Abstract

We report on the second harmonic generation at ~532 nm of optical waveguides in Nd:GdCOB produced by swift carbon ion irradiation. The fabricated waveguide shows good guiding property. Under pump of ~1064-nm fundamental light, the optical conversion efficiency of the frequency doubling is 0.48% W−1 and 6.8% W−1 for continuous wave and pulsed laser beams, respectively.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. P. Damelet, “Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14(9), 2238–2247 (1997).
    [CrossRef]
  2. F. Augé, F. Mougel, G. Aka, A. Kahn-Harari, D. Vivien, F. Balembois, P. Georges, and A. Brun, in Advanced Solid State Lasers, Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), p. 210.
  3. G. Aka, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, and J. Godard, “A new nonlinear and neodymium laser self-frequency doubling crystal with congruent melting: Ca4GdO(BO3)3 (GdCOB),” Eur. J. Solid State Inorg. Chem. 33, 727–736 (1996).
  4. F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8(3), 161–173 (1997).
    [CrossRef]
  5. C. Q. Wang, Y. T. Chow, W. A. Gambling, S. J. Zhang, Z. X. Cheng, Z. S. Shao, and H. C. Chen, “Efficient self-frequency doubling of Nd:GdCOB crystal by type-I phase matching out of its principal planes,” Opt. Commun. 174(5-6), 471–474 (2000).
    [CrossRef]
  6. D. Vivien, F. Mougel, F. Augé, G. Aka, A. Kahn-Harari, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, and P. Aschehoug, “Nd:GdCOB: overview of its infrared, green and blue laser performances,” Opt. Mater. 16(1-2), 213–220 (2001).
    [CrossRef]
  7. J. Wang, H. Zhang, Z. Wang, H. Yu, N. Zong, C. Ma, Z. Xu, and M. Jiang, “Watt-level self-frequency-doubling Nd:GdCOB lasers,” Opt. Express 18(11), 11058–11062 (2010).
    [CrossRef] [PubMed]
  8. E. J. Murphy, Integrated optical circuits and components: Design and applications (Marcel Dekker, New York, 1999).
  9. J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
    [CrossRef]
  10. D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998).
    [CrossRef]
  11. G. I. Stegeman and C. T. Seaton, “Nonlinear integrated optics,” J. Appl. Phys. 58(12), R57–R77 (1985).
    [CrossRef]
  12. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge Univ. Press, Cambridge, UK 1994).
  13. F. Chen, X. L. Wang, and K. M. Wang, “Developments of ion implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
    [CrossRef]
  14. F. Chen, “Construction of Two-Dimensional Waveguides in Insulating Optical Materials by Means of Ion Beam Implantation for Photonic Applications: Fabrication Methods and Research Progress,” Crit. Rev. Solid State Mater. Sci. 33(3), 165–182 (2008).
    [CrossRef]
  15. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
    [CrossRef]
  16. G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
    [CrossRef]
  17. E. Flores-Romero, G. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Planar waveguide lasers by proton implantation in Nd:YAG crystals,” Opt. Express 12(10), 2264–2269 (2004).
    [CrossRef] [PubMed]
  18. Y. Tan, F. Chen, D. Jaque, W. L. Gao, H. J. Zhang, J. G. Solé, and H. J. Ma, “Ion-implanted optical-stripe waveguides in neodymium-doped calcium barium niobate crystals,” Opt. Lett. 34(9), 1438–1440 (2009).
    [CrossRef] [PubMed]
  19. P. Kumar, S. M. Babu, S. Ganesamoorthy, A. K. Karnal, and D. Kanjilal, “Influence of swift ions and proton implantation on the formation of optical waveguides in lithium niobate,” J. Appl. Phys. 102(8), 084905 (2007).
    [CrossRef]
  20. F. Qiu and T. Narusawa, “Application of swift and heavy ion implantation to the formation of chalcogenide glass optical waveguides,” Opt. Mater. 33(3), 527–530 (2011).
    [CrossRef]
  21. A. García-Navarroa, J. Olivaresb, G. Garcíaa, F. Agulló-Lópeza, S. García-Blancoc, C. Merchantc, and J. Stewart Aitchisonc, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res. B 249(1-2), 177–180 (2006).
    [CrossRef]
  22. J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32(17), 2587–2589 (2007).
    [CrossRef] [PubMed]
  23. Y. Ren, N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and T. Narusawa, “Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation,” Opt. Lett. 35(19), 3276–3278 (2010).
    [CrossRef] [PubMed]
  24. Y. Ren, N. Dong, F. Chen, and D. Jaque, “Swift nitrogen ion irradiated waveguide lasers in Nd:YAG crystal,” Opt. Express 19(6), 5522–5527 (2011).
    [CrossRef] [PubMed]
  25. J. Manzano, J. Olivares, F. Agullo-Lopez, M. L. Crespillo, A. Morono, and E. Hodgson, “Optical waveguides obtained by swift-ion irradiation on silica (a-SiO2),” Nucl. Instrum. Methods Phys. Res. B 268(19), 3147–3150 (2010).
    [CrossRef]
  26. J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
    [CrossRef]
  27. A. Majkic, M. Koechlin, G. Poberaj, and P. Günter, “Optical microring resonators in fluorineimplanted lithium niobate,” Opt. Express 16(12), 8769–8779 (2008).
    [CrossRef] [PubMed]
  28. A. Boudrioua, J. C. Loulergue, P. Moretti, B. Jacquier, G. Aka, and D. Vivien, “Second-harmonic generation in He+-implanted gadolinium calcium oxoborate planar waveguides,” Opt. Lett. 24(18), 1299–1301 (1999).
    [CrossRef]
  29. B. Vincent, A. Boudrioua, J. C. Loulergue, P. Moretti, S. Tascu, B. Jacquier, G. Aka, and D. Vivien, “Channel waveguides in Ca4GdO(BO3)3 fabricated by He+ implantation for blue-light generation,” Opt. Lett. 28(12), 1025–1027 (2003).
    [CrossRef] [PubMed]
  30. N. Dong, F. Chen, D. Jaque, A. Benayas, F. Qiu, and T. Narusawa, “Characterization of active waveguides fabricated by ultralow fuence swift heavy ion irradiation in lithium crystal,” J. Phys. D 44(10), 105103 (2011).
    [CrossRef]
  31. P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33, 127–142 (1986).
    [CrossRef]
  32. J. F. Ziegler, computer code, SRIM http://www.srim.org .
  33. D. Fluck and P. Günter, “Second-Harmonic Generation in Potassium Niobate Waveguides,” IEEE J. Sel. Top. Quantum Electron. 6(1), 122–131 (2000).
    [CrossRef]
  34. D. N. Nikogosyan, Nonlinear optical crystals: a complete survey (Springer, New York, 2005).
  35. R. Ramponi, R. Osellame, and M. Marangoni, “Two Straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73(3), 1117–1120 (2002).
    [CrossRef]

2011

F. Qiu and T. Narusawa, “Application of swift and heavy ion implantation to the formation of chalcogenide glass optical waveguides,” Opt. Mater. 33(3), 527–530 (2011).
[CrossRef]

Y. Ren, N. Dong, F. Chen, and D. Jaque, “Swift nitrogen ion irradiated waveguide lasers in Nd:YAG crystal,” Opt. Express 19(6), 5522–5527 (2011).
[CrossRef] [PubMed]

N. Dong, F. Chen, D. Jaque, A. Benayas, F. Qiu, and T. Narusawa, “Characterization of active waveguides fabricated by ultralow fuence swift heavy ion irradiation in lithium crystal,” J. Phys. D 44(10), 105103 (2011).
[CrossRef]

2010

2009

2008

F. Chen, “Construction of Two-Dimensional Waveguides in Insulating Optical Materials by Means of Ion Beam Implantation for Photonic Applications: Fabrication Methods and Research Progress,” Crit. Rev. Solid State Mater. Sci. 33(3), 165–182 (2008).
[CrossRef]

A. Majkic, M. Koechlin, G. Poberaj, and P. Günter, “Optical microring resonators in fluorineimplanted lithium niobate,” Opt. Express 16(12), 8769–8779 (2008).
[CrossRef] [PubMed]

2007

J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32(17), 2587–2589 (2007).
[CrossRef] [PubMed]

P. Kumar, S. M. Babu, S. Ganesamoorthy, A. K. Karnal, and D. Kanjilal, “Influence of swift ions and proton implantation on the formation of optical waveguides in lithium niobate,” J. Appl. Phys. 102(8), 084905 (2007).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Developments of ion implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[CrossRef]

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
[CrossRef]

2006

A. García-Navarroa, J. Olivaresb, G. Garcíaa, F. Agulló-Lópeza, S. García-Blancoc, C. Merchantc, and J. Stewart Aitchisonc, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res. B 249(1-2), 177–180 (2006).
[CrossRef]

2005

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

2004

2003

2002

R. Ramponi, R. Osellame, and M. Marangoni, “Two Straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73(3), 1117–1120 (2002).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

2001

D. Vivien, F. Mougel, F. Augé, G. Aka, A. Kahn-Harari, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, and P. Aschehoug, “Nd:GdCOB: overview of its infrared, green and blue laser performances,” Opt. Mater. 16(1-2), 213–220 (2001).
[CrossRef]

2000

C. Q. Wang, Y. T. Chow, W. A. Gambling, S. J. Zhang, Z. X. Cheng, Z. S. Shao, and H. C. Chen, “Efficient self-frequency doubling of Nd:GdCOB crystal by type-I phase matching out of its principal planes,” Opt. Commun. 174(5-6), 471–474 (2000).
[CrossRef]

D. Fluck and P. Günter, “Second-Harmonic Generation in Potassium Niobate Waveguides,” IEEE J. Sel. Top. Quantum Electron. 6(1), 122–131 (2000).
[CrossRef]

1999

1998

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998).
[CrossRef]

1997

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8(3), 161–173 (1997).
[CrossRef]

G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. P. Damelet, “Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14(9), 2238–2247 (1997).
[CrossRef]

1996

G. Aka, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, and J. Godard, “A new nonlinear and neodymium laser self-frequency doubling crystal with congruent melting: Ca4GdO(BO3)3 (GdCOB),” Eur. J. Solid State Inorg. Chem. 33, 727–736 (1996).

1986

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33, 127–142 (1986).
[CrossRef]

1985

G. I. Stegeman and C. T. Seaton, “Nonlinear integrated optics,” J. Appl. Phys. 58(12), R57–R77 (1985).
[CrossRef]

Agullo-Lopez, F.

J. Manzano, J. Olivares, F. Agullo-Lopez, M. L. Crespillo, A. Morono, and E. Hodgson, “Optical waveguides obtained by swift-ion irradiation on silica (a-SiO2),” Nucl. Instrum. Methods Phys. Res. B 268(19), 3147–3150 (2010).
[CrossRef]

Agulló-López, F.

J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32(17), 2587–2589 (2007).
[CrossRef] [PubMed]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

Agulló-Lópeza, F.

A. García-Navarroa, J. Olivaresb, G. Garcíaa, F. Agulló-Lópeza, S. García-Blancoc, C. Merchantc, and J. Stewart Aitchisonc, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res. B 249(1-2), 177–180 (2006).
[CrossRef]

Aka, G.

B. Vincent, A. Boudrioua, J. C. Loulergue, P. Moretti, S. Tascu, B. Jacquier, G. Aka, and D. Vivien, “Channel waveguides in Ca4GdO(BO3)3 fabricated by He+ implantation for blue-light generation,” Opt. Lett. 28(12), 1025–1027 (2003).
[CrossRef] [PubMed]

D. Vivien, F. Mougel, F. Augé, G. Aka, A. Kahn-Harari, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, and P. Aschehoug, “Nd:GdCOB: overview of its infrared, green and blue laser performances,” Opt. Mater. 16(1-2), 213–220 (2001).
[CrossRef]

A. Boudrioua, J. C. Loulergue, P. Moretti, B. Jacquier, G. Aka, and D. Vivien, “Second-harmonic generation in He+-implanted gadolinium calcium oxoborate planar waveguides,” Opt. Lett. 24(18), 1299–1301 (1999).
[CrossRef]

G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. P. Damelet, “Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14(9), 2238–2247 (1997).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8(3), 161–173 (1997).
[CrossRef]

G. Aka, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, and J. Godard, “A new nonlinear and neodymium laser self-frequency doubling crystal with congruent melting: Ca4GdO(BO3)3 (GdCOB),” Eur. J. Solid State Inorg. Chem. 33, 727–736 (1996).

Argiolas, N.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Aschehoug, P.

D. Vivien, F. Mougel, F. Augé, G. Aka, A. Kahn-Harari, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, and P. Aschehoug, “Nd:GdCOB: overview of its infrared, green and blue laser performances,” Opt. Mater. 16(1-2), 213–220 (2001).
[CrossRef]

Augé, F.

D. Vivien, F. Mougel, F. Augé, G. Aka, A. Kahn-Harari, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, and P. Aschehoug, “Nd:GdCOB: overview of its infrared, green and blue laser performances,” Opt. Mater. 16(1-2), 213–220 (2001).
[CrossRef]

Babu, S. M.

P. Kumar, S. M. Babu, S. Ganesamoorthy, A. K. Karnal, and D. Kanjilal, “Influence of swift ions and proton implantation on the formation of optical waveguides in lithium niobate,” J. Appl. Phys. 102(8), 084905 (2007).
[CrossRef]

Balembois, F.

D. Vivien, F. Mougel, F. Augé, G. Aka, A. Kahn-Harari, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, and P. Aschehoug, “Nd:GdCOB: overview of its infrared, green and blue laser performances,” Opt. Mater. 16(1-2), 213–220 (2001).
[CrossRef]

Bazzan, M.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Benayas, A.

N. Dong, F. Chen, D. Jaque, A. Benayas, F. Qiu, and T. Narusawa, “Characterization of active waveguides fabricated by ultralow fuence swift heavy ion irradiation in lithium crystal,” J. Phys. D 44(10), 105103 (2011).
[CrossRef]

Y. Ren, N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and T. Narusawa, “Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation,” Opt. Lett. 35(19), 3276–3278 (2010).
[CrossRef] [PubMed]

Benitez, J. M.

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8(3), 161–173 (1997).
[CrossRef]

G. Aka, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, and J. Godard, “A new nonlinear and neodymium laser self-frequency doubling crystal with congruent melting: Ca4GdO(BO3)3 (GdCOB),” Eur. J. Solid State Inorg. Chem. 33, 727–736 (1996).

Bentini, G. G.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Bianconi, M.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Boudrioua, A.

Brun, A.

D. Vivien, F. Mougel, F. Augé, G. Aka, A. Kahn-Harari, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, and P. Aschehoug, “Nd:GdCOB: overview of its infrared, green and blue laser performances,” Opt. Mater. 16(1-2), 213–220 (2001).
[CrossRef]

Caballero, O.

J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32(17), 2587–2589 (2007).
[CrossRef] [PubMed]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

Carrascosa, M.

Chandler, P. J.

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33, 127–142 (1986).
[CrossRef]

Chen, F.

N. Dong, F. Chen, D. Jaque, A. Benayas, F. Qiu, and T. Narusawa, “Characterization of active waveguides fabricated by ultralow fuence swift heavy ion irradiation in lithium crystal,” J. Phys. D 44(10), 105103 (2011).
[CrossRef]

Y. Ren, N. Dong, F. Chen, and D. Jaque, “Swift nitrogen ion irradiated waveguide lasers in Nd:YAG crystal,” Opt. Express 19(6), 5522–5527 (2011).
[CrossRef] [PubMed]

Y. Ren, N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and T. Narusawa, “Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation,” Opt. Lett. 35(19), 3276–3278 (2010).
[CrossRef] [PubMed]

Y. Tan, F. Chen, D. Jaque, W. L. Gao, H. J. Zhang, J. G. Solé, and H. J. Ma, “Ion-implanted optical-stripe waveguides in neodymium-doped calcium barium niobate crystals,” Opt. Lett. 34(9), 1438–1440 (2009).
[CrossRef] [PubMed]

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
[CrossRef]

F. Chen, “Construction of Two-Dimensional Waveguides in Insulating Optical Materials by Means of Ion Beam Implantation for Photonic Applications: Fabrication Methods and Research Progress,” Crit. Rev. Solid State Mater. Sci. 33(3), 165–182 (2008).
[CrossRef]

F. Chen, X. L. Wang, and K. M. Wang, “Developments of ion implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[CrossRef]

Chen, H. C.

C. Q. Wang, Y. T. Chow, W. A. Gambling, S. J. Zhang, Z. X. Cheng, Z. S. Shao, and H. C. Chen, “Efficient self-frequency doubling of Nd:GdCOB crystal by type-I phase matching out of its principal planes,” Opt. Commun. 174(5-6), 471–474 (2000).
[CrossRef]

Cheng, Z. X.

C. Q. Wang, Y. T. Chow, W. A. Gambling, S. J. Zhang, Z. X. Cheng, Z. S. Shao, and H. C. Chen, “Efficient self-frequency doubling of Nd:GdCOB crystal by type-I phase matching out of its principal planes,” Opt. Commun. 174(5-6), 471–474 (2000).
[CrossRef]

Chiarini, M.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Chow, Y. T.

C. Q. Wang, Y. T. Chow, W. A. Gambling, S. J. Zhang, Z. X. Cheng, Z. S. Shao, and H. C. Chen, “Efficient self-frequency doubling of Nd:GdCOB crystal by type-I phase matching out of its principal planes,” Opt. Commun. 174(5-6), 471–474 (2000).
[CrossRef]

Colin, P.

Coquelin, P.

Correra, L.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Crespillo, M. L.

J. Manzano, J. Olivares, F. Agullo-Lopez, M. L. Crespillo, A. Morono, and E. Hodgson, “Optical waveguides obtained by swift-ion irradiation on silica (a-SiO2),” Nucl. Instrum. Methods Phys. Res. B 268(19), 3147–3150 (2010).
[CrossRef]

Damelet, J. P.

Dong, N.

Flores-Romero, E.

Fluck, D.

D. Fluck and P. Günter, “Second-Harmonic Generation in Potassium Niobate Waveguides,” IEEE J. Sel. Top. Quantum Electron. 6(1), 122–131 (2000).
[CrossRef]

Gambling, W. A.

C. Q. Wang, Y. T. Chow, W. A. Gambling, S. J. Zhang, Z. X. Cheng, Z. S. Shao, and H. C. Chen, “Efficient self-frequency doubling of Nd:GdCOB crystal by type-I phase matching out of its principal planes,” Opt. Commun. 174(5-6), 471–474 (2000).
[CrossRef]

Ganesamoorthy, S.

P. Kumar, S. M. Babu, S. Ganesamoorthy, A. K. Karnal, and D. Kanjilal, “Influence of swift ions and proton implantation on the formation of optical waveguides in lithium niobate,” J. Appl. Phys. 102(8), 084905 (2007).
[CrossRef]

Gao, W. L.

García, G.

J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32(17), 2587–2589 (2007).
[CrossRef] [PubMed]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

Garcíaa, G.

A. García-Navarroa, J. Olivaresb, G. Garcíaa, F. Agulló-Lópeza, S. García-Blancoc, C. Merchantc, and J. Stewart Aitchisonc, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res. B 249(1-2), 177–180 (2006).
[CrossRef]

García-Blancoc, S.

A. García-Navarroa, J. Olivaresb, G. Garcíaa, F. Agulló-Lópeza, S. García-Blancoc, C. Merchantc, and J. Stewart Aitchisonc, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res. B 249(1-2), 177–180 (2006).
[CrossRef]

García-Cabañes, A.

J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32(17), 2587–2589 (2007).
[CrossRef] [PubMed]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

García-Navarro, A.

J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32(17), 2587–2589 (2007).
[CrossRef] [PubMed]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

García-Navarroa, A.

A. García-Navarroa, J. Olivaresb, G. Garcíaa, F. Agulló-Lópeza, S. García-Blancoc, C. Merchantc, and J. Stewart Aitchisonc, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res. B 249(1-2), 177–180 (2006).
[CrossRef]

Georges, P.

D. Vivien, F. Mougel, F. Augé, G. Aka, A. Kahn-Harari, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, and P. Aschehoug, “Nd:GdCOB: overview of its infrared, green and blue laser performances,” Opt. Mater. 16(1-2), 213–220 (2001).
[CrossRef]

Godard, J.

G. Aka, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, and J. Godard, “A new nonlinear and neodymium laser self-frequency doubling crystal with congruent melting: Ca4GdO(BO3)3 (GdCOB),” Eur. J. Solid State Inorg. Chem. 33, 727–736 (1996).

Günter, P.

A. Majkic, M. Koechlin, G. Poberaj, and P. Günter, “Optical microring resonators in fluorineimplanted lithium niobate,” Opt. Express 16(12), 8769–8779 (2008).
[CrossRef] [PubMed]

D. Fluck and P. Günter, “Second-Harmonic Generation in Potassium Niobate Waveguides,” IEEE J. Sel. Top. Quantum Electron. 6(1), 122–131 (2000).
[CrossRef]

Guzzi, R.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Hodgson, E.

J. Manzano, J. Olivares, F. Agullo-Lopez, M. L. Crespillo, A. Morono, and E. Hodgson, “Optical waveguides obtained by swift-ion irradiation on silica (a-SiO2),” Nucl. Instrum. Methods Phys. Res. B 268(19), 3147–3150 (2010).
[CrossRef]

Hubert, H.

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8(3), 161–173 (1997).
[CrossRef]

Jacquier, B.

Jaque, D.

Jiang, M.

Kahn-Harari, A.

D. Vivien, F. Mougel, F. Augé, G. Aka, A. Kahn-Harari, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, and P. Aschehoug, “Nd:GdCOB: overview of its infrared, green and blue laser performances,” Opt. Mater. 16(1-2), 213–220 (2001).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8(3), 161–173 (1997).
[CrossRef]

G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. P. Damelet, “Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14(9), 2238–2247 (1997).
[CrossRef]

G. Aka, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, and J. Godard, “A new nonlinear and neodymium laser self-frequency doubling crystal with congruent melting: Ca4GdO(BO3)3 (GdCOB),” Eur. J. Solid State Inorg. Chem. 33, 727–736 (1996).

Kanjilal, D.

P. Kumar, S. M. Babu, S. Ganesamoorthy, A. K. Karnal, and D. Kanjilal, “Influence of swift ions and proton implantation on the formation of optical waveguides in lithium niobate,” J. Appl. Phys. 102(8), 084905 (2007).
[CrossRef]

Karnal, A. K.

P. Kumar, S. M. Babu, S. Ganesamoorthy, A. K. Karnal, and D. Kanjilal, “Influence of swift ions and proton implantation on the formation of optical waveguides in lithium niobate,” J. Appl. Phys. 102(8), 084905 (2007).
[CrossRef]

Kip, D.

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998).
[CrossRef]

Koechlin, M.

Kumar, P.

P. Kumar, S. M. Babu, S. Ganesamoorthy, A. K. Karnal, and D. Kanjilal, “Influence of swift ions and proton implantation on the formation of optical waveguides in lithium niobate,” J. Appl. Phys. 102(8), 084905 (2007).
[CrossRef]

Lama, F. L.

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33, 127–142 (1986).
[CrossRef]

Loulergue, J. C.

Lucas-Leclin, G.

D. Vivien, F. Mougel, F. Augé, G. Aka, A. Kahn-Harari, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, and P. Aschehoug, “Nd:GdCOB: overview of its infrared, green and blue laser performances,” Opt. Mater. 16(1-2), 213–220 (2001).
[CrossRef]

Ma, C.

Ma, H. J.

Mackenzie, J. I.

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
[CrossRef]

Majkic, A.

Manzano, J.

J. Manzano, J. Olivares, F. Agullo-Lopez, M. L. Crespillo, A. Morono, and E. Hodgson, “Optical waveguides obtained by swift-ion irradiation on silica (a-SiO2),” Nucl. Instrum. Methods Phys. Res. B 268(19), 3147–3150 (2010).
[CrossRef]

Marangoni, M.

R. Ramponi, R. Osellame, and M. Marangoni, “Two Straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73(3), 1117–1120 (2002).
[CrossRef]

Márquez, H.

Mazzoldi, P.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Méndez, A.

Merchantc, C.

A. García-Navarroa, J. Olivaresb, G. Garcíaa, F. Agulló-Lópeza, S. García-Blancoc, C. Merchantc, and J. Stewart Aitchisonc, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res. B 249(1-2), 177–180 (2006).
[CrossRef]

Moretti, P.

Morono, A.

J. Manzano, J. Olivares, F. Agullo-Lopez, M. L. Crespillo, A. Morono, and E. Hodgson, “Optical waveguides obtained by swift-ion irradiation on silica (a-SiO2),” Nucl. Instrum. Methods Phys. Res. B 268(19), 3147–3150 (2010).
[CrossRef]

Mougel, F.

D. Vivien, F. Mougel, F. Augé, G. Aka, A. Kahn-Harari, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, and P. Aschehoug, “Nd:GdCOB: overview of its infrared, green and blue laser performances,” Opt. Mater. 16(1-2), 213–220 (2001).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8(3), 161–173 (1997).
[CrossRef]

G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. P. Damelet, “Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14(9), 2238–2247 (1997).
[CrossRef]

Narusawa, T.

F. Qiu and T. Narusawa, “Application of swift and heavy ion implantation to the formation of chalcogenide glass optical waveguides,” Opt. Mater. 33(3), 527–530 (2011).
[CrossRef]

N. Dong, F. Chen, D. Jaque, A. Benayas, F. Qiu, and T. Narusawa, “Characterization of active waveguides fabricated by ultralow fuence swift heavy ion irradiation in lithium crystal,” J. Phys. D 44(10), 105103 (2011).
[CrossRef]

Y. Ren, N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and T. Narusawa, “Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation,” Opt. Lett. 35(19), 3276–3278 (2010).
[CrossRef] [PubMed]

Olivares, J.

J. Manzano, J. Olivares, F. Agullo-Lopez, M. L. Crespillo, A. Morono, and E. Hodgson, “Optical waveguides obtained by swift-ion irradiation on silica (a-SiO2),” Nucl. Instrum. Methods Phys. Res. B 268(19), 3147–3150 (2010).
[CrossRef]

J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett. 32(17), 2587–2589 (2007).
[CrossRef] [PubMed]

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

Olivaresb, J.

A. García-Navarroa, J. Olivaresb, G. Garcíaa, F. Agulló-Lópeza, S. García-Blancoc, C. Merchantc, and J. Stewart Aitchisonc, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res. B 249(1-2), 177–180 (2006).
[CrossRef]

Osellame, R.

R. Ramponi, R. Osellame, and M. Marangoni, “Two Straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73(3), 1117–1120 (2002).
[CrossRef]

Pelenc, D.

Poberaj, G.

Qiu, F.

F. Qiu and T. Narusawa, “Application of swift and heavy ion implantation to the formation of chalcogenide glass optical waveguides,” Opt. Mater. 33(3), 527–530 (2011).
[CrossRef]

N. Dong, F. Chen, D. Jaque, A. Benayas, F. Qiu, and T. Narusawa, “Characterization of active waveguides fabricated by ultralow fuence swift heavy ion irradiation in lithium crystal,” J. Phys. D 44(10), 105103 (2011).
[CrossRef]

Y. Ren, N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and T. Narusawa, “Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation,” Opt. Lett. 35(19), 3276–3278 (2010).
[CrossRef] [PubMed]

Ramponi, R.

R. Ramponi, R. Osellame, and M. Marangoni, “Two Straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73(3), 1117–1120 (2002).
[CrossRef]

Rangel-Rojo, R.

Ren, Y.

Rickards, J.

Sada, C.

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

Salin, F.

G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. P. Damelet, “Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14(9), 2238–2247 (1997).
[CrossRef]

G. Aka, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, and J. Godard, “A new nonlinear and neodymium laser self-frequency doubling crystal with congruent melting: Ca4GdO(BO3)3 (GdCOB),” Eur. J. Solid State Inorg. Chem. 33, 727–736 (1996).

Seaton, C. T.

G. I. Stegeman and C. T. Seaton, “Nonlinear integrated optics,” J. Appl. Phys. 58(12), R57–R77 (1985).
[CrossRef]

Shao, Z. S.

C. Q. Wang, Y. T. Chow, W. A. Gambling, S. J. Zhang, Z. X. Cheng, Z. S. Shao, and H. C. Chen, “Efficient self-frequency doubling of Nd:GdCOB crystal by type-I phase matching out of its principal planes,” Opt. Commun. 174(5-6), 471–474 (2000).
[CrossRef]

Solé, J. G.

Stegeman, G. I.

G. I. Stegeman and C. T. Seaton, “Nonlinear integrated optics,” J. Appl. Phys. 58(12), R57–R77 (1985).
[CrossRef]

Stewart Aitchisonc, J.

A. García-Navarroa, J. Olivaresb, G. Garcíaa, F. Agulló-Lópeza, S. García-Blancoc, C. Merchantc, and J. Stewart Aitchisonc, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res. B 249(1-2), 177–180 (2006).
[CrossRef]

Tan, Y.

Tascu, S.

Trejo-Luna, R.

Vázquez, G.

Vincent, B.

Vivien, D.

B. Vincent, A. Boudrioua, J. C. Loulergue, P. Moretti, S. Tascu, B. Jacquier, G. Aka, and D. Vivien, “Channel waveguides in Ca4GdO(BO3)3 fabricated by He+ implantation for blue-light generation,” Opt. Lett. 28(12), 1025–1027 (2003).
[CrossRef] [PubMed]

D. Vivien, F. Mougel, F. Augé, G. Aka, A. Kahn-Harari, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, and P. Aschehoug, “Nd:GdCOB: overview of its infrared, green and blue laser performances,” Opt. Mater. 16(1-2), 213–220 (2001).
[CrossRef]

A. Boudrioua, J. C. Loulergue, P. Moretti, B. Jacquier, G. Aka, and D. Vivien, “Second-harmonic generation in He+-implanted gadolinium calcium oxoborate planar waveguides,” Opt. Lett. 24(18), 1299–1301 (1999).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8(3), 161–173 (1997).
[CrossRef]

G. Aka, A. Kahn-Harari, F. Mougel, D. Vivien, F. Salin, P. Coquelin, P. Colin, D. Pelenc, and J. P. Damelet, “Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 14(9), 2238–2247 (1997).
[CrossRef]

G. Aka, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, and J. Godard, “A new nonlinear and neodymium laser self-frequency doubling crystal with congruent melting: Ca4GdO(BO3)3 (GdCOB),” Eur. J. Solid State Inorg. Chem. 33, 727–736 (1996).

Wang, C. Q.

C. Q. Wang, Y. T. Chow, W. A. Gambling, S. J. Zhang, Z. X. Cheng, Z. S. Shao, and H. C. Chen, “Efficient self-frequency doubling of Nd:GdCOB crystal by type-I phase matching out of its principal planes,” Opt. Commun. 174(5-6), 471–474 (2000).
[CrossRef]

Wang, J.

Wang, K. M.

F. Chen, X. L. Wang, and K. M. Wang, “Developments of ion implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[CrossRef]

Wang, X. L.

F. Chen, X. L. Wang, and K. M. Wang, “Developments of ion implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[CrossRef]

Wang, Z.

Xu, Z.

Yu, H.

Zhang, H.

Zhang, H. J.

Zhang, S. J.

C. Q. Wang, Y. T. Chow, W. A. Gambling, S. J. Zhang, Z. X. Cheng, Z. S. Shao, and H. C. Chen, “Efficient self-frequency doubling of Nd:GdCOB crystal by type-I phase matching out of its principal planes,” Opt. Commun. 174(5-6), 471–474 (2000).
[CrossRef]

Zong, N.

Appl. Phys. B

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67(2), 131–150 (1998).
[CrossRef]

Appl. Phys. Lett.

J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, “Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation,” Appl. Phys. Lett. 86(18), 183501 (2005).
[CrossRef]

Crit. Rev. Solid State Mater. Sci.

F. Chen, “Construction of Two-Dimensional Waveguides in Insulating Optical Materials by Means of Ion Beam Implantation for Photonic Applications: Fabrication Methods and Research Progress,” Crit. Rev. Solid State Mater. Sci. 33(3), 165–182 (2008).
[CrossRef]

Eur. J. Solid State Inorg. Chem.

G. Aka, A. Kahn-Harari, D. Vivien, J. M. Benitez, F. Salin, and J. Godard, “A new nonlinear and neodymium laser self-frequency doubling crystal with congruent melting: Ca4GdO(BO3)3 (GdCOB),” Eur. J. Solid State Inorg. Chem. 33, 727–736 (1996).

IEEE J. Sel. Top. Quantum Electron.

J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 13(3), 626–637 (2007).
[CrossRef]

D. Fluck and P. Günter, “Second-Harmonic Generation in Potassium Niobate Waveguides,” IEEE J. Sel. Top. Quantum Electron. 6(1), 122–131 (2000).
[CrossRef]

J. Appl. Phys.

P. Kumar, S. M. Babu, S. Ganesamoorthy, A. K. Karnal, and D. Kanjilal, “Influence of swift ions and proton implantation on the formation of optical waveguides in lithium niobate,” J. Appl. Phys. 102(8), 084905 (2007).
[CrossRef]

G. I. Stegeman and C. T. Seaton, “Nonlinear integrated optics,” J. Appl. Phys. 58(12), R57–R77 (1985).
[CrossRef]

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106(8), 081101 (2009).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92(11), 6477–6483 (2002).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D

N. Dong, F. Chen, D. Jaque, A. Benayas, F. Qiu, and T. Narusawa, “Characterization of active waveguides fabricated by ultralow fuence swift heavy ion irradiation in lithium crystal,” J. Phys. D 44(10), 105103 (2011).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B

J. Manzano, J. Olivares, F. Agullo-Lopez, M. L. Crespillo, A. Morono, and E. Hodgson, “Optical waveguides obtained by swift-ion irradiation on silica (a-SiO2),” Nucl. Instrum. Methods Phys. Res. B 268(19), 3147–3150 (2010).
[CrossRef]

A. García-Navarroa, J. Olivaresb, G. Garcíaa, F. Agulló-Lópeza, S. García-Blancoc, C. Merchantc, and J. Stewart Aitchisonc, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Methods Phys. Res. B 249(1-2), 177–180 (2006).
[CrossRef]

Opt. Acta (Lond.)

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta (Lond.) 33, 127–142 (1986).
[CrossRef]

Opt. Commun.

C. Q. Wang, Y. T. Chow, W. A. Gambling, S. J. Zhang, Z. X. Cheng, Z. S. Shao, and H. C. Chen, “Efficient self-frequency doubling of Nd:GdCOB crystal by type-I phase matching out of its principal planes,” Opt. Commun. 174(5-6), 471–474 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

F. Chen, X. L. Wang, and K. M. Wang, “Developments of ion implanted optical waveguides in optical materials: A review,” Opt. Mater. 29(11), 1523–1542 (2007).
[CrossRef]

D. Vivien, F. Mougel, F. Augé, G. Aka, A. Kahn-Harari, F. Balembois, G. Lucas-Leclin, P. Georges, A. Brun, and P. Aschehoug, “Nd:GdCOB: overview of its infrared, green and blue laser performances,” Opt. Mater. 16(1-2), 213–220 (2001).
[CrossRef]

F. Mougel, G. Aka, A. Kahn-Harari, H. Hubert, J. M. Benitez, and D. Vivien, “Infrared laser performance and self-frequency doubling of Nd3+:Ca4GdO(BO3)3 (Nd:GdCOB),” Opt. Mater. 8(3), 161–173 (1997).
[CrossRef]

F. Qiu and T. Narusawa, “Application of swift and heavy ion implantation to the formation of chalcogenide glass optical waveguides,” Opt. Mater. 33(3), 527–530 (2011).
[CrossRef]

Rev. Sci. Instrum.

R. Ramponi, R. Osellame, and M. Marangoni, “Two Straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum. 73(3), 1117–1120 (2002).
[CrossRef]

Other

D. N. Nikogosyan, Nonlinear optical crystals: a complete survey (Springer, New York, 2005).

J. F. Ziegler, computer code, SRIM http://www.srim.org .

F. Augé, F. Mougel, G. Aka, A. Kahn-Harari, D. Vivien, F. Balembois, P. Georges, and A. Brun, in Advanced Solid State Lasers, Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), p. 210.

E. J. Murphy, Integrated optical circuits and components: Design and applications (Marcel Dekker, New York, 1999).

P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge Univ. Press, Cambridge, UK 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental set-up for SHG experiments: P, polarizer; L1 and L2, convex lens; Obj, microscope objective lens; M, mirror (HR at 1064 nm, HT at 532 nm).

Fig. 2
Fig. 2

(a) The microscope photograph of the 17 MeV C5+ ion irradiated Nd:GdCOB waveguide. (b) The refractive index profile of the waveguide reconstructed according to the m-line spectrum. The experimental (c) and simulated (d) near-field modal profiles (TM0) of the waveguide. The electronic stopping power (red line), nuclear stopping power (blue line) curves as a function of the depth from the sample surface.

Fig. 3
Fig. 3

The spectra of the fundamental laser beam at ~1064 nm and the second harmonic generation at ~532 nm in the waveguide for the cw (a) and pulsed (b) configuration, respectively. The insets are the photograph of the generated green light in the Nd:GdCOB waveguide .

Fig. 4
Fig. 4

Second-harmonic power (P ) at ~532 nm as a function of the fundamental pump power (Pω ) for 17 MeV C ion irradiated Nd:GdCOB waveguide (as-irradiated, with propagation loss of 8dB/cm) under the cw (a) and pulsed (b) model. The dashed lines show the possible P vs. Pω curves when the propagation loss reduces to 1dB/cm.

Metrics