Abstract

A set of rapid prototyping techniques are combined to construct a laterally-tilted Bragg grating refractometer in a novel planar geometry. The tilted Bragg grating is fabricated in a silica-on-silicon planar substrate using a dual beam direct UV writing (DUW) technique. Lateral cladding mode confinement is subsequently achieved by physically micromachining two trenches either side of the direct UV written waveguide. The resulting device is demonstrated as an effective refractometer, displaying a comparable sensitivity to tilted Bragg gratings in a fiber optical geometry, but with the added advantages of planar integration.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Baldini, A. N. Chester, J. Homola, and S. Martellucci, Optical Chemical Sensors (Springer, 2004).
  2. C. McDonagh, C. S. Burke, and B. D. MacCraith, “Optical chemical sensors,” ChemInform 39(18), 18 (2008).
  3. G. Meltz, S. J. Hewlett, and J. D. Love, “Fiber grating evanescent-wave sensors,” Proc. SPIE 2836, 342–350 (1996).
    [CrossRef]
  4. S. Watts, “Bragg gratings: optical microchip sensors,” Nat. Photonics 4(7), 433–434 (2010).
    [CrossRef]
  5. D. Bhatta, E. Stadden, E. Hashem, I. J. G. Sparrow, and G. D. Emmerson, “Multi-purpose optical biosensors for real-time detection of bacteria, viruses and toxins,” Sens. Actuators B Chem. 149(1), 233–238 (2010).
    [CrossRef]
  6. P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Microchannel-based refractive index sensors monolithically integrated with silica waveguides: structures and sensitivities,” IEEE Sens. J. 8(5), 457–464 (2008).
    [CrossRef]
  7. T. Guo, H.-Y. Tam, P. A. Krug, and J. Albert, “Reflective tilted fiber Bragg grating refractometer based on strong cladding to core recoupling,” Opt. Express 17(7), 5736–5742 (2009).
    [CrossRef] [PubMed]
  8. Y. Y. Shevchenko and J. Albert, “Plasmon resonances in gold-coated tilted fiber Bragg gratings,” Opt. Lett. 32(3), 211–213 (2007).
    [CrossRef] [PubMed]
  9. E. Chehura, S. W. James, and R. P. Tatam, “Temperature and strain discrimination using a single tilted fibre Bragg grating,” Opt. Commun. 275(2), 344–347 (2007).
    [CrossRef]
  10. G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
    [CrossRef]
  11. X. Chen, K. Zhou, L. Zhang, and I. Bennion, “Optical chemsensor based on etched tilted Bragg grating structures in multimode fibre,” IEEE Photon. Technol. Lett. 17(4), 864–866 (2005).
    [CrossRef]
  12. C.-F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
    [CrossRef] [PubMed]
  13. T. Guo, C. Chen, and J. Albert, “Non-uniform-tilt-modulated fibre Bragg grating for temperature-immune micro-displacement measurement,” Meas. Sci. Technol. 20(3), 034007 (2009).
    [CrossRef]
  14. L.-Y. Shao, Y. Shevchenko, and J. Albert, “Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensor,” Opt. Express 8(11), 11465–11471 (2010).
  15. Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett. 35(5), 637–639 (2010).
    [CrossRef] [PubMed]
  16. X. Dai, S. J. Mihailov, R. B. Walker, C. Blanchetiere, C. Calender, H. Ding, P. Lu, D. Grobnic, C. W. Smelser, and G. Cuglietta, “Ridge waveguide optical sensor incorporating a Bragg grating,” U.S. patent 7,567,734 B2 (28 July 2009).
  17. . K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4(6), 925–929 (1998).
    [CrossRef]
  18. C. Riziotis and M. N. Zervas, “Design considerations in optical add/drop multiplexers based on grating-assisted null couplers,” J. Lightwave Technol. 19(1), 92–104 (2001).
    [CrossRef]
  19. D. Runde, S. Brunken, S. Breuer, and D. Kip, “Integrated-optical add/drop multiplexer for DWDM in lithium niobate,” Appl. Phys. B 88(1), 83–88 (2007).
    [CrossRef]
  20. E. B. Brousseau, S. S. Dimov, and D. T. Pham, “Some recent advances in multi-material micro- and nano-manufacturing,” Int. J. Adv. Manuf. Technol. 47(1-4), 161–180 (2010).
    [CrossRef]
  21. Y.-C. Lu, R. Geng, C. Wang, F. Zhang, C. Liu, T. Ning, and S. Jian, “Polarization effects in tilted fiber Bragg grating refractometers,” J. Lightwave Technol. 28(11), 1677–1684 (2010).
    [CrossRef]
  22. G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett. 38(24), 1531–1532 (2002).
    [CrossRef]
  23. F. R. M. Adikan, C. B. E. Gawith, P. G. R. Smith, I. J. G. Sparrow, G. D. Emmerson, C. Riziotis, and H. Ahmad, “Design and demonstration of direct UV-written small angle X couplers in silica-on-silicon for broadband operation,” Appl. Opt. 45(24), 6113–6118 (2006).
    [PubMed]
  24. M. Olivero and M. Svalgaard, “UV-written integrated optical 1xN splitters,” Opt. Express 14(1), 162–170 (2006).
    [CrossRef] [PubMed]
  25. D. O. Kundys, J. C. Gates, S. Dasgupta, C. Gawith, and P. Smith, “Use of cross-couplers to decrease size of UV written photonic circuits,” IEEE Photon. Technol. Lett. 21(13), 947–949 (2009).
    [CrossRef]

2010 (6)

S. Watts, “Bragg gratings: optical microchip sensors,” Nat. Photonics 4(7), 433–434 (2010).
[CrossRef]

D. Bhatta, E. Stadden, E. Hashem, I. J. G. Sparrow, and G. D. Emmerson, “Multi-purpose optical biosensors for real-time detection of bacteria, viruses and toxins,” Sens. Actuators B Chem. 149(1), 233–238 (2010).
[CrossRef]

L.-Y. Shao, Y. Shevchenko, and J. Albert, “Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensor,” Opt. Express 8(11), 11465–11471 (2010).

Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett. 35(5), 637–639 (2010).
[CrossRef] [PubMed]

E. B. Brousseau, S. S. Dimov, and D. T. Pham, “Some recent advances in multi-material micro- and nano-manufacturing,” Int. J. Adv. Manuf. Technol. 47(1-4), 161–180 (2010).
[CrossRef]

Y.-C. Lu, R. Geng, C. Wang, F. Zhang, C. Liu, T. Ning, and S. Jian, “Polarization effects in tilted fiber Bragg grating refractometers,” J. Lightwave Technol. 28(11), 1677–1684 (2010).
[CrossRef]

2009 (3)

T. Guo, C. Chen, and J. Albert, “Non-uniform-tilt-modulated fibre Bragg grating for temperature-immune micro-displacement measurement,” Meas. Sci. Technol. 20(3), 034007 (2009).
[CrossRef]

T. Guo, H.-Y. Tam, P. A. Krug, and J. Albert, “Reflective tilted fiber Bragg grating refractometer based on strong cladding to core recoupling,” Opt. Express 17(7), 5736–5742 (2009).
[CrossRef] [PubMed]

D. O. Kundys, J. C. Gates, S. Dasgupta, C. Gawith, and P. Smith, “Use of cross-couplers to decrease size of UV written photonic circuits,” IEEE Photon. Technol. Lett. 21(13), 947–949 (2009).
[CrossRef]

2008 (2)

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Microchannel-based refractive index sensors monolithically integrated with silica waveguides: structures and sensitivities,” IEEE Sens. J. 8(5), 457–464 (2008).
[CrossRef]

C. McDonagh, C. S. Burke, and B. D. MacCraith, “Optical chemical sensors,” ChemInform 39(18), 18 (2008).

2007 (4)

Y. Y. Shevchenko and J. Albert, “Plasmon resonances in gold-coated tilted fiber Bragg gratings,” Opt. Lett. 32(3), 211–213 (2007).
[CrossRef] [PubMed]

E. Chehura, S. W. James, and R. P. Tatam, “Temperature and strain discrimination using a single tilted fibre Bragg grating,” Opt. Commun. 275(2), 344–347 (2007).
[CrossRef]

C.-F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometer using narrowband cladding-mode resonance shifts,” Appl. Opt. 46(7), 1142–1149 (2007).
[CrossRef] [PubMed]

D. Runde, S. Brunken, S. Breuer, and D. Kip, “Integrated-optical add/drop multiplexer for DWDM in lithium niobate,” Appl. Phys. B 88(1), 83–88 (2007).
[CrossRef]

2006 (2)

2005 (1)

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “Optical chemsensor based on etched tilted Bragg grating structures in multimode fibre,” IEEE Photon. Technol. Lett. 17(4), 864–866 (2005).
[CrossRef]

2002 (1)

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett. 38(24), 1531–1532 (2002).
[CrossRef]

2001 (2)

C. Riziotis and M. N. Zervas, “Design considerations in optical add/drop multiplexers based on grating-assisted null couplers,” J. Lightwave Technol. 19(1), 92–104 (2001).
[CrossRef]

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[CrossRef]

1998 (1)

. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4(6), 925–929 (1998).
[CrossRef]

1996 (1)

G. Meltz, S. J. Hewlett, and J. D. Love, “Fiber grating evanescent-wave sensors,” Proc. SPIE 2836, 342–350 (1996).
[CrossRef]

Adikan, F. R. M.

Ahmad, H.

Albanis, V.

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett. 38(24), 1531–1532 (2002).
[CrossRef]

Albert, J.

Bennion, I.

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “Optical chemsensor based on etched tilted Bragg grating structures in multimode fibre,” IEEE Photon. Technol. Lett. 17(4), 864–866 (2005).
[CrossRef]

Bhatta, D.

D. Bhatta, E. Stadden, E. Hashem, I. J. G. Sparrow, and G. D. Emmerson, “Multi-purpose optical biosensors for real-time detection of bacteria, viruses and toxins,” Sens. Actuators B Chem. 149(1), 233–238 (2010).
[CrossRef]

Breuer, S.

D. Runde, S. Brunken, S. Breuer, and D. Kip, “Integrated-optical add/drop multiplexer for DWDM in lithium niobate,” Appl. Phys. B 88(1), 83–88 (2007).
[CrossRef]

Brousseau, E. B.

E. B. Brousseau, S. S. Dimov, and D. T. Pham, “Some recent advances in multi-material micro- and nano-manufacturing,” Int. J. Adv. Manuf. Technol. 47(1-4), 161–180 (2010).
[CrossRef]

Brunken, S.

D. Runde, S. Brunken, S. Breuer, and D. Kip, “Integrated-optical add/drop multiplexer for DWDM in lithium niobate,” Appl. Phys. B 88(1), 83–88 (2007).
[CrossRef]

Burke, C. S.

C. McDonagh, C. S. Burke, and B. D. MacCraith, “Optical chemical sensors,” ChemInform 39(18), 18 (2008).

Callender, C. L.

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Microchannel-based refractive index sensors monolithically integrated with silica waveguides: structures and sensitivities,” IEEE Sens. J. 8(5), 457–464 (2008).
[CrossRef]

Chan, C.-F.

Chehura, E.

E. Chehura, S. W. James, and R. P. Tatam, “Temperature and strain discrimination using a single tilted fibre Bragg grating,” Opt. Commun. 275(2), 344–347 (2007).
[CrossRef]

Chen, C.

Chen, X.

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “Optical chemsensor based on etched tilted Bragg grating structures in multimode fibre,” IEEE Photon. Technol. Lett. 17(4), 864–866 (2005).
[CrossRef]

Dakka, M. A.

Dasgupta, S.

D. O. Kundys, J. C. Gates, S. Dasgupta, C. Gawith, and P. Smith, “Use of cross-couplers to decrease size of UV written photonic circuits,” IEEE Photon. Technol. Lett. 21(13), 947–949 (2009).
[CrossRef]

DeMarco, J.

. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4(6), 925–929 (1998).
[CrossRef]

Dimov, S. S.

E. B. Brousseau, S. S. Dimov, and D. T. Pham, “Some recent advances in multi-material micro- and nano-manufacturing,” Int. J. Adv. Manuf. Technol. 47(1-4), 161–180 (2010).
[CrossRef]

Dumais, P.

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Microchannel-based refractive index sensors monolithically integrated with silica waveguides: structures and sensitivities,” IEEE Sens. J. 8(5), 457–464 (2008).
[CrossRef]

Emmerson, G. D.

D. Bhatta, E. Stadden, E. Hashem, I. J. G. Sparrow, and G. D. Emmerson, “Multi-purpose optical biosensors for real-time detection of bacteria, viruses and toxins,” Sens. Actuators B Chem. 149(1), 233–238 (2010).
[CrossRef]

F. R. M. Adikan, C. B. E. Gawith, P. G. R. Smith, I. J. G. Sparrow, G. D. Emmerson, C. Riziotis, and H. Ahmad, “Design and demonstration of direct UV-written small angle X couplers in silica-on-silicon for broadband operation,” Appl. Opt. 45(24), 6113–6118 (2006).
[PubMed]

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett. 38(24), 1531–1532 (2002).
[CrossRef]

Ferdinand, P.

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[CrossRef]

Gates, J. C.

D. O. Kundys, J. C. Gates, S. Dasgupta, C. Gawith, and P. Smith, “Use of cross-couplers to decrease size of UV written photonic circuits,” IEEE Photon. Technol. Lett. 21(13), 947–949 (2009).
[CrossRef]

Gawith, C.

D. O. Kundys, J. C. Gates, S. Dasgupta, C. Gawith, and P. Smith, “Use of cross-couplers to decrease size of UV written photonic circuits,” IEEE Photon. Technol. Lett. 21(13), 947–949 (2009).
[CrossRef]

Gawith, C. B. E.

F. R. M. Adikan, C. B. E. Gawith, P. G. R. Smith, I. J. G. Sparrow, G. D. Emmerson, C. Riziotis, and H. Ahmad, “Design and demonstration of direct UV-written small angle X couplers in silica-on-silicon for broadband operation,” Appl. Opt. 45(24), 6113–6118 (2006).
[PubMed]

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett. 38(24), 1531–1532 (2002).
[CrossRef]

Geng, R.

Guo, T.

T. Guo, C. Chen, and J. Albert, “Non-uniform-tilt-modulated fibre Bragg grating for temperature-immune micro-displacement measurement,” Meas. Sci. Technol. 20(3), 034007 (2009).
[CrossRef]

T. Guo, H.-Y. Tam, P. A. Krug, and J. Albert, “Reflective tilted fiber Bragg grating refractometer based on strong cladding to core recoupling,” Opt. Express 17(7), 5736–5742 (2009).
[CrossRef] [PubMed]

Hashem, E.

D. Bhatta, E. Stadden, E. Hashem, I. J. G. Sparrow, and G. D. Emmerson, “Multi-purpose optical biosensors for real-time detection of bacteria, viruses and toxins,” Sens. Actuators B Chem. 149(1), 233–238 (2010).
[CrossRef]

Hewlett, S. J.

G. Meltz, S. J. Hewlett, and J. D. Love, “Fiber grating evanescent-wave sensors,” Proc. SPIE 2836, 342–350 (1996).
[CrossRef]

Ibsen, M.

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett. 38(24), 1531–1532 (2002).
[CrossRef]

Jafari, A.

James, S. W.

E. Chehura, S. W. James, and R. P. Tatam, “Temperature and strain discrimination using a single tilted fibre Bragg grating,” Opt. Commun. 275(2), 344–347 (2007).
[CrossRef]

Jian, S.

Kip, D.

D. Runde, S. Brunken, S. Breuer, and D. Kip, “Integrated-optical add/drop multiplexer for DWDM in lithium niobate,” Appl. Phys. B 88(1), 83–88 (2007).
[CrossRef]

Krug, P. A.

Kundys, D. O.

D. O. Kundys, J. C. Gates, S. Dasgupta, C. Gawith, and P. Smith, “Use of cross-couplers to decrease size of UV written photonic circuits,” IEEE Photon. Technol. Lett. 21(13), 947–949 (2009).
[CrossRef]

Laffont, G.

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[CrossRef]

Laronche, A.

Laskowski, E. J.

. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4(6), 925–929 (1998).
[CrossRef]

Ledderhof, C. J.

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Microchannel-based refractive index sensors monolithically integrated with silica waveguides: structures and sensitivities,” IEEE Sens. J. 8(5), 457–464 (2008).
[CrossRef]

Liu, C.

Love, J. D.

G. Meltz, S. J. Hewlett, and J. D. Love, “Fiber grating evanescent-wave sensors,” Proc. SPIE 2836, 342–350 (1996).
[CrossRef]

Lu, Y.-C.

MacCraith, B. D.

C. McDonagh, C. S. Burke, and B. D. MacCraith, “Optical chemical sensors,” ChemInform 39(18), 18 (2008).

Madsen, . K.

. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4(6), 925–929 (1998).
[CrossRef]

McDonagh, C.

C. McDonagh, C. S. Burke, and B. D. MacCraith, “Optical chemical sensors,” ChemInform 39(18), 18 (2008).

Meltz, G.

G. Meltz, S. J. Hewlett, and J. D. Love, “Fiber grating evanescent-wave sensors,” Proc. SPIE 2836, 342–350 (1996).
[CrossRef]

Milbrodt, M. A.

. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4(6), 925–929 (1998).
[CrossRef]

Muehlner, D.

. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4(6), 925–929 (1998).
[CrossRef]

Ning, T.

Noad, J. P.

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Microchannel-based refractive index sensors monolithically integrated with silica waveguides: structures and sensitivities,” IEEE Sens. J. 8(5), 457–464 (2008).
[CrossRef]

Olivero, M.

Pham, D. T.

E. B. Brousseau, S. S. Dimov, and D. T. Pham, “Some recent advances in multi-material micro- and nano-manufacturing,” Int. J. Adv. Manuf. Technol. 47(1-4), 161–180 (2010).
[CrossRef]

Riziotis, C.

Runde, D.

D. Runde, S. Brunken, S. Breuer, and D. Kip, “Integrated-optical add/drop multiplexer for DWDM in lithium niobate,” Appl. Phys. B 88(1), 83–88 (2007).
[CrossRef]

Shao, L.-Y.

L.-Y. Shao, Y. Shevchenko, and J. Albert, “Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensor,” Opt. Express 8(11), 11465–11471 (2010).

Shevchenko, Y.

L.-Y. Shao, Y. Shevchenko, and J. Albert, “Intrinsic temperature sensitivity of tilted fiber Bragg grating based surface plasmon resonance sensor,” Opt. Express 8(11), 11465–11471 (2010).

Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett. 35(5), 637–639 (2010).
[CrossRef] [PubMed]

Shevchenko, Y. Y.

Smith, P.

D. O. Kundys, J. C. Gates, S. Dasgupta, C. Gawith, and P. Smith, “Use of cross-couplers to decrease size of UV written photonic circuits,” IEEE Photon. Technol. Lett. 21(13), 947–949 (2009).
[CrossRef]

Smith, P. G. R.

F. R. M. Adikan, C. B. E. Gawith, P. G. R. Smith, I. J. G. Sparrow, G. D. Emmerson, C. Riziotis, and H. Ahmad, “Design and demonstration of direct UV-written small angle X couplers in silica-on-silicon for broadband operation,” Appl. Opt. 45(24), 6113–6118 (2006).
[PubMed]

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett. 38(24), 1531–1532 (2002).
[CrossRef]

Sparrow, I. J. G.

D. Bhatta, E. Stadden, E. Hashem, I. J. G. Sparrow, and G. D. Emmerson, “Multi-purpose optical biosensors for real-time detection of bacteria, viruses and toxins,” Sens. Actuators B Chem. 149(1), 233–238 (2010).
[CrossRef]

F. R. M. Adikan, C. B. E. Gawith, P. G. R. Smith, I. J. G. Sparrow, G. D. Emmerson, C. Riziotis, and H. Ahmad, “Design and demonstration of direct UV-written small angle X couplers in silica-on-silicon for broadband operation,” Appl. Opt. 45(24), 6113–6118 (2006).
[PubMed]

Stadden, E.

D. Bhatta, E. Stadden, E. Hashem, I. J. G. Sparrow, and G. D. Emmerson, “Multi-purpose optical biosensors for real-time detection of bacteria, viruses and toxins,” Sens. Actuators B Chem. 149(1), 233–238 (2010).
[CrossRef]

Strasser, T. A.

. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4(6), 925–929 (1998).
[CrossRef]

Svalgaard, M.

Tam, H.-Y.

Tatam, R. P.

E. Chehura, S. W. James, and R. P. Tatam, “Temperature and strain discrimination using a single tilted fibre Bragg grating,” Opt. Commun. 275(2), 344–347 (2007).
[CrossRef]

Thomson, D. J.

Wagener, J.

. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4(6), 925–929 (1998).
[CrossRef]

Wang, C.

Watts, S.

S. Watts, “Bragg gratings: optical microchip sensors,” Nat. Photonics 4(7), 433–434 (2010).
[CrossRef]

Watts, S. P.

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett. 38(24), 1531–1532 (2002).
[CrossRef]

Williams, R. B.

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett. 38(24), 1531–1532 (2002).
[CrossRef]

Zervas, M. N.

Zhang, F.

Zhang, L.

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “Optical chemsensor based on etched tilted Bragg grating structures in multimode fibre,” IEEE Photon. Technol. Lett. 17(4), 864–866 (2005).
[CrossRef]

Zhou, K.

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “Optical chemsensor based on etched tilted Bragg grating structures in multimode fibre,” IEEE Photon. Technol. Lett. 17(4), 864–866 (2005).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

D. Runde, S. Brunken, S. Breuer, and D. Kip, “Integrated-optical add/drop multiplexer for DWDM in lithium niobate,” Appl. Phys. B 88(1), 83–88 (2007).
[CrossRef]

ChemInform (1)

C. McDonagh, C. S. Burke, and B. D. MacCraith, “Optical chemical sensors,” ChemInform 39(18), 18 (2008).

Electron. Lett. (1)

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, “Fabrication of directly UV-written channel waveguides with simultaneously defined integral Bragg gratings,” Electron. Lett. 38(24), 1531–1532 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, “Planar waveguide optical spectrum analyzer using a UV-induced grating,” IEEE J. Sel. Top. Quantum Electron. 4(6), 925–929 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “Optical chemsensor based on etched tilted Bragg grating structures in multimode fibre,” IEEE Photon. Technol. Lett. 17(4), 864–866 (2005).
[CrossRef]

D. O. Kundys, J. C. Gates, S. Dasgupta, C. Gawith, and P. Smith, “Use of cross-couplers to decrease size of UV written photonic circuits,” IEEE Photon. Technol. Lett. 21(13), 947–949 (2009).
[CrossRef]

IEEE Sens. J. (1)

P. Dumais, C. L. Callender, J. P. Noad, and C. J. Ledderhof, “Microchannel-based refractive index sensors monolithically integrated with silica waveguides: structures and sensitivities,” IEEE Sens. J. 8(5), 457–464 (2008).
[CrossRef]

Int. J. Adv. Manuf. Technol. (1)

E. B. Brousseau, S. S. Dimov, and D. T. Pham, “Some recent advances in multi-material micro- and nano-manufacturing,” Int. J. Adv. Manuf. Technol. 47(1-4), 161–180 (2010).
[CrossRef]

J. Lightwave Technol. (2)

Meas. Sci. Technol. (2)

G. Laffont and P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12(7), 765–770 (2001).
[CrossRef]

T. Guo, C. Chen, and J. Albert, “Non-uniform-tilt-modulated fibre Bragg grating for temperature-immune micro-displacement measurement,” Meas. Sci. Technol. 20(3), 034007 (2009).
[CrossRef]

Nat. Photonics (1)

S. Watts, “Bragg gratings: optical microchip sensors,” Nat. Photonics 4(7), 433–434 (2010).
[CrossRef]

Opt. Commun. (1)

E. Chehura, S. W. James, and R. P. Tatam, “Temperature and strain discrimination using a single tilted fibre Bragg grating,” Opt. Commun. 275(2), 344–347 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Proc. SPIE (1)

G. Meltz, S. J. Hewlett, and J. D. Love, “Fiber grating evanescent-wave sensors,” Proc. SPIE 2836, 342–350 (1996).
[CrossRef]

Sens. Actuators B Chem. (1)

D. Bhatta, E. Stadden, E. Hashem, I. J. G. Sparrow, and G. D. Emmerson, “Multi-purpose optical biosensors for real-time detection of bacteria, viruses and toxins,” Sens. Actuators B Chem. 149(1), 233–238 (2010).
[CrossRef]

Other (2)

F. Baldini, A. N. Chester, J. Homola, and S. Martellucci, Optical Chemical Sensors (Springer, 2004).

X. Dai, S. J. Mihailov, R. B. Walker, C. Blanchetiere, C. Calender, H. Ding, P. Lu, D. Grobnic, C. W. Smelser, and G. Cuglietta, “Ridge waveguide optical sensor incorporating a Bragg grating,” U.S. patent 7,567,734 B2 (28 July 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) A schematic of the tilted planar Bragg grating refractometer fabricated (b) a micrograph illustrating the cross-sectional view of a 40 μm width ridge with buried waveguide – the fact that the bottom of each trench is not entirely horizontal is an artifact due to blade wear and does not affect the evanescent interaction of the mode which occurs in the silica layers.

Fig. 2
Fig. 2

The dual beam direct UV writing technique for fabricating tilted Bragg gratings. Each exposure of the focused spot defines only a few Bragg grating periods.

Fig. 3
Fig. 3

Measured TM transmission spectrum of a 5 mm long θ = 7° – tilted planar Bragg grating with various external refractive indices, n.

Fig. 4
Fig. 4

Measured envelope curves for the TM transmission spectra of a θ = 7° – tilted Bragg grating, surrounded by different refractive indices, n.

Fig. 5
Fig. 5

The evolution of normalized area A with refractive index n for both TE and TM polarizations (insert) a linear fit of the TM data between refractive indices of 1.37 to 1.42.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ i = ( n c o r e + n c l a d , i ) Λ cos ( θ )

Metrics