Abstract

We examine the cavity resonance tuning of high-Q silicon photonic crystal heterostructures by localized laser-assisted thermal oxidation using a 532 nm continuous wave laser focused to a 2.5 μm radius spot-size. The total shift is consistent with the parabolic rate law. A tuning range of up to 8.7 nm is achieved with ∼ 30 mW laser powers. Over this tuning range, the cavity Qs decreases from 3.2×105 to 1.2×105. Numerical simulations model the temperature distributions in the silicon photonic crystal membrane and the cavity resonance shift from oxidation.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
    [CrossRef]
  2. X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
    [CrossRef] [PubMed]
  3. J. Gao, J. F. McMillan, M.-C. Wu, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96, 051123 (2010).
    [CrossRef]
  4. X. Yang, C. J. Chen, C. A. Husko, and C. W. Wong, “Digital resonance tuning of high-Q/Vm silicon photonic crystal nanocavities by atomic layer deposition,” Appl. Phys. Lett. 91(16), 161114 (2007).
    [CrossRef]
  5. B.-S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength tuning of a nanocavity by subnanometer control of a two-dimensional silicon-based photonic crystal slab structure,” Appl. Opt. 48(26), 4899–4903 (2009).
    [CrossRef] [PubMed]
  6. K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atat‘̀ure, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
    [CrossRef]
  7. H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95(19), 191109 (2009).
    [CrossRef]
  8. M.-K. Seo, H.-G. Park, J.-K. Yang, J.-Y. Kim, S.-H. Kim, and Y.-H. Lee, “Controlled sub-nanometer tuning of photonic crystal resonator by carbonaceous nano-dots,” Opt. Express 16(13), 9829–9837 (2008).
    [CrossRef] [PubMed]
  9. A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vuckovic, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
    [CrossRef]
  10. M. W. Lee, C. Grillet, S. Tomljenovic-Hanic, E. C. Magi, D. J. Moss, B. J. Eggleton, X. Gai, S. Madden, D.-Y. Choi, D. A. P. Bulla, and B. Luther-Davies, “Photowritten high-Q cavities in two-dimensional chalcogenide glass photonic crystals,” Opt. Lett. 34, 3671–3673 (2009).
    [CrossRef] [PubMed]
  11. K. Hennessy, C. H‘̀ogerle, E. Hu, A. Badolato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89(4), 041118 (2006).
    [CrossRef]
  12. C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
    [CrossRef]
  13. J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic-crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92(10), 103114 (2008).
    [CrossRef]
  14. F. Micheli and I. W. Boyd, “Photon-controlled oxidation of silicon,” Appl. Phys. Lett. 51(15), 1149–1151 (1987).
    [CrossRef]
  15. M. Huber, R. A. Deutschmann, R. Neumann, K. Brunner, and G. Abstreiter, “Local laser induced rapid thermal oxidation of SOI substrates,” Appl. Surface Sci. , 168(1–4), 204–207 (2000).
    [CrossRef]
  16. R. A. Deutschmann, M. Huber, R. Neumann, K. Brunner, and G. Abstreiter, “Direct sub-μm lateral patterning of SOI by focused laser beam induced oxidation,” Microelectronic Eng. , 48(1–4), 367–370 (1999).
    [CrossRef]
  17. Y. S. Ju and K. E. Goodson, “Phonon scattering in silicon films with thickness of order 100 nm,” Appl. Phys. Lett. 74(20), 3005–3007 (1999).
    [CrossRef]
  18. C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett. 96(8), 081107 (2010).
    [CrossRef]
  19. M. W. Lee, C. Grillet, C. L. C. Smith, D. J. Moss, B. J. Eggleton, D. Freeman, B. Luther-Davies, S. Madden, A. Rode, Y. Ruan, and Y.-H. Lee, “Photosensitive post tuning of chalcogenide photonic crystal waveguides,” Opt. Express 15(3), 1277–1285 (2007).
    [CrossRef] [PubMed]
  20. Y. A. Vlasov and S. J. McNab, “Coupling into the slow light mode in slab-type photonic crystal waveguides,” Opt. Lett. 31(1), 50–52 (2006).
    [CrossRef] [PubMed]
  21. R. Chatterjee, N. C. Panoiu, K. Liu, Z. Dios, M. B. Yu, M. T. Doan, L. J. Kaufman, R. M. Osgood, and C. W. Wong, “Achieving subdiffraction imaging through bound surface states in negative refraction photonic crystals in the near-infrared range,” Phys. Rev. Lett. 100, 187401 (2008).
    [CrossRef] [PubMed]
  22. B. E. Deal and A. S. Grove, “General relationship for the thermal oxidation of silicon,” J. Appl. Phys. 36(12), 3770–3778 (1965).
    [CrossRef]
  23. H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, “Thermal conductivity of silicon from 300 to 1400 K,” Phys. Rev. 130, 1743–1748 (1963).
    [CrossRef]
  24. M. Asheghi, M. N. Touzelbaev, K. E. Goodson, Y. K. Leung, and S. S. Wong, “Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates,” J. Heat Transfer 120(1), 30–36 (1998).
    [CrossRef]
  25. R. K. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry (Wiley, 1979).
  26. J. D. Le Grange, J. L . Markham, and C. R. Kurkjian, “Effects of surface hydration on the deposition of silane monolayers on silica,” Langmuir 9, 1749–1753 (1993).
    [CrossRef]
  27. N. D. Rooij, R. Sieverdink, and R. Tromp, “An investigation of the hydration properties of chemically vapour deposited silicon dioxide films by means of ellipsometry,” Thin Solid Films 47(3), 211–218 (1977).
    [CrossRef]
  28. G. Aygun, E. Atanassova, R. Turan, and T. Babeva, “Reflectance spectra and refractive index of a Nd:YAG laser-oxidized Si surface,” Mater. Chem. Phys. 89(2–3), 316–320 (2005).
    [CrossRef]
  29. H. Z. Massoud, J. D. Plummer, and E. A. Irene, “Thermal oxidation of silicon in dry oxygen: growth-rate enhancement in the thin regime,” J. Electrochem. Soc. 132(11), 2693–2700 (1985).
    [CrossRef]
  30. Y. Enta, B. S. Mun, M. Rossi, J. Philip, N. Ross, Z. Hussain, C. S. Fadley, K.-S. Lee, and S.-K. Kim, “Real-time observation of the dry oxidation of the Si(100) surface with ambient pressure x-ray photoelectron spectroscopy,” Appl. Phys. Lett. 92(1), 012110 (2008).
    [CrossRef]
  31. E. Liarokapis and Y. S. Raptis, “Temperature rise induced by a cw laser beam revisited,” J. Appl. Phys. 57, 5123 (1985).
    [CrossRef]
  32. G. E. Jellison and F. A. Modine, “Optical absorption of silicon between 1.6 and 4.7 eV at elevated temperatures,” Appl. Phys. Lett. 41, 180 (1982).
    [CrossRef]
  33. M. S. Aubain and P. R. Bandaru, “In-plane thermal conductivity determination in silicon on insulator (SOI) structures through thermoreflectance measurements,” in Materials Research Society Symposium Proceedings, (MRS Spring Meeting, San Francisco, CA2010), p. 1267-DD12-01.
    [CrossRef]
  34. D. Song and G. Chen, “Thermal conductivity of periodic microporous silicon films,” Appl. Phys. Lett. 84, 687 (2004).
    [CrossRef]
  35. P. E. Hopkins, P. T. Rakich, R. H. Olsson, I. F. El-Kady, and L. M. Phinney, “Origin of reduction in phonon thermal conductivity of microporous solids,” Appl. Phys. Lett. 95, 161902 (2009).
    [CrossRef]
  36. P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. Olsson, E. A. Shaner, Z. C. Leseman, J. R. Serrano, L. M. Phiney, and I. El-Kady, “Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning,” Nano Lett. 11, 107 (2011).
    [CrossRef]
  37. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687 (2010).
    [CrossRef]
  38. H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuations in air hole radii and positions on optical characteristics in photonic heterostructure nanocavities,” Phys. Rev. B 79, 085112 (2009).
    [CrossRef]

2011 (1)

P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. Olsson, E. A. Shaner, Z. C. Leseman, J. R. Serrano, L. M. Phiney, and I. El-Kady, “Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning,” Nano Lett. 11, 107 (2011).
[CrossRef]

2010 (3)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687 (2010).
[CrossRef]

J. Gao, J. F. McMillan, M.-C. Wu, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96, 051123 (2010).
[CrossRef]

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett. 96(8), 081107 (2010).
[CrossRef]

2009 (6)

M. W. Lee, C. Grillet, S. Tomljenovic-Hanic, E. C. Magi, D. J. Moss, B. J. Eggleton, X. Gai, S. Madden, D.-Y. Choi, D. A. P. Bulla, and B. Luther-Davies, “Photowritten high-Q cavities in two-dimensional chalcogenide glass photonic crystals,” Opt. Lett. 34, 3671–3673 (2009).
[CrossRef] [PubMed]

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[CrossRef] [PubMed]

B.-S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength tuning of a nanocavity by subnanometer control of a two-dimensional silicon-based photonic crystal slab structure,” Appl. Opt. 48(26), 4899–4903 (2009).
[CrossRef] [PubMed]

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95(19), 191109 (2009).
[CrossRef]

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuations in air hole radii and positions on optical characteristics in photonic heterostructure nanocavities,” Phys. Rev. B 79, 085112 (2009).
[CrossRef]

P. E. Hopkins, P. T. Rakich, R. H. Olsson, I. F. El-Kady, and L. M. Phinney, “Origin of reduction in phonon thermal conductivity of microporous solids,” Appl. Phys. Lett. 95, 161902 (2009).
[CrossRef]

2008 (5)

R. Chatterjee, N. C. Panoiu, K. Liu, Z. Dios, M. B. Yu, M. T. Doan, L. J. Kaufman, R. M. Osgood, and C. W. Wong, “Achieving subdiffraction imaging through bound surface states in negative refraction photonic crystals in the near-infrared range,” Phys. Rev. Lett. 100, 187401 (2008).
[CrossRef] [PubMed]

Y. Enta, B. S. Mun, M. Rossi, J. Philip, N. Ross, Z. Hussain, C. S. Fadley, K.-S. Lee, and S.-K. Kim, “Real-time observation of the dry oxidation of the Si(100) surface with ambient pressure x-ray photoelectron spectroscopy,” Appl. Phys. Lett. 92(1), 012110 (2008).
[CrossRef]

M.-K. Seo, H.-G. Park, J.-K. Yang, J.-Y. Kim, S.-H. Kim, and Y.-H. Lee, “Controlled sub-nanometer tuning of photonic crystal resonator by carbonaceous nano-dots,” Opt. Express 16(13), 9829–9837 (2008).
[CrossRef] [PubMed]

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vuckovic, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
[CrossRef]

J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic-crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92(10), 103114 (2008).
[CrossRef]

2007 (2)

M. W. Lee, C. Grillet, C. L. C. Smith, D. J. Moss, B. J. Eggleton, D. Freeman, B. Luther-Davies, S. Madden, A. Rode, Y. Ruan, and Y.-H. Lee, “Photosensitive post tuning of chalcogenide photonic crystal waveguides,” Opt. Express 15(3), 1277–1285 (2007).
[CrossRef] [PubMed]

X. Yang, C. J. Chen, C. A. Husko, and C. W. Wong, “Digital resonance tuning of high-Q/Vm silicon photonic crystal nanocavities by atomic layer deposition,” Appl. Phys. Lett. 91(16), 161114 (2007).
[CrossRef]

2006 (2)

Y. A. Vlasov and S. J. McNab, “Coupling into the slow light mode in slab-type photonic crystal waveguides,” Opt. Lett. 31(1), 50–52 (2006).
[CrossRef] [PubMed]

K. Hennessy, C. H‘̀ogerle, E. Hu, A. Badolato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89(4), 041118 (2006).
[CrossRef]

2005 (3)

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atat‘̀ure, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[CrossRef]

G. Aygun, E. Atanassova, R. Turan, and T. Babeva, “Reflectance spectra and refractive index of a Nd:YAG laser-oxidized Si surface,” Mater. Chem. Phys. 89(2–3), 316–320 (2005).
[CrossRef]

2004 (2)

D. Song and G. Chen, “Thermal conductivity of periodic microporous silicon films,” Appl. Phys. Lett. 84, 687 (2004).
[CrossRef]

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
[CrossRef]

2000 (1)

M. Huber, R. A. Deutschmann, R. Neumann, K. Brunner, and G. Abstreiter, “Local laser induced rapid thermal oxidation of SOI substrates,” Appl. Surface Sci. , 168(1–4), 204–207 (2000).
[CrossRef]

1999 (2)

R. A. Deutschmann, M. Huber, R. Neumann, K. Brunner, and G. Abstreiter, “Direct sub-μm lateral patterning of SOI by focused laser beam induced oxidation,” Microelectronic Eng. , 48(1–4), 367–370 (1999).
[CrossRef]

Y. S. Ju and K. E. Goodson, “Phonon scattering in silicon films with thickness of order 100 nm,” Appl. Phys. Lett. 74(20), 3005–3007 (1999).
[CrossRef]

1998 (1)

M. Asheghi, M. N. Touzelbaev, K. E. Goodson, Y. K. Leung, and S. S. Wong, “Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates,” J. Heat Transfer 120(1), 30–36 (1998).
[CrossRef]

1993 (1)

J. D. Le Grange, J. L . Markham, and C. R. Kurkjian, “Effects of surface hydration on the deposition of silane monolayers on silica,” Langmuir 9, 1749–1753 (1993).
[CrossRef]

1987 (1)

F. Micheli and I. W. Boyd, “Photon-controlled oxidation of silicon,” Appl. Phys. Lett. 51(15), 1149–1151 (1987).
[CrossRef]

1985 (2)

H. Z. Massoud, J. D. Plummer, and E. A. Irene, “Thermal oxidation of silicon in dry oxygen: growth-rate enhancement in the thin regime,” J. Electrochem. Soc. 132(11), 2693–2700 (1985).
[CrossRef]

E. Liarokapis and Y. S. Raptis, “Temperature rise induced by a cw laser beam revisited,” J. Appl. Phys. 57, 5123 (1985).
[CrossRef]

1982 (1)

G. E. Jellison and F. A. Modine, “Optical absorption of silicon between 1.6 and 4.7 eV at elevated temperatures,” Appl. Phys. Lett. 41, 180 (1982).
[CrossRef]

1977 (1)

N. D. Rooij, R. Sieverdink, and R. Tromp, “An investigation of the hydration properties of chemically vapour deposited silicon dioxide films by means of ellipsometry,” Thin Solid Films 47(3), 211–218 (1977).
[CrossRef]

1965 (1)

B. E. Deal and A. S. Grove, “General relationship for the thermal oxidation of silicon,” J. Appl. Phys. 36(12), 3770–3778 (1965).
[CrossRef]

1963 (1)

H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, “Thermal conductivity of silicon from 300 to 1400 K,” Phys. Rev. 130, 1743–1748 (1963).
[CrossRef]

Abstreiter, G.

M. Huber, R. A. Deutschmann, R. Neumann, K. Brunner, and G. Abstreiter, “Local laser induced rapid thermal oxidation of SOI substrates,” Appl. Surface Sci. , 168(1–4), 204–207 (2000).
[CrossRef]

R. A. Deutschmann, M. Huber, R. Neumann, K. Brunner, and G. Abstreiter, “Direct sub-μm lateral patterning of SOI by focused laser beam induced oxidation,” Microelectronic Eng. , 48(1–4), 367–370 (1999).
[CrossRef]

Akahane, Y.

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Asano, T.

B.-S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength tuning of a nanocavity by subnanometer control of a two-dimensional silicon-based photonic crystal slab structure,” Appl. Opt. 48(26), 4899–4903 (2009).
[CrossRef] [PubMed]

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuations in air hole radii and positions on optical characteristics in photonic heterostructure nanocavities,” Phys. Rev. B 79, 085112 (2009).
[CrossRef]

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Asheghi, M.

M. Asheghi, M. N. Touzelbaev, K. E. Goodson, Y. K. Leung, and S. S. Wong, “Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates,” J. Heat Transfer 120(1), 30–36 (1998).
[CrossRef]

Assefa, S.

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett. 96(8), 081107 (2010).
[CrossRef]

J. Gao, J. F. McMillan, M.-C. Wu, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96, 051123 (2010).
[CrossRef]

Atanassova, E.

G. Aygun, E. Atanassova, R. Turan, and T. Babeva, “Reflectance spectra and refractive index of a Nd:YAG laser-oxidized Si surface,” Mater. Chem. Phys. 89(2–3), 316–320 (2005).
[CrossRef]

Atat‘`ure, M.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atat‘̀ure, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[CrossRef]

Aubain, M. S.

M. S. Aubain and P. R. Bandaru, “In-plane thermal conductivity determination in silicon on insulator (SOI) structures through thermoreflectance measurements,” in Materials Research Society Symposium Proceedings, (MRS Spring Meeting, San Francisco, CA2010), p. 1267-DD12-01.
[CrossRef]

Aygun, G.

G. Aygun, E. Atanassova, R. Turan, and T. Babeva, “Reflectance spectra and refractive index of a Nd:YAG laser-oxidized Si surface,” Mater. Chem. Phys. 89(2–3), 316–320 (2005).
[CrossRef]

Babeva, T.

G. Aygun, E. Atanassova, R. Turan, and T. Babeva, “Reflectance spectra and refractive index of a Nd:YAG laser-oxidized Si surface,” Mater. Chem. Phys. 89(2–3), 316–320 (2005).
[CrossRef]

Badolato, A.

K. Hennessy, C. H‘̀ogerle, E. Hu, A. Badolato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89(4), 041118 (2006).
[CrossRef]

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atat‘̀ure, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[CrossRef]

Balet, L.

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95(19), 191109 (2009).
[CrossRef]

Bandaru, P. R.

M. S. Aubain and P. R. Bandaru, “In-plane thermal conductivity determination in silicon on insulator (SOI) structures through thermoreflectance measurements,” in Materials Research Society Symposium Proceedings, (MRS Spring Meeting, San Francisco, CA2010), p. 1267-DD12-01.
[CrossRef]

Barbastathis, G.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
[CrossRef]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687 (2010).
[CrossRef]

Boyd, I. W.

F. Micheli and I. W. Boyd, “Photon-controlled oxidation of silicon,” Appl. Phys. Lett. 51(15), 1149–1151 (1987).
[CrossRef]

Brunner, K.

M. Huber, R. A. Deutschmann, R. Neumann, K. Brunner, and G. Abstreiter, “Local laser induced rapid thermal oxidation of SOI substrates,” Appl. Surface Sci. , 168(1–4), 204–207 (2000).
[CrossRef]

R. A. Deutschmann, M. Huber, R. Neumann, K. Brunner, and G. Abstreiter, “Direct sub-μm lateral patterning of SOI by focused laser beam induced oxidation,” Microelectronic Eng. , 48(1–4), 367–370 (1999).
[CrossRef]

Bulla, D.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vuckovic, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
[CrossRef]

Bulla, D. A. P.

Chatterjee, R.

R. Chatterjee, N. C. Panoiu, K. Liu, Z. Dios, M. B. Yu, M. T. Doan, L. J. Kaufman, R. M. Osgood, and C. W. Wong, “Achieving subdiffraction imaging through bound surface states in negative refraction photonic crystals in the near-infrared range,” Phys. Rev. Lett. 100, 187401 (2008).
[CrossRef] [PubMed]

Chen, C. J.

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett. 96(8), 081107 (2010).
[CrossRef]

X. Yang, C. J. Chen, C. A. Husko, and C. W. Wong, “Digital resonance tuning of high-Q/Vm silicon photonic crystal nanocavities by atomic layer deposition,” Appl. Phys. Lett. 91(16), 161114 (2007).
[CrossRef]

Chen, G.

D. Song and G. Chen, “Thermal conductivity of periodic microporous silicon films,” Appl. Phys. Lett. 84, 687 (2004).
[CrossRef]

Choi, D.-Y.

Danielson, G. C.

H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, “Thermal conductivity of silicon from 300 to 1400 K,” Phys. Rev. 130, 1743–1748 (1963).
[CrossRef]

Deal, B. E.

B. E. Deal and A. S. Grove, “General relationship for the thermal oxidation of silicon,” J. Appl. Phys. 36(12), 3770–3778 (1965).
[CrossRef]

Deutschmann, R. A.

M. Huber, R. A. Deutschmann, R. Neumann, K. Brunner, and G. Abstreiter, “Local laser induced rapid thermal oxidation of SOI substrates,” Appl. Surface Sci. , 168(1–4), 204–207 (2000).
[CrossRef]

R. A. Deutschmann, M. Huber, R. Neumann, K. Brunner, and G. Abstreiter, “Direct sub-μm lateral patterning of SOI by focused laser beam induced oxidation,” Microelectronic Eng. , 48(1–4), 367–370 (1999).
[CrossRef]

Dios, Z.

R. Chatterjee, N. C. Panoiu, K. Liu, Z. Dios, M. B. Yu, M. T. Doan, L. J. Kaufman, R. M. Osgood, and C. W. Wong, “Achieving subdiffraction imaging through bound surface states in negative refraction photonic crystals in the near-infrared range,” Phys. Rev. Lett. 100, 187401 (2008).
[CrossRef] [PubMed]

Doan, M. T.

R. Chatterjee, N. C. Panoiu, K. Liu, Z. Dios, M. B. Yu, M. T. Doan, L. J. Kaufman, R. M. Osgood, and C. W. Wong, “Achieving subdiffraction imaging through bound surface states in negative refraction photonic crystals in the near-infrared range,” Phys. Rev. Lett. 100, 187401 (2008).
[CrossRef] [PubMed]

Dreiser, J.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atat‘̀ure, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[CrossRef]

Eggleton, B. J.

El-Kady, I.

P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. Olsson, E. A. Shaner, Z. C. Leseman, J. R. Serrano, L. M. Phiney, and I. El-Kady, “Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning,” Nano Lett. 11, 107 (2011).
[CrossRef]

El-Kady, I. F.

P. E. Hopkins, P. T. Rakich, R. H. Olsson, I. F. El-Kady, and L. M. Phinney, “Origin of reduction in phonon thermal conductivity of microporous solids,” Appl. Phys. Lett. 95, 161902 (2009).
[CrossRef]

Englund, D.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vuckovic, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
[CrossRef]

Enta, Y.

Y. Enta, B. S. Mun, M. Rossi, J. Philip, N. Ross, Z. Hussain, C. S. Fadley, K.-S. Lee, and S.-K. Kim, “Real-time observation of the dry oxidation of the Si(100) surface with ambient pressure x-ray photoelectron spectroscopy,” Appl. Phys. Lett. 92(1), 012110 (2008).
[CrossRef]

Fadley, C. S.

Y. Enta, B. S. Mun, M. Rossi, J. Philip, N. Ross, Z. Hussain, C. S. Fadley, K.-S. Lee, and S.-K. Kim, “Real-time observation of the dry oxidation of the Si(100) surface with ambient pressure x-ray photoelectron spectroscopy,” Appl. Phys. Lett. 92(1), 012110 (2008).
[CrossRef]

Fan, S.

J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic-crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92(10), 103114 (2008).
[CrossRef]

Faraon, A.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vuckovic, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
[CrossRef]

Fejer, M. M.

J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic-crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92(10), 103114 (2008).
[CrossRef]

Fiore, A.

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95(19), 191109 (2009).
[CrossRef]

Francardi, M.

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95(19), 191109 (2009).
[CrossRef]

Freeman, D.

Gai, X.

Gao, J.

J. Gao, J. F. McMillan, M.-C. Wu, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96, 051123 (2010).
[CrossRef]

Gerardino, A.

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95(19), 191109 (2009).
[CrossRef]

Goodson, K. E.

Y. S. Ju and K. E. Goodson, “Phonon scattering in silicon films with thickness of order 100 nm,” Appl. Phys. Lett. 74(20), 3005–3007 (1999).
[CrossRef]

M. Asheghi, M. N. Touzelbaev, K. E. Goodson, Y. K. Leung, and S. S. Wong, “Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates,” J. Heat Transfer 120(1), 30–36 (1998).
[CrossRef]

Green, W. M. J.

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett. 96(8), 081107 (2010).
[CrossRef]

Grillet, C.

Grove, A. S.

B. E. Deal and A. S. Grove, “General relationship for the thermal oxidation of silicon,” J. Appl. Phys. 36(12), 3770–3778 (1965).
[CrossRef]

H‘`ogerle, C.

K. Hennessy, C. H‘̀ogerle, E. Hu, A. Badolato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89(4), 041118 (2006).
[CrossRef]

Hagino, H.

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuations in air hole radii and positions on optical characteristics in photonic heterostructure nanocavities,” Phys. Rev. B 79, 085112 (2009).
[CrossRef]

Harris, J. S.

J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic-crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92(10), 103114 (2008).
[CrossRef]

Hennessy, K.

K. Hennessy, C. H‘̀ogerle, E. Hu, A. Badolato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89(4), 041118 (2006).
[CrossRef]

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atat‘̀ure, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[CrossRef]

Hopkins, P. E.

P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. Olsson, E. A. Shaner, Z. C. Leseman, J. R. Serrano, L. M. Phiney, and I. El-Kady, “Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning,” Nano Lett. 11, 107 (2011).
[CrossRef]

P. E. Hopkins, P. T. Rakich, R. H. Olsson, I. F. El-Kady, and L. M. Phinney, “Origin of reduction in phonon thermal conductivity of microporous solids,” Appl. Phys. Lett. 95, 161902 (2009).
[CrossRef]

Hu, E.

K. Hennessy, C. H‘̀ogerle, E. Hu, A. Badolato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89(4), 041118 (2006).
[CrossRef]

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atat‘̀ure, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[CrossRef]

Huber, M.

M. Huber, R. A. Deutschmann, R. Neumann, K. Brunner, and G. Abstreiter, “Local laser induced rapid thermal oxidation of SOI substrates,” Appl. Surface Sci. , 168(1–4), 204–207 (2000).
[CrossRef]

R. A. Deutschmann, M. Huber, R. Neumann, K. Brunner, and G. Abstreiter, “Direct sub-μm lateral patterning of SOI by focused laser beam induced oxidation,” Microelectronic Eng. , 48(1–4), 367–370 (1999).
[CrossRef]

Huo, Y.

J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic-crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92(10), 103114 (2008).
[CrossRef]

Husko, C. A.

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett. 96(8), 081107 (2010).
[CrossRef]

X. Yang, C. J. Chen, C. A. Husko, and C. W. Wong, “Digital resonance tuning of high-Q/Vm silicon photonic crystal nanocavities by atomic layer deposition,” Appl. Phys. Lett. 91(16), 161114 (2007).
[CrossRef]

Hussain, Z.

Y. Enta, B. S. Mun, M. Rossi, J. Philip, N. Ross, Z. Hussain, C. S. Fadley, K.-S. Lee, and S.-K. Kim, “Real-time observation of the dry oxidation of the Si(100) surface with ambient pressure x-ray photoelectron spectroscopy,” Appl. Phys. Lett. 92(1), 012110 (2008).
[CrossRef]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687 (2010).
[CrossRef]

Iler, R. K.

R. K. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry (Wiley, 1979).

Imamoglu, A.

K. Hennessy, C. H‘̀ogerle, E. Hu, A. Badolato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89(4), 041118 (2006).
[CrossRef]

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atat‘̀ure, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[CrossRef]

Ippen, E. P.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
[CrossRef]

Irene, E. A.

H. Z. Massoud, J. D. Plummer, and E. A. Irene, “Thermal oxidation of silicon in dry oxygen: growth-rate enhancement in the thin regime,” J. Electrochem. Soc. 132(11), 2693–2700 (1985).
[CrossRef]

Jellison, G. E.

G. E. Jellison and F. A. Modine, “Optical absorption of silicon between 1.6 and 4.7 eV at elevated temperatures,” Appl. Phys. Lett. 41, 180 (1982).
[CrossRef]

Jeon, Y.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
[CrossRef]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687 (2010).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687 (2010).
[CrossRef]

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
[CrossRef]

Ju, Y. S.

Y. S. Ju and K. E. Goodson, “Phonon scattering in silicon films with thickness of order 100 nm,” Appl. Phys. Lett. 74(20), 3005–3007 (1999).
[CrossRef]

Kaufman, L. J.

R. Chatterjee, N. C. Panoiu, K. Liu, Z. Dios, M. B. Yu, M. T. Doan, L. J. Kaufman, R. M. Osgood, and C. W. Wong, “Achieving subdiffraction imaging through bound surface states in negative refraction photonic crystals in the near-infrared range,” Phys. Rev. Lett. 100, 187401 (2008).
[CrossRef] [PubMed]

Kim, J.-Y.

Kim, S.-G.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
[CrossRef]

Kim, S.-H.

Kim, S.-K.

Y. Enta, B. S. Mun, M. Rossi, J. Philip, N. Ross, Z. Hussain, C. S. Fadley, K.-S. Lee, and S.-K. Kim, “Real-time observation of the dry oxidation of the Si(100) surface with ambient pressure x-ray photoelectron spectroscopy,” Appl. Phys. Lett. 92(1), 012110 (2008).
[CrossRef]

Kimerling, L. C.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
[CrossRef]

Kiravittaya, S.

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95(19), 191109 (2009).
[CrossRef]

Kumar, S.

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95(19), 191109 (2009).
[CrossRef]

Kurkjian, C. R.

J. D. Le Grange, J. L . Markham, and C. R. Kurkjian, “Effects of surface hydration on the deposition of silane monolayers on silica,” Langmuir 9, 1749–1753 (1993).
[CrossRef]

Kwong, D.-L.

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[CrossRef] [PubMed]

Le Grange, J. D.

J. D. Le Grange, J. L . Markham, and C. R. Kurkjian, “Effects of surface hydration on the deposition of silane monolayers on silica,” Langmuir 9, 1749–1753 (1993).
[CrossRef]

Lee, H. S.

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95(19), 191109 (2009).
[CrossRef]

Lee, K.-S.

Y. Enta, B. S. Mun, M. Rossi, J. Philip, N. Ross, Z. Hussain, C. S. Fadley, K.-S. Lee, and S.-K. Kim, “Real-time observation of the dry oxidation of the Si(100) surface with ambient pressure x-ray photoelectron spectroscopy,” Appl. Phys. Lett. 92(1), 012110 (2008).
[CrossRef]

Lee, M. W.

Lee, Y.-H.

Leseman, Z. C.

P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. Olsson, E. A. Shaner, Z. C. Leseman, J. R. Serrano, L. M. Phiney, and I. El-Kady, “Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning,” Nano Lett. 11, 107 (2011).
[CrossRef]

Leung, Y. K.

M. Asheghi, M. N. Touzelbaev, K. E. Goodson, Y. K. Leung, and S. S. Wong, “Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates,” J. Heat Transfer 120(1), 30–36 (1998).
[CrossRef]

Li, L. H.

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95(19), 191109 (2009).
[CrossRef]

Liarokapis, E.

E. Liarokapis and Y. S. Raptis, “Temperature rise induced by a cw laser beam revisited,” J. Appl. Phys. 57, 5123 (1985).
[CrossRef]

Liu, K.

R. Chatterjee, N. C. Panoiu, K. Liu, Z. Dios, M. B. Yu, M. T. Doan, L. J. Kaufman, R. M. Osgood, and C. W. Wong, “Achieving subdiffraction imaging through bound surface states in negative refraction photonic crystals in the near-infrared range,” Phys. Rev. Lett. 100, 187401 (2008).
[CrossRef] [PubMed]

Luther-Davies, B.

Madden, S.

Magi, E. C.

Markham, J. L .

J. D. Le Grange, J. L . Markham, and C. R. Kurkjian, “Effects of surface hydration on the deposition of silane monolayers on silica,” Langmuir 9, 1749–1753 (1993).
[CrossRef]

Massoud, H. Z.

H. Z. Massoud, J. D. Plummer, and E. A. Irene, “Thermal oxidation of silicon in dry oxygen: growth-rate enhancement in the thin regime,” J. Electrochem. Soc. 132(11), 2693–2700 (1985).
[CrossRef]

Maycock, P. D.

H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, “Thermal conductivity of silicon from 300 to 1400 K,” Phys. Rev. 130, 1743–1748 (1963).
[CrossRef]

McMillan, J. F.

J. Gao, J. F. McMillan, M.-C. Wu, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96, 051123 (2010).
[CrossRef]

McNab, S. J.

Meric, I.

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett. 96(8), 081107 (2010).
[CrossRef]

Micheli, F.

F. Micheli and I. W. Boyd, “Photon-controlled oxidation of silicon,” Appl. Phys. Lett. 51(15), 1149–1151 (1987).
[CrossRef]

Modine, F. A.

G. E. Jellison and F. A. Modine, “Optical absorption of silicon between 1.6 and 4.7 eV at elevated temperatures,” Appl. Phys. Lett. 41, 180 (1982).
[CrossRef]

Moss, D. J.

Mun, B. S.

Y. Enta, B. S. Mun, M. Rossi, J. Philip, N. Ross, Z. Hussain, C. S. Fadley, K.-S. Lee, and S.-K. Kim, “Real-time observation of the dry oxidation of the Si(100) surface with ambient pressure x-ray photoelectron spectroscopy,” Appl. Phys. Lett. 92(1), 012110 (2008).
[CrossRef]

Nagashima, T.

Neumann, R.

M. Huber, R. A. Deutschmann, R. Neumann, K. Brunner, and G. Abstreiter, “Local laser induced rapid thermal oxidation of SOI substrates,” Appl. Surface Sci. , 168(1–4), 204–207 (2000).
[CrossRef]

R. A. Deutschmann, M. Huber, R. Neumann, K. Brunner, and G. Abstreiter, “Direct sub-μm lateral patterning of SOI by focused laser beam induced oxidation,” Microelectronic Eng. , 48(1–4), 367–370 (1999).
[CrossRef]

Noda, S.

B.-S. Song, T. Nagashima, T. Asano, and S. Noda, “Resonant-wavelength tuning of a nanocavity by subnanometer control of a two-dimensional silicon-based photonic crystal slab structure,” Appl. Opt. 48(26), 4899–4903 (2009).
[CrossRef] [PubMed]

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuations in air hole radii and positions on optical characteristics in photonic heterostructure nanocavities,” Phys. Rev. B 79, 085112 (2009).
[CrossRef]

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Olsson, R. H.

P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. Olsson, E. A. Shaner, Z. C. Leseman, J. R. Serrano, L. M. Phiney, and I. El-Kady, “Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning,” Nano Lett. 11, 107 (2011).
[CrossRef]

P. E. Hopkins, P. T. Rakich, R. H. Olsson, I. F. El-Kady, and L. M. Phinney, “Origin of reduction in phonon thermal conductivity of microporous solids,” Appl. Phys. Lett. 95, 161902 (2009).
[CrossRef]

Osgood, R. M.

R. Chatterjee, N. C. Panoiu, K. Liu, Z. Dios, M. B. Yu, M. T. Doan, L. J. Kaufman, R. M. Osgood, and C. W. Wong, “Achieving subdiffraction imaging through bound surface states in negative refraction photonic crystals in the near-infrared range,” Phys. Rev. Lett. 100, 187401 (2008).
[CrossRef] [PubMed]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687 (2010).
[CrossRef]

Pan, J.

J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic-crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92(10), 103114 (2008).
[CrossRef]

Panoiu, N. C.

R. Chatterjee, N. C. Panoiu, K. Liu, Z. Dios, M. B. Yu, M. T. Doan, L. J. Kaufman, R. M. Osgood, and C. W. Wong, “Achieving subdiffraction imaging through bound surface states in negative refraction photonic crystals in the near-infrared range,” Phys. Rev. Lett. 100, 187401 (2008).
[CrossRef] [PubMed]

Park, H.-G.

Petroff, P.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vuckovic, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
[CrossRef]

Petroff, P. M.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atat‘̀ure, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[CrossRef]

Philip, J.

Y. Enta, B. S. Mun, M. Rossi, J. Philip, N. Ross, Z. Hussain, C. S. Fadley, K.-S. Lee, and S.-K. Kim, “Real-time observation of the dry oxidation of the Si(100) surface with ambient pressure x-ray photoelectron spectroscopy,” Appl. Phys. Lett. 92(1), 012110 (2008).
[CrossRef]

Phiney, L. M.

P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. Olsson, E. A. Shaner, Z. C. Leseman, J. R. Serrano, L. M. Phiney, and I. El-Kady, “Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning,” Nano Lett. 11, 107 (2011).
[CrossRef]

Phinney, L. M.

P. E. Hopkins, P. T. Rakich, R. H. Olsson, I. F. El-Kady, and L. M. Phinney, “Origin of reduction in phonon thermal conductivity of microporous solids,” Appl. Phys. Lett. 95, 161902 (2009).
[CrossRef]

Plumhof, J. D.

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95(19), 191109 (2009).
[CrossRef]

Plummer, J. D.

H. Z. Massoud, J. D. Plummer, and E. A. Irene, “Thermal oxidation of silicon in dry oxygen: growth-rate enhancement in the thin regime,” J. Electrochem. Soc. 132(11), 2693–2700 (1985).
[CrossRef]

Povinelli, M. L.

J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic-crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92(10), 103114 (2008).
[CrossRef]

Qi, M.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
[CrossRef]

Rakich, P. T.

P. E. Hopkins, P. T. Rakich, R. H. Olsson, I. F. El-Kady, and L. M. Phinney, “Origin of reduction in phonon thermal conductivity of microporous solids,” Appl. Phys. Lett. 95, 161902 (2009).
[CrossRef]

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
[CrossRef]

Raptis, Y. S.

E. Liarokapis and Y. S. Raptis, “Temperature rise induced by a cw laser beam revisited,” J. Appl. Phys. 57, 5123 (1985).
[CrossRef]

Rastelli, A.

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95(19), 191109 (2009).
[CrossRef]

Reinke, C. M.

P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. Olsson, E. A. Shaner, Z. C. Leseman, J. R. Serrano, L. M. Phiney, and I. El-Kady, “Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning,” Nano Lett. 11, 107 (2011).
[CrossRef]

Rode, A.

Rooij, N. D.

N. D. Rooij, R. Sieverdink, and R. Tromp, “An investigation of the hydration properties of chemically vapour deposited silicon dioxide films by means of ellipsometry,” Thin Solid Films 47(3), 211–218 (1977).
[CrossRef]

Ross, N.

Y. Enta, B. S. Mun, M. Rossi, J. Philip, N. Ross, Z. Hussain, C. S. Fadley, K.-S. Lee, and S.-K. Kim, “Real-time observation of the dry oxidation of the Si(100) surface with ambient pressure x-ray photoelectron spectroscopy,” Appl. Phys. Lett. 92(1), 012110 (2008).
[CrossRef]

Rossi, M.

Y. Enta, B. S. Mun, M. Rossi, J. Philip, N. Ross, Z. Hussain, C. S. Fadley, K.-S. Lee, and S.-K. Kim, “Real-time observation of the dry oxidation of the Si(100) surface with ambient pressure x-ray photoelectron spectroscopy,” Appl. Phys. Lett. 92(1), 012110 (2008).
[CrossRef]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687 (2010).
[CrossRef]

Ruan, Y.

Sandhu, S.

J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic-crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92(10), 103114 (2008).
[CrossRef]

Scaccabarozzi, L.

J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic-crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92(10), 103114 (2008).
[CrossRef]

Schmidt, O. G.

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95(19), 191109 (2009).
[CrossRef]

Seo, M.-K.

Serrano, J. R.

P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. Olsson, E. A. Shaner, Z. C. Leseman, J. R. Serrano, L. M. Phiney, and I. El-Kady, “Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning,” Nano Lett. 11, 107 (2011).
[CrossRef]

Shaner, E. A.

P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. Olsson, E. A. Shaner, Z. C. Leseman, J. R. Serrano, L. M. Phiney, and I. El-Kady, “Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning,” Nano Lett. 11, 107 (2011).
[CrossRef]

Shanks, H. R.

H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, “Thermal conductivity of silicon from 300 to 1400 K,” Phys. Rev. 130, 1743–1748 (1963).
[CrossRef]

Shepard, K. L.

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett. 96(8), 081107 (2010).
[CrossRef]

Sidles, P. H.

H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, “Thermal conductivity of silicon from 300 to 1400 K,” Phys. Rev. 130, 1743–1748 (1963).
[CrossRef]

Sieverdink, R.

N. D. Rooij, R. Sieverdink, and R. Tromp, “An investigation of the hydration properties of chemically vapour deposited silicon dioxide films by means of ellipsometry,” Thin Solid Films 47(3), 211–218 (1977).
[CrossRef]

Smith, C. L. C.

Smith, H. I.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
[CrossRef]

Song, B.

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Song, B.-S.

Song, D.

D. Song and G. Chen, “Thermal conductivity of periodic microporous silicon films,” Appl. Phys. Lett. 84, 687 (2004).
[CrossRef]

Stoltz, N.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vuckovic, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
[CrossRef]

Su, M. F.

P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. Olsson, E. A. Shaner, Z. C. Leseman, J. R. Serrano, L. M. Phiney, and I. El-Kady, “Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning,” Nano Lett. 11, 107 (2011).
[CrossRef]

Takahashi, Y.

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuations in air hole radii and positions on optical characteristics in photonic heterostructure nanocavities,” Phys. Rev. B 79, 085112 (2009).
[CrossRef]

Tamboli, A.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atat‘̀ure, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[CrossRef]

Tanaka, Y.

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuations in air hole radii and positions on optical characteristics in photonic heterostructure nanocavities,” Phys. Rev. B 79, 085112 (2009).
[CrossRef]

Timp, R.

J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic-crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92(10), 103114 (2008).
[CrossRef]

Tomljenovic-Hanic, S.

Touzelbaev, M. N.

M. Asheghi, M. N. Touzelbaev, K. E. Goodson, Y. K. Leung, and S. S. Wong, “Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates,” J. Heat Transfer 120(1), 30–36 (1998).
[CrossRef]

Tromp, R.

N. D. Rooij, R. Sieverdink, and R. Tromp, “An investigation of the hydration properties of chemically vapour deposited silicon dioxide films by means of ellipsometry,” Thin Solid Films 47(3), 211–218 (1977).
[CrossRef]

Turan, R.

G. Aygun, E. Atanassova, R. Turan, and T. Babeva, “Reflectance spectra and refractive index of a Nd:YAG laser-oxidized Si surface,” Mater. Chem. Phys. 89(2–3), 316–320 (2005).
[CrossRef]

Vlasov, Y. A.

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett. 96(8), 081107 (2010).
[CrossRef]

Y. A. Vlasov and S. J. McNab, “Coupling into the slow light mode in slab-type photonic crystal waveguides,” Opt. Lett. 31(1), 50–52 (2006).
[CrossRef] [PubMed]

Vuckovic, J.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vuckovic, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
[CrossRef]

Wong, C. W.

J. Gao, J. F. McMillan, M.-C. Wu, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96, 051123 (2010).
[CrossRef]

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett. 96(8), 081107 (2010).
[CrossRef]

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[CrossRef] [PubMed]

R. Chatterjee, N. C. Panoiu, K. Liu, Z. Dios, M. B. Yu, M. T. Doan, L. J. Kaufman, R. M. Osgood, and C. W. Wong, “Achieving subdiffraction imaging through bound surface states in negative refraction photonic crystals in the near-infrared range,” Phys. Rev. Lett. 100, 187401 (2008).
[CrossRef] [PubMed]

X. Yang, C. J. Chen, C. A. Husko, and C. W. Wong, “Digital resonance tuning of high-Q/Vm silicon photonic crystal nanocavities by atomic layer deposition,” Appl. Phys. Lett. 91(16), 161114 (2007).
[CrossRef]

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
[CrossRef]

Wong, S. S.

M. Asheghi, M. N. Touzelbaev, K. E. Goodson, Y. K. Leung, and S. S. Wong, “Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates,” J. Heat Transfer 120(1), 30–36 (1998).
[CrossRef]

Wu, M.-C.

J. Gao, J. F. McMillan, M.-C. Wu, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96, 051123 (2010).
[CrossRef]

Yamanaka, K.

J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic-crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92(10), 103114 (2008).
[CrossRef]

Yang, J.-K.

Yang, X.

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[CrossRef] [PubMed]

X. Yang, C. J. Chen, C. A. Husko, and C. W. Wong, “Digital resonance tuning of high-Q/Vm silicon photonic crystal nanocavities by atomic layer deposition,” Appl. Phys. Lett. 91(16), 161114 (2007).
[CrossRef]

Yu, M.

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[CrossRef] [PubMed]

Yu, M. B.

R. Chatterjee, N. C. Panoiu, K. Liu, Z. Dios, M. B. Yu, M. T. Doan, L. J. Kaufman, R. M. Osgood, and C. W. Wong, “Achieving subdiffraction imaging through bound surface states in negative refraction photonic crystals in the near-infrared range,” Phys. Rev. Lett. 100, 187401 (2008).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (15)

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atat‘̀ure, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[CrossRef]

H. S. Lee, S. Kiravittaya, S. Kumar, J. D. Plumhof, L. Balet, L. H. Li, M. Francardi, A. Gerardino, A. Fiore, A. Rastelli, and O. G. Schmidt, “Local tuning of photonic crystal nanocavity modes by laser-assisted oxidation,” Appl. Phys. Lett. 95(19), 191109 (2009).
[CrossRef]

J. Gao, J. F. McMillan, M.-C. Wu, S. Assefa, and C. W. Wong, “Demonstration of an air-slot mode-gap confined photonic crystal slab nanocavity with ultrasmall mode volumes,” Appl. Phys. Lett. 96, 051123 (2010).
[CrossRef]

X. Yang, C. J. Chen, C. A. Husko, and C. W. Wong, “Digital resonance tuning of high-Q/Vm silicon photonic crystal nanocavities by atomic layer deposition,” Appl. Phys. Lett. 91(16), 161114 (2007).
[CrossRef]

K. Hennessy, C. H‘̀ogerle, E. Hu, A. Badolato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89(4), 041118 (2006).
[CrossRef]

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
[CrossRef]

J. Pan, Y. Huo, K. Yamanaka, S. Sandhu, L. Scaccabarozzi, R. Timp, M. L. Povinelli, S. Fan, M. M. Fejer, and J. S. Harris, “Aligning microcavity resonances in silicon photonic-crystal slabs using laser-pumped thermal tuning,” Appl. Phys. Lett. 92(10), 103114 (2008).
[CrossRef]

F. Micheli and I. W. Boyd, “Photon-controlled oxidation of silicon,” Appl. Phys. Lett. 51(15), 1149–1151 (1987).
[CrossRef]

Y. S. Ju and K. E. Goodson, “Phonon scattering in silicon films with thickness of order 100 nm,” Appl. Phys. Lett. 74(20), 3005–3007 (1999).
[CrossRef]

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett. 96(8), 081107 (2010).
[CrossRef]

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vuckovic, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
[CrossRef]

Y. Enta, B. S. Mun, M. Rossi, J. Philip, N. Ross, Z. Hussain, C. S. Fadley, K.-S. Lee, and S.-K. Kim, “Real-time observation of the dry oxidation of the Si(100) surface with ambient pressure x-ray photoelectron spectroscopy,” Appl. Phys. Lett. 92(1), 012110 (2008).
[CrossRef]

G. E. Jellison and F. A. Modine, “Optical absorption of silicon between 1.6 and 4.7 eV at elevated temperatures,” Appl. Phys. Lett. 41, 180 (1982).
[CrossRef]

D. Song and G. Chen, “Thermal conductivity of periodic microporous silicon films,” Appl. Phys. Lett. 84, 687 (2004).
[CrossRef]

P. E. Hopkins, P. T. Rakich, R. H. Olsson, I. F. El-Kady, and L. M. Phinney, “Origin of reduction in phonon thermal conductivity of microporous solids,” Appl. Phys. Lett. 95, 161902 (2009).
[CrossRef]

Appl. Surface Sci. (1)

M. Huber, R. A. Deutschmann, R. Neumann, K. Brunner, and G. Abstreiter, “Local laser induced rapid thermal oxidation of SOI substrates,” Appl. Surface Sci. , 168(1–4), 204–207 (2000).
[CrossRef]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687 (2010).
[CrossRef]

J. Appl. Phys. (2)

E. Liarokapis and Y. S. Raptis, “Temperature rise induced by a cw laser beam revisited,” J. Appl. Phys. 57, 5123 (1985).
[CrossRef]

B. E. Deal and A. S. Grove, “General relationship for the thermal oxidation of silicon,” J. Appl. Phys. 36(12), 3770–3778 (1965).
[CrossRef]

J. Electrochem. Soc. (1)

H. Z. Massoud, J. D. Plummer, and E. A. Irene, “Thermal oxidation of silicon in dry oxygen: growth-rate enhancement in the thin regime,” J. Electrochem. Soc. 132(11), 2693–2700 (1985).
[CrossRef]

J. Heat Transfer (1)

M. Asheghi, M. N. Touzelbaev, K. E. Goodson, Y. K. Leung, and S. S. Wong, “Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates,” J. Heat Transfer 120(1), 30–36 (1998).
[CrossRef]

Langmuir (1)

J. D. Le Grange, J. L . Markham, and C. R. Kurkjian, “Effects of surface hydration on the deposition of silane monolayers on silica,” Langmuir 9, 1749–1753 (1993).
[CrossRef]

Mater. Chem. Phys. (1)

G. Aygun, E. Atanassova, R. Turan, and T. Babeva, “Reflectance spectra and refractive index of a Nd:YAG laser-oxidized Si surface,” Mater. Chem. Phys. 89(2–3), 316–320 (2005).
[CrossRef]

Microelectronic Eng. (1)

R. A. Deutschmann, M. Huber, R. Neumann, K. Brunner, and G. Abstreiter, “Direct sub-μm lateral patterning of SOI by focused laser beam induced oxidation,” Microelectronic Eng. , 48(1–4), 367–370 (1999).
[CrossRef]

Nano Lett. (1)

P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. Olsson, E. A. Shaner, Z. C. Leseman, J. R. Serrano, L. M. Phiney, and I. El-Kady, “Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning,” Nano Lett. 11, 107 (2011).
[CrossRef]

Nat. Mater. (1)

B. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4, 207–210 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. (1)

H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, “Thermal conductivity of silicon from 300 to 1400 K,” Phys. Rev. 130, 1743–1748 (1963).
[CrossRef]

Phys. Rev. B (1)

H. Hagino, Y. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Effects of fluctuations in air hole radii and positions on optical characteristics in photonic heterostructure nanocavities,” Phys. Rev. B 79, 085112 (2009).
[CrossRef]

Phys. Rev. Lett. (2)

R. Chatterjee, N. C. Panoiu, K. Liu, Z. Dios, M. B. Yu, M. T. Doan, L. J. Kaufman, R. M. Osgood, and C. W. Wong, “Achieving subdiffraction imaging through bound surface states in negative refraction photonic crystals in the near-infrared range,” Phys. Rev. Lett. 100, 187401 (2008).
[CrossRef] [PubMed]

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102, 173902 (2009).
[CrossRef] [PubMed]

Thin Solid Films (1)

N. D. Rooij, R. Sieverdink, and R. Tromp, “An investigation of the hydration properties of chemically vapour deposited silicon dioxide films by means of ellipsometry,” Thin Solid Films 47(3), 211–218 (1977).
[CrossRef]

Other (2)

R. K. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry (Wiley, 1979).

M. S. Aubain and P. R. Bandaru, “In-plane thermal conductivity determination in silicon on insulator (SOI) structures through thermoreflectance measurements,” in Materials Research Society Symposium Proceedings, (MRS Spring Meeting, San Francisco, CA2010), p. 1267-DD12-01.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Illustration of laser-assisted local thermal oxidation on a silicon double-heterostructure cavity. (b) SEM image of a double-heterostructure cavity.

Fig. 2
Fig. 2

(a) Experimental results showing the blueshift from tuning using an initial laser power of 19.5 mW (at the device surface). The same device is then further tuned at 22.5 mW. The inset shows measurements of the loaded quality factor as the cavity is tuned. (b) Fitting of the resonant wavelength shift to the square root of oxidation time for incident power of 19.5mW and (c) for 22.5mW.

Fig. 3
Fig. 3

Radiation measurements at three different tuning increments corresponding to the numbered positions in Fig. 2. Left inset: near-infrared radiation pattern for the Fabry-Perot modes on the left. The dotted lines indicate the position of cavity waveguide (upper) and input/output waveguide (lower). Right inset: near-infrared radiation pattern for the cavity mode on the right-side of the spectra.

Fig. 4
Fig. 4

Transitory surface chemistry effects. (a) Water molecules absorb onto the oxide surface at room temperature and desorb from the oxide surface at elevated temperatures. (b) During laser irradiation, the cavity experiences a resonance blueshift from oxide dehydration in addition to silicon oxidation. After the cavity cools, water will slowly rehydrate the oxide surface resulting in a gradual redshift.

Fig. 5
Fig. 5

(a) SEM image of cavity after local oxidation tuning at laser power of 35 mW. The white ring indicates oxide charging effects during SEM imaging. The center region is darker because of slight melting. Inset: Hole melted through the silicon membrane after irradiation at ∼ 35 mW for several minutes (different device from the main figure). (b) Local oxidation tuning over a larger wavelength range. The blue region (upper-left) corresponds to the data shown in Fig. 2(a). The upper-right arrow corresponds to the SEM image in Fig. 1(b). The inset shows measurements of the loaded quality factor.

Fig. 6
Fig. 6

(a) Finite-element simulation (COMSOL Multiphysics) of temperature distribution across silicon double-heterostructure cavity during 532 nm laser irradiation at 35 mW. (b) Solid lines represent the temperature distribution as a function of distance from the center of the laser beam. Dotted lines represent the intensity profile of the laser beam. (c) Simulation results of local maximum temperature versus laser power. Temperatures range from room temperature to the melting point of silicon.

Fig. 7
Fig. 7

(a) Calculated electric field Ey profile of high-Q mode supported by double-heterostructure cavity. (b) Calculated wavelength shift of the resonant mode due to local oxidation of the silicon photonic crystal membrane.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

[ κ ( T ) T ] = [ 1 R ( T ) ] I 0 α ( T ) exp ( ( x 2 + y 2 ) 2 σ 2 ) exp ( 0 z α ( T ( x , y , z ) ) d z )

Metrics