. Peyghambarian, and M. Yamamoto, “Photorefractive polymer device with video-rate response time operating at low voltages,” Opt. Lett. 31(10), 1408–1410 (2006).
[CrossRef] [PubMed]

Flores, D.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Glodde, M.

I. Shiyanovskaya, K. D. Singer, V. Percec, T. K. Bera, Y. Miura, and M. Glodde, “Charge transport in hexagonal columnar liquid crystals self-organized from supramolecular cylinders based on acene-functionalized dendrons,” Phys. Rev. B 67(3), 035204 (2003).
[CrossRef]

Grunnet-Jepsen, A.

W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27(1), 585–623 (1997).
[CrossRef]

Gu, T.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Hache, F.

Hanemann, T.

C. Poga, D. M. Burland, T. Hanemann, Y. Jia, C. R. Moylan, J. J. Stankus, R. J. Twieg, and W. E. Moerner, “Photorefractivity in new organic polymeric materials,” Proc. SPIE 2526, 82–93 (1995).
[CrossRef]

Hou, C.

X. Sun, Y. Pei, F. Yao, J. Zhang, and C. Hou, “Optical amplification in multilayer photorefractive liquid crystal films,” Appl. Phys. Lett. 90(20), 201115 (2007).
[CrossRef]

Hsieh, W.-Y.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Jia, Y.

C. Poga, D. M. Burland, T. Hanemann, Y. Jia, C. R. Moylan, J. J. Stankus, R. J. Twieg, and W. E. Moerner, “Photorefractivity in new organic polymeric materials,” Proc. SPIE 2526, 82–93 (1995).
[CrossRef]

Kajzar, F.

S. Bartkiewicz, A. Miniewicz, B. Sahraoui, and F. Kajzar, “Dynamic charge-carrier-mobility-mediated holography in thin layers of photoconducting polymers,” Appl. Phys. Lett. 81(20), 3705–3707 (2002).
[CrossRef]

Kathaperumal, M.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Khoo, I. C.

Kippelen,

K. Meerholz, B. L. Volodin, B. Sandalphon, Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371(6497), 497–500 (1994).
[CrossRef]

Li, G.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

M. Eralp, J. Thomas, S. Tay, G. Li, A. Schülzgen, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Submillisecond response of a photorefractive polymer under single nanosecond pulse exposure,” Appl. Phys. Lett. 89(11), 114105 (2006).
[CrossRef]

M. Eralp, J. Thomas, G. Li, S. Tay, A. Schülzgen, R. A. Norwood, N. Peyghambarian, and M. Yamamoto, “Photorefractive polymer device with video-rate response time operating at low voltages,” Opt. Lett. 31(10), 1408–1410 (2006).
[CrossRef] [PubMed]

Li, H.

Liang, Y.

Lin, W.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Meerholz, K.

K. Meerholz, B. L. Volodin, B. Sandalphon, Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371(6497), 497–500 (1994).
[CrossRef]

Miniewicz, A.

S. Bartkiewicz, A. Miniewicz, B. Sahraoui, and F. Kajzar, “Dynamic charge-carrier-mobility-mediated holography in thin layers of photoconducting polymers,” Appl. Phys. Lett. 81(20), 3705–3707 (2002).
[CrossRef]

Miura, Y.

I. Shiyanovskaya, K. D. Singer, V. Percec, T. K. Bera, Y. Miura, and M. Glodde, “Charge transport in hexagonal columnar liquid crystals self-organized from supramolecular cylinders based on acene-functionalized dendrons,” Phys. Rev. B 67(3), 035204 (2003).
[CrossRef]

Moerner, W. E.

O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev. 104(7), 3267–3314 (2004).
[CrossRef] [PubMed]

W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27(1), 585–623 (1997).
[CrossRef]

C. Poga, D. M. Burland, T. Hanemann, Y. Jia, C. R. Moylan, J. J. Stankus, R. J. Twieg, and W. E. Moerner, “Photorefractivity in new organic polymeric materials,” Proc. SPIE 2526, 82–93 (1995).
[CrossRef]

W. E. Moerner and S. M. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94(1), 127–155 (1994).
[CrossRef]

W. E. Moerner, S. M. Silence, F. Hache, and G. C. Bjorklund, “Orientationally enhanced photorefractive effect in polymers,” J. Opt. Soc. Am. B 11(2), 320–330 (1994).
[CrossRef]

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66(14), 1846–1849 (1991).
[CrossRef] [PubMed]

Moylan, C. R.

C. Poga, D. M. Burland, T. Hanemann, Y. Jia, C. R. Moylan, J. J. Stankus, R. J. Twieg, and W. E. Moerner, “Photorefractivity in new organic polymeric materials,” Proc. SPIE 2526, 82–93 (1995).
[CrossRef]

Mysliwiec, J.

L. Sznitko, A. Anczykowska, J. Mysliwiec, and S. Bartjiewicz, “Influence of grating period on kinetic of self-diffraction in nematic liquid crystal panel with photoconducting polymeric layer,” Appl. Phys. Lett. 96(11), 111106 (2010).
[CrossRef]

Norwood, R. A.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

M. Eralp, J. Thomas, S. Tay, G. Li, A. Schülzgen, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Submillisecond response of a photorefractive polymer under single nanosecond pulse exposure,” Appl. Phys. Lett. 89(11), 114105 (2006).
[CrossRef]

M. Eralp, J. Thomas, G. Li, S. Tay, A. Schülzgen, R. A. Norwood, N. Peyghambarian, and M. Yamamoto, “Photorefractive polymer device with video-rate response time operating at low voltages,” Opt. Lett. 31(10), 1408–1410 (2006).
[CrossRef] [PubMed]

Ostroverkhov, V.

Ostroverkhova, O.

O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev. 104(7), 3267–3314 (2004).
[CrossRef] [PubMed]

Pei, Y.

X. Sun, Y. Pei, F. Yao, J. Zhang, and C. Hou, “Optical amplification in multilayer photorefractive liquid crystal films,” Appl. Phys. Lett. 90(20), 201115 (2007).
[CrossRef]

X. Sun, F. Yao, Y. Pei, and J. Zhang, “Light controlled diffraction gratings in C60-doped nematic liquid crystals,” J. Appl. Phys. 102(1), 013104 (2007).
[CrossRef]

Percec, V.

I. Shiyanovskaya, K. D. Singer, V. Percec, T. K. Bera, Y. Miura, and M. Glodde, “Charge transport in hexagonal columnar liquid crystals self-organized from supramolecular cylinders based on acene-functionalized dendrons,” Phys. Rev. B 67(3), 035204 (2003).
[CrossRef]

Peyghambarian, N.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

M. Eralp, J. Thomas, S. Tay, G. Li, A. Schülzgen, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Submillisecond response of a photorefractive polymer under single nanosecond pulse exposure,” Appl. Phys. Lett. 89(11), 114105 (2006).
[CrossRef]

M. Eralp, J. Thomas, G. Li, S. Tay, A. Schülzgen, R. A. Norwood, N. Peyghambarian, and M. Yamamoto, “Photorefractive polymer device with video-rate response time operating at low voltages,” Opt. Lett. 31(10), 1408–1410 (2006).
[CrossRef] [PubMed]

K. Meerholz, B. L. Volodin, B. Sandalphon, Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371(6497), 497–500 (1994).
[CrossRef]

Poga, C.

C. Poga, D. M. Burland, T. Hanemann, Y. Jia, C. R. Moylan, J. J. Stankus, R. J. Twieg, and W. E. Moerner, “Photorefractivity in new organic polymeric materials,” Proc. SPIE 2526, 82–93 (1995).
[CrossRef]

Rachwal, B.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Reshetnyak, V.

Reznikov, Yu.

Rokutanda, S.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Sahraoui, B.

S. Bartkiewicz, A. Miniewicz, B. Sahraoui, and F. Kajzar, “Dynamic charge-carrier-mobility-mediated holography in thin layers of photoconducting polymers,” Appl. Phys. Lett. 81(20), 3705–3707 (2002).
[CrossRef]

Sandalphon, B.

K. Meerholz, B. L. Volodin, B. Sandalphon, Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371(6497), 497–500 (1994).
[CrossRef]

Schülzgen, A.

M. Eralp, J. Thomas, G. Li, S. Tay, A. Schülzgen, R. A. Norwood, N. Peyghambarian, and M. Yamamoto, “Photorefractive polymer device with video-rate response time operating at low voltages,” Opt. Lett. 31(10), 1408–1410 (2006).
[CrossRef] [PubMed]

M. Eralp, J. Thomas, S. Tay, G. Li, A. Schülzgen, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Submillisecond response of a photorefractive polymer under single nanosecond pulse exposure,” Appl. Phys. Lett. 89(11), 114105 (2006).
[CrossRef]

Scott, J. C.

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66(14), 1846–1849 (1991).
[CrossRef] [PubMed]

Shiyanovskaya, I.

I. Shiyanovskaya, K. D. Singer, V. Percec, T. K. Bera, Y. Miura, and M. Glodde, “Charge transport in hexagonal columnar liquid crystals self-organized from supramolecular cylinders based on acene-functionalized dendrons,” Phys. Rev. B 67(3), 035204 (2003).
[CrossRef]

Siddiqui, O.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Silence, S. M.

Singer, K. D.

I. Shiyanovskaya, K. D. Singer, V. Percec, T. K. Bera, Y. Miura, and M. Glodde, “Charge transport in hexagonal columnar liquid crystals self-organized from supramolecular cylinders based on acene-functionalized dendrons,” Phys. Rev. B 67(3), 035204 (2003).
[CrossRef]

J. Zhang, V. Ostroverkhov, K. D. Singer, V. Reshetnyak, and Yu. Reznikov, “Electrically controlled surface diffraction gratings in nematic liquid crystals,” Opt. Lett. 25(6), 414–416 (2000).
[CrossRef]

J. Zhang and K. D. Singer, “Novel photorefractive liquid crystal polymer composites,” SPIE 3471, 14 (1998).

J. Zhang and K. D. Singer, “Homogeneous photorefractive polymer/nematogen composite,” Appl. Phys. Lett. 72(23), 2948–2950 (1998).
[CrossRef]

St Hilaire, P.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Stankus, J. J.

C. Poga, D. M. Burland, T. Hanemann, Y. Jia, C. R. Moylan, J. J. Stankus, R. J. Twieg, and W. E. Moerner, “Photorefractivity in new organic polymeric materials,” Proc. SPIE 2526, 82–93 (1995).
[CrossRef]

Sun, X.

X. Sun, Y. Pei, F. Yao, J. Zhang, and C. Hou, “Optical amplification in multilayer photorefractive liquid crystal films,” Appl. Phys. Lett. 90(20), 201115 (2007).
[CrossRef]

X. Sun, F. Yao, Y. Pei, and J. Zhang, “Light controlled diffraction gratings in C60-doped nematic liquid crystals,” J. Appl. Phys. 102(1), 013104 (2007).
[CrossRef]

Sznitko, L.

L. Sznitko, A. Anczykowska, J. Mysliwiec, and S. Bartjiewicz, “Influence of grating period on kinetic of self-diffraction in nematic liquid crystal panel with photoconducting polymeric layer,” Appl. Phys. Lett. 96(11), 111106 (2010).
[CrossRef]

Tay, S.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

M. Eralp, J. Thomas, S. Tay, G. Li, A. Schülzgen, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Submillisecond response of a photorefractive polymer under single nanosecond pulse exposure,” Appl. Phys. Lett. 89(11), 114105 (2006).
[CrossRef]

M. Eralp, J. Thomas, G. Li, S. Tay, A. Schülzgen, R. A. Norwood, N. Peyghambarian, and M. Yamamoto, “Photorefractive polymer device with video-rate response time operating at low voltages,” Opt. Lett. 31(10), 1408–1410 (2006).
[CrossRef] [PubMed]

Thomas, J.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

M. Eralp, J. Thomas, S. Tay, G. Li, A. Schülzgen, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Submillisecond response of a photorefractive polymer under single nanosecond pulse exposure,” Appl. Phys. Lett. 89(11), 114105 (2006).
[CrossRef]

M. Eralp, J. Thomas, G. Li, S. Tay, A. Schülzgen, R. A. Norwood, N. Peyghambarian, and M. Yamamoto, “Photorefractive polymer device with video-rate response time operating at low voltages,” Opt. Lett. 31(10), 1408–1410 (2006).
[CrossRef] [PubMed]

Thompson, C. L.

W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27(1), 585–623 (1997).
[CrossRef]

Tunç, A. V.

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Twieg, R. J.

C. Poga, D. M. Burland, T. Hanemann, Y. Jia, C. R. Moylan, J. J. Stankus, R. J. Twieg, and W. E. Moerner, “Photorefractivity in new organic polymeric materials,” Proc. SPIE 2526, 82–93 (1995).
[CrossRef]

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66(14), 1846–1849 (1991).
[CrossRef] [PubMed]

Volodin, B. L.

K. Meerholz, B. L. Volodin, B. Sandalphon, Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371(6497), 497–500 (1994).
[CrossRef]

Voorakaranam, R.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Wang, P.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

Wasielewski, M. R.

G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science 270(5243), 1794–1797 (1995).
[CrossRef]

Wiederrecht, G. P.

G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science 270(5243), 1794–1797 (1995).
[CrossRef]

Yamamoto, M.

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[CrossRef] [PubMed]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

M. Eralp, J. Thomas, S. Tay, G. Li, A. Schülzgen, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Submillisecond response of a photorefractive polymer under single nanosecond pulse exposure,” Appl. Phys. Lett. 89(11), 114105 (2006).
[CrossRef]

M. Eralp, J. Thomas, G. Li, S. Tay, A. Schülzgen, R. A. Norwood, N. Peyghambarian, and M. Yamamoto, “Photorefractive polymer device with video-rate response time operating at low voltages,” Opt. Lett. 31(10), 1408–1410 (2006).
[CrossRef] [PubMed]

Yao, F.

X. Sun, F. Yao, Y. Pei, and J. Zhang, “Light controlled diffraction gratings in C60-doped nematic liquid crystals,” J. Appl. Phys. 102(1), 013104 (2007).
[CrossRef]

X. Sun, Y. Pei, F. Yao, J. Zhang, and C. Hou, “Optical amplification in multilayer photorefractive liquid crystal films,” Appl. Phys. Lett. 90(20), 201115 (2007).
[CrossRef]

Yoon, B. A.

G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science 270(5243), 1794–1797 (1995).
[CrossRef]

Zhang, J.

X. Sun, Y. Pei, F. Yao, J. Zhang, and C. Hou, “Optical amplification in multilayer photorefractive liquid crystal films,” Appl. Phys. Lett. 90(20), 201115 (2007).
[CrossRef]

X. Sun, F. Yao, Y. Pei, and J. Zhang, “Light controlled diffraction gratings in C60-doped nematic liquid crystals,” J. Appl. Phys. 102(1), 013104 (2007).
[CrossRef]

J. Zhang, V. Ostroverkhov, K. D. Singer, V. Reshetnyak, and Yu. Reznikov, “Electrically controlled surface diffraction gratings in nematic liquid crystals,” Opt. Lett. 25(6), 414–416 (2000).
[CrossRef]

J. Zhang and K. D. Singer, “Novel photorefractive liquid crystal polymer composites,” SPIE 3471, 14 (1998).

J. Zhang and K. D. Singer, “Homogeneous photorefractive polymer/nematogen composite,” Appl. Phys. Lett. 72(23), 2948–2950 (1998).
[CrossRef]

Annu. Rev. Mater. Sci.

W. E. Moerner, A. Grunnet-Jepsen, and C. L. Thompson, “Photorefractive polymers,” Annu. Rev. Mater. Sci. 27(1), 585–623 (1997).
[CrossRef]

Appl. Phys. Lett.

M. Eralp, J. Thomas, S. Tay, G. Li, A. Schülzgen, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Submillisecond response of a photorefractive polymer under single nanosecond pulse exposure,” Appl. Phys. Lett. 89(11), 114105 (2006).
[CrossRef]

J. Zhang and K. D. Singer, “Homogeneous photorefractive polymer/nematogen composite,” Appl. Phys. Lett. 72(23), 2948–2950 (1998).
[CrossRef]

S. Bartkiewicz, A. Miniewicz, B. Sahraoui, and F. Kajzar, “Dynamic charge-carrier-mobility-mediated holography in thin layers of photoconducting polymers,” Appl. Phys. Lett. 81(20), 3705–3707 (2002).
[CrossRef]

L. Sznitko, A. Anczykowska, J. Mysliwiec, and S. Bartjiewicz, “Influence of grating period on kinetic of self-diffraction in nematic liquid crystal panel with photoconducting polymeric layer,” Appl. Phys. Lett. 96(11), 111106 (2010).
[CrossRef]

X. Sun, Y. Pei, F. Yao, J. Zhang, and C. Hou, “Optical amplification in multilayer photorefractive liquid crystal films,” Appl. Phys. Lett. 90(20), 201115 (2007).
[CrossRef]

Chem. Rev.

O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev. 104(7), 3267–3314 (2004).
[CrossRef] [PubMed]

W. E. Moerner and S. M. Silence, “Polymeric photorefractive materials,” Chem. Rev. 94(1), 127–155 (1994).
[CrossRef]

J. Appl. Phys.

X. Sun, F. Yao, Y. Pei, and J. Zhang, “Light controlled diffraction gratings in C60-doped nematic liquid crystals,” J. Appl. Phys. 102(1), 013104 (2007).
[CrossRef]

J. Opt. Soc. Am. B

Nature

K. Meerholz, B. L. Volodin, B. Sandalphon, Kippelen, and N. Peyghambarian, “A photorefractive polymer with high optical gain and diffraction efficiency near 100%,” Nature 371(6497), 497–500 (1994).
[CrossRef]

S. Tay, P.-A. Blanche, R. Voorakaranam, A. V. Tunç, W. Lin, S. Rokutanda, T. Gu, D. Flores, P. Wang, G. Li, P. St Hilaire, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “An updatable holographic three-dimensional display,” Nature 451(7179), 694–698 (2008).
[CrossRef] [PubMed]

P.-A. Blanche, A. Bablumian, R. Voorakaranam, C. Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W.-Y. Hsieh, M. Kathaperumal, B. Rachwal, O. Siddiqui, J. Thomas, R. A. Norwood, M. Yamamoto, and N. Peyghambarian, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468(7320), 80–83 (2010).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rep.

I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep. 471(5-6), 221–267 (2009).
[CrossRef]

Phys. Rev. B

I. Shiyanovskaya, K. D. Singer, V. Percec, T. K. Bera, Y. Miura, and M. Glodde, “Charge transport in hexagonal columnar liquid crystals self-organized from supramolecular cylinders based on acene-functionalized dendrons,” Phys. Rev. B 67(3), 035204 (2003).
[CrossRef]

Phys. Rev. Lett.

S. Ducharme, J. C. Scott, R. J. Twieg, and W. E. Moerner, “Observation of the photorefractive effect in a polymer,” Phys. Rev. Lett. 66(14), 1846–1849 (1991).
[CrossRef] [PubMed]

Proc. SPIE

C. Poga, D. M. Burland, T. Hanemann, Y. Jia, C. R. Moylan, J. J. Stankus, R. J. Twieg, and W. E. Moerner, “Photorefractivity in new organic polymeric materials,” Proc. SPIE 2526, 82–93 (1995).
[CrossRef]

Science

G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science 270(5243), 1794–1797 (1995).
[CrossRef]

SPIE

J. Zhang and K. D. Singer, “Novel photorefractive liquid crystal polymer composites,” SPIE 3471, 14 (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) A dynamic curve of diffraction intensity in different crossing angles and (b) erasure time versus grating spacing in the degenerate FWM configuration.

Fig. 2
Fig. 2

(a) Measured external diffraction efficiency versus applied electric field at elevated temperature; (b) Diffracted intensity in a 5CB +C60 liquid crystal cell for a continuously incident He–Ne probe beam during a program of applying an electric field.

Fig. 3
Fig. 3

(a) A dynamic curve of diffraction intensity in the degenerate FWM configuration with a typical sample prepared by directly depositing ITO layer on top of the sample; (b) A typical mobility measurement results obtained in PVK + TNF thin film.

Fig. 4
Fig. 4

Double-exposure interferometry: (a) schematic diagram; (b) original imaging spot; (c) photograph of the observed interference fringe pattern of a reflective test plate under a thermo-induced strain.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

r e f f ( s ) = 2 × A E 0 n 4 sin Ψ t i l t , r e f f ( p ) = A E 0 n 4 sin Ψ t i l t cos θ int [ ( C A 1 ) + ( C A + 1 ) cos θ int ] ,
C E O = 1 5 N β 333 ( μ k B T ) , C B R = 2 45 N ( α ω α ω ) β 333 ( μ k B T ) 2 ,
I R ( t ) = | O ( x , y , t ) | 2 [ ( R ( t ) ) 2 + ( R ' ( t ) ) 2 + 2 R R ' cos Δ Φ ] .

Metrics