Abstract

We report on the efficient nonlinear optical interactions in AlGaAs strip-loaded waveguides with a wafer composition specifically designed to increase the nonlinear coefficient. We demonstrate a broad-band self-phase modulation with a nonlinear phase shift up to 6π, and four-wave mixing with a 20-nm tuning range and signal-to-idler conversion efficiency up to 10 dB. Our samples are several times shorter than similar devices used for wavelength conversion by XPM and FWM in previous reports, but the efficiency of the observed effects is similar. Our experimental studies demonstrate the high potential of AlGaAs for all-optical networks.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
    [CrossRef] [PubMed]
  2. S. F. Preble, Q. Xu, B. S. Schmidt, and M. Lipson, “Ultrafast all-optical modulation on a silicon chip,” Opt. Lett. 30, 2891–2893 (2005).
    [CrossRef] [PubMed]
  3. B. G. Lee, B. A. Small, K. Bergman, Q. Xu, and M. Lipson, “Transmission of high-data-rate optical signals through a micrometer-scale silicon ring resonator,” Opt. Lett. 31, 2701–2703 (2006).
    [CrossRef] [PubMed]
  4. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2007).
    [CrossRef]
  5. B. J. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21, 182–184 (2009).
    [CrossRef]
  6. W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides,” Opt. Express 16, 16735–16745 (2008).
    [CrossRef] [PubMed]
  7. F. Li, M. Pelusi, D.-X. Xu, A. Densmore, R. Ma, S. Janz, and D. J. Moss, “Error-free all-optical demultiplexing at 160 Gb/s via FWM in a silicon nanowire,” Opt. Express 18, 3905–3910 (2010).
    [CrossRef] [PubMed]
  8. V. G. Ta’eed, M. Shokoon-Saremi, L. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Integrated all-optical pulse regenerator in chalcogenide waveguides,” Opt. Lett. 30, 2900–2902 (2005).
    [CrossRef] [PubMed]
  9. M. R. E. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 W−1m−1 As2S3 chalcogenide planar waveguide,” Opt. Express 16, 14938–14944 (2008).
    [CrossRef] [PubMed]
  10. V. G. Ta’eed, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, “All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides,” Opt. Express 14, 11242–11247 (2006).
    [CrossRef] [PubMed]
  11. M. D. Pelusi, V. G. Ta’eed, M. R. E. Lamont, S. Madden, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett. 19, 1496–1498 (2007).
    [CrossRef]
  12. M. Galili, J. Xu, H. C. H. Mulvad, L. K. Oxenlowe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17, 2182–2187 (2009).
    [CrossRef] [PubMed]
  13. F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17, 3514–3520 (2009).
    [CrossRef] [PubMed]
  14. V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, and Y. Ruan, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 360–370 (2006).
    [CrossRef]
  15. G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-Hemyari, C. C. Yang, C.-H. Lin, H.-H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347–371 (1994).
    [CrossRef]
  16. A. Villeneuve, J. S. Aitchison, B. Vogele, R. Tapella, J. U. Kang, C. Trevino, and G. I. Stegeman, “Waveguide design for minimum nonlinear effective area and switching energy in AlGaAs at half the bandgap,” Electron. Lett. 31, 549–551 (1995).
    [CrossRef]
  17. J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
    [CrossRef]
  18. D. Duchesne, R. Morandotti, G. A. Siviloglou, R. El-Ganainy, G. I. Stegeman, D. N. Christodoulides, D. Modotto, A. Locatelli, C. De Angelis, F. Pozzi, and M. Sorel, “Nonlinear photonics in AlGaAs photonics nanowires: self phase and cross phase modulation,” International Symposium: Signals, Systems and Electronics , 2007, 475–478.
    [CrossRef]
  19. G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. De Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, “Enhanced third-order nonlinear effects in optical AlGaAs nanowires,” Opt. Express 14, 9377–9384 (2006).
    [CrossRef] [PubMed]
  20. W. Astar, P. Apiratikul, T. E. Murphy, and G. M. Carter, “Wavelength conversion of 10-Gb/s RZ-OOK using filtered XPM in a passive GaAs-AlGaAs waveguide,” IEEE Photon. Technol. Lett. 22, 637–639 (2010).
    [CrossRef]
  21. A. Pasquazi, Y. Park, J. Azana, F. Legare, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient wavelength conversion and net parametric gain via four wave mixing in a high index doped silica waveguide,” Opt. Express 18, 7634–7641 (2010).
    [CrossRef] [PubMed]
  22. K. Dolgaleva, W. C. Ng, L. Qian, J. Aitchison, M. Camasta, and M. Sorel, “Broadband self-phase modulation, cross-phase modulation, and four-wave mixing in 9-mm-long AlGaAs waveguides,” Opt. Lett. 35, 4093–4095 (2010).
    [CrossRef] [PubMed]
  23. M. R. E. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16, 20374–20381 (2008).
    [CrossRef] [PubMed]
  24. S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1–xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
    [CrossRef]
  25. R. J. Deri and E. Kapon, “Low-loss III–V semiconductor optical waveguides,” IEEE J. Quantum Electron. 27, 626–640 (1991).
    [CrossRef]
  26. G. P. Agrawal, Nonlinear Fiber Optics , 3rd ed. (Academic Press, 2001).
  27. N. Vermeulen, C. Debaes, and H. Thienpont, “Modeling mid-infrared continuous-wave silicon-based Raman lasers,” Proc. SPIE 6455, 64550U (2007).
    [CrossRef]
  28. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
    [CrossRef] [PubMed]

2010 (4)

2009 (3)

2008 (3)

2007 (3)

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2007).
[CrossRef]

M. D. Pelusi, V. G. Ta’eed, M. R. E. Lamont, S. Madden, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett. 19, 1496–1498 (2007).
[CrossRef]

N. Vermeulen, C. Debaes, and H. Thienpont, “Modeling mid-infrared continuous-wave silicon-based Raman lasers,” Proc. SPIE 6455, 64550U (2007).
[CrossRef]

2006 (5)

2005 (2)

2004 (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef] [PubMed]

2000 (1)

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1–xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

1997 (1)

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[CrossRef]

1995 (1)

A. Villeneuve, J. S. Aitchison, B. Vogele, R. Tapella, J. U. Kang, C. Trevino, and G. I. Stegeman, “Waveguide design for minimum nonlinear effective area and switching energy in AlGaAs at half the bandgap,” Electron. Lett. 31, 549–551 (1995).
[CrossRef]

1994 (1)

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-Hemyari, C. C. Yang, C.-H. Lin, H.-H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347–371 (1994).
[CrossRef]

1991 (1)

R. J. Deri and E. Kapon, “Low-loss III–V semiconductor optical waveguides,” IEEE J. Quantum Electron. 27, 626–640 (1991).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics , 3rd ed. (Academic Press, 2001).

Aitchison, J.

Aitchison, J. S.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[CrossRef]

A. Villeneuve, J. S. Aitchison, B. Vogele, R. Tapella, J. U. Kang, C. Trevino, and G. I. Stegeman, “Waveguide design for minimum nonlinear effective area and switching energy in AlGaAs at half the bandgap,” Electron. Lett. 31, 549–551 (1995).
[CrossRef]

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-Hemyari, C. C. Yang, C.-H. Lin, H.-H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347–371 (1994).
[CrossRef]

Al-Hemyari, K.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-Hemyari, C. C. Yang, C.-H. Lin, H.-H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347–371 (1994).
[CrossRef]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef] [PubMed]

Apiratikul, P.

W. Astar, P. Apiratikul, T. E. Murphy, and G. M. Carter, “Wavelength conversion of 10-Gb/s RZ-OOK using filtered XPM in a passive GaAs-AlGaAs waveguide,” IEEE Photon. Technol. Lett. 22, 637–639 (2010).
[CrossRef]

Astar, W.

W. Astar, P. Apiratikul, T. E. Murphy, and G. M. Carter, “Wavelength conversion of 10-Gb/s RZ-OOK using filtered XPM in a passive GaAs-AlGaAs waveguide,” IEEE Photon. Technol. Lett. 22, 637–639 (2010).
[CrossRef]

Azana, J.

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef] [PubMed]

Bergman, K.

B. J. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21, 182–184 (2009).
[CrossRef]

B. G. Lee, B. A. Small, K. Bergman, Q. Xu, and M. Lipson, “Transmission of high-data-rate optical signals through a micrometer-scale silicon ring resonator,” Opt. Lett. 31, 2701–2703 (2006).
[CrossRef] [PubMed]

Biberman, A.

B. J. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21, 182–184 (2009).
[CrossRef]

Camasta, M.

Carter, G. M.

W. Astar, P. Apiratikul, T. E. Murphy, and G. M. Carter, “Wavelength conversion of 10-Gb/s RZ-OOK using filtered XPM in a passive GaAs-AlGaAs waveguide,” IEEE Photon. Technol. Lett. 22, 637–639 (2010).
[CrossRef]

Choi, D.-Y.

M. Galili, J. Xu, H. C. H. Mulvad, L. K. Oxenlowe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17, 2182–2187 (2009).
[CrossRef] [PubMed]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17, 3514–3520 (2009).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 W−1m−1 As2S3 chalcogenide planar waveguide,” Opt. Express 16, 14938–14944 (2008).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16, 20374–20381 (2008).
[CrossRef] [PubMed]

M. D. Pelusi, V. G. Ta’eed, M. R. E. Lamont, S. Madden, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett. 19, 1496–1498 (2007).
[CrossRef]

V. G. Ta’eed, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, “All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides,” Opt. Express 14, 11242–11247 (2006).
[CrossRef] [PubMed]

Christodoulides, D. N.

Chu, S. T.

Clausen, A. T.

De Angelis, C.

Debaes, C.

N. Vermeulen, C. Debaes, and H. Thienpont, “Modeling mid-infrared continuous-wave silicon-based Raman lasers,” Proc. SPIE 6455, 64550U (2007).
[CrossRef]

Densmore, A.

Deri, R. J.

R. J. Deri and E. Kapon, “Low-loss III–V semiconductor optical waveguides,” IEEE J. Quantum Electron. 27, 626–640 (1991).
[CrossRef]

Dolgaleva, K.

Eggleton, B. J.

F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17, 3514–3520 (2009).
[CrossRef] [PubMed]

M. Galili, J. Xu, H. C. H. Mulvad, L. K. Oxenlowe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17, 2182–2187 (2009).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16, 20374–20381 (2008).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 W−1m−1 As2S3 chalcogenide planar waveguide,” Opt. Express 16, 14938–14944 (2008).
[CrossRef] [PubMed]

M. D. Pelusi, V. G. Ta’eed, M. R. E. Lamont, S. Madden, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett. 19, 1496–1498 (2007).
[CrossRef]

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, and Y. Ruan, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 360–370 (2006).
[CrossRef]

V. G. Ta’eed, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, “All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides,” Opt. Express 14, 11242–11247 (2006).
[CrossRef] [PubMed]

V. G. Ta’eed, M. Shokoon-Saremi, L. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Integrated all-optical pulse regenerator in chalcogenide waveguides,” Opt. Lett. 30, 2900–2902 (2005).
[CrossRef] [PubMed]

El-Ganainy, R.

Foster, M. A.

B. J. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21, 182–184 (2009).
[CrossRef]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2007).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef] [PubMed]

Fu, L.

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, and Y. Ruan, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 360–370 (2006).
[CrossRef]

V. G. Ta’eed, M. Shokoon-Saremi, L. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Integrated all-optical pulse regenerator in chalcogenide waveguides,” Opt. Lett. 30, 2900–2902 (2005).
[CrossRef] [PubMed]

Gaeta, A.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef] [PubMed]

Gaeta, A. L.

B. J. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21, 182–184 (2009).
[CrossRef]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2007).
[CrossRef]

Gai, X.

Galili, M.

Gehrsitz, S.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1–xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Geraghty, D. F.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2007).
[CrossRef]

Gourgon, C.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1–xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Grant, R. S.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-Hemyari, C. C. Yang, C.-H. Lin, H.-H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347–371 (1994).
[CrossRef]

Herres, N.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1–xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Hutchings, D. C.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[CrossRef]

Ironside, C. N.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-Hemyari, C. C. Yang, C.-H. Lin, H.-H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347–371 (1994).
[CrossRef]

Iwanow, R.

Janz, S.

Jeppesen, P.

Kang, J.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-Hemyari, C. C. Yang, C.-H. Lin, H.-H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347–371 (1994).
[CrossRef]

Kang, J. U.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[CrossRef]

A. Villeneuve, J. S. Aitchison, B. Vogele, R. Tapella, J. U. Kang, C. Trevino, and G. I. Stegeman, “Waveguide design for minimum nonlinear effective area and switching energy in AlGaAs at half the bandgap,” Electron. Lett. 31, 549–551 (1995).
[CrossRef]

Kapon, E.

R. J. Deri and E. Kapon, “Low-loss III–V semiconductor optical waveguides,” IEEE J. Quantum Electron. 27, 626–640 (1991).
[CrossRef]

Kennedy, G. T.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-Hemyari, C. C. Yang, C.-H. Lin, H.-H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347–371 (1994).
[CrossRef]

Lamont, M. R. E.

Lee, B. G.

Lee, B. J.

B. J. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21, 182–184 (2009).
[CrossRef]

Legare, F.

Li, F.

Lin, C.-H.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-Hemyari, C. C. Yang, C.-H. Lin, H.-H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347–371 (1994).
[CrossRef]

Lin, H.-H.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-Hemyari, C. C. Yang, C.-H. Lin, H.-H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347–371 (1994).
[CrossRef]

Lipson, M.

B. J. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21, 182–184 (2009).
[CrossRef]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2007).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef] [PubMed]

B. G. Lee, B. A. Small, K. Bergman, Q. Xu, and M. Lipson, “Transmission of high-data-rate optical signals through a micrometer-scale silicon ring resonator,” Opt. Lett. 31, 2701–2703 (2006).
[CrossRef] [PubMed]

S. F. Preble, Q. Xu, B. S. Schmidt, and M. Lipson, “Ultrafast all-optical modulation on a silicon chip,” Opt. Lett. 30, 2891–2893 (2005).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef] [PubMed]

Little, B. E.

Littler, I. C. M.

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, and Y. Ruan, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 360–370 (2006).
[CrossRef]

V. G. Ta’eed, M. Shokoon-Saremi, L. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Integrated all-optical pulse regenerator in chalcogenide waveguides,” Opt. Lett. 30, 2900–2902 (2005).
[CrossRef] [PubMed]

Locatelli, A.

Luan, F.

Luther-Davies, B.

M. Galili, J. Xu, H. C. H. Mulvad, L. K. Oxenlowe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17, 2182–2187 (2009).
[CrossRef] [PubMed]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17, 3514–3520 (2009).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 W−1m−1 As2S3 chalcogenide planar waveguide,” Opt. Express 16, 14938–14944 (2008).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16, 20374–20381 (2008).
[CrossRef] [PubMed]

M. D. Pelusi, V. G. Ta’eed, M. R. E. Lamont, S. Madden, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett. 19, 1496–1498 (2007).
[CrossRef]

V. G. Ta’eed, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, “All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides,” Opt. Express 14, 11242–11247 (2006).
[CrossRef] [PubMed]

V. G. Ta’eed, M. Shokoon-Saremi, L. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Integrated all-optical pulse regenerator in chalcogenide waveguides,” Opt. Lett. 30, 2900–2902 (2005).
[CrossRef] [PubMed]

Ma, R.

Madden, S.

F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17, 3514–3520 (2009).
[CrossRef] [PubMed]

M. Galili, J. Xu, H. C. H. Mulvad, L. K. Oxenlowe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17, 2182–2187 (2009).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16, 20374–20381 (2008).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 W−1m−1 As2S3 chalcogenide planar waveguide,” Opt. Express 16, 14938–14944 (2008).
[CrossRef] [PubMed]

M. D. Pelusi, V. G. Ta’eed, M. R. E. Lamont, S. Madden, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett. 19, 1496–1498 (2007).
[CrossRef]

V. G. Ta’eed, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, “All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides,” Opt. Express 14, 11242–11247 (2006).
[CrossRef] [PubMed]

Mathlouthi, W.

Modotto, D.

Morandotti, R.

Moss, D. J.

Mulvad, H. C. H.

Murphy, T. E.

W. Astar, P. Apiratikul, T. E. Murphy, and G. M. Carter, “Wavelength conversion of 10-Gb/s RZ-OOK using filtered XPM in a passive GaAs-AlGaAs waveguide,” IEEE Photon. Technol. Lett. 22, 637–639 (2010).
[CrossRef]

Ng, W. C.

Oxenlowe, L. K.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef] [PubMed]

Paniccia, M.

Park, Y.

Pasquazi, A.

Pelusi, M.

Pelusi, M. D.

F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17, 3514–3520 (2009).
[CrossRef] [PubMed]

M. D. Pelusi, V. G. Ta’eed, M. R. E. Lamont, S. Madden, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett. 19, 1496–1498 (2007).
[CrossRef]

Pozzi, F.

Preble, S. F.

Qian, L.

Reinhart, F. K.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1–xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Rochette, M.

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, and Y. Ruan, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 360–370 (2006).
[CrossRef]

V. G. Ta’eed, M. Shokoon-Saremi, L. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Integrated all-optical pulse regenerator in chalcogenide waveguides,” Opt. Lett. 30, 2900–2902 (2005).
[CrossRef] [PubMed]

Rode, A.

Rong, H.

Ruan, Y.

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, and Y. Ruan, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 360–370 (2006).
[CrossRef]

V. G. Ta’eed, M. Shokoon-Saremi, L. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Integrated all-optical pulse regenerator in chalcogenide waveguides,” Opt. Lett. 30, 2900–2902 (2005).
[CrossRef] [PubMed]

Salem, R.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2007).
[CrossRef]

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef] [PubMed]

S. F. Preble, Q. Xu, B. S. Schmidt, and M. Lipson, “Ultrafast all-optical modulation on a silicon chip,” Opt. Lett. 30, 2891–2893 (2005).
[CrossRef] [PubMed]

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef] [PubMed]

Shokooh-Saremi, M.

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, and Y. Ruan, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 360–370 (2006).
[CrossRef]

Shokoon-Saremi, M.

Sibett, W.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-Hemyari, C. C. Yang, C.-H. Lin, H.-H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347–371 (1994).
[CrossRef]

Sigg, H.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1–xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Siviloglou, G. A.

Small, B. A.

Sorel, M.

Stanley, C. R.

Stegeman, G. I.

G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. De Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, “Enhanced third-order nonlinear effects in optical AlGaAs nanowires,” Opt. Express 14, 9377–9384 (2006).
[CrossRef] [PubMed]

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[CrossRef]

A. Villeneuve, J. S. Aitchison, B. Vogele, R. Tapella, J. U. Kang, C. Trevino, and G. I. Stegeman, “Waveguide design for minimum nonlinear effective area and switching energy in AlGaAs at half the bandgap,” Electron. Lett. 31, 549–551 (1995).
[CrossRef]

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-Hemyari, C. C. Yang, C.-H. Lin, H.-H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347–371 (1994).
[CrossRef]

Suntsov, S.

Ta’eed, V. G.

M. D. Pelusi, V. G. Ta’eed, M. R. E. Lamont, S. Madden, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett. 19, 1496–1498 (2007).
[CrossRef]

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, and Y. Ruan, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 360–370 (2006).
[CrossRef]

V. G. Ta’eed, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, “All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides,” Opt. Express 14, 11242–11247 (2006).
[CrossRef] [PubMed]

V. G. Ta’eed, M. Shokoon-Saremi, L. Fu, D. J. Moss, M. Rochette, I. C. M. Littler, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “Integrated all-optical pulse regenerator in chalcogenide waveguides,” Opt. Lett. 30, 2900–2902 (2005).
[CrossRef] [PubMed]

Tapella, R.

A. Villeneuve, J. S. Aitchison, B. Vogele, R. Tapella, J. U. Kang, C. Trevino, and G. I. Stegeman, “Waveguide design for minimum nonlinear effective area and switching energy in AlGaAs at half the bandgap,” Electron. Lett. 31, 549–551 (1995).
[CrossRef]

Thienpont, H.

N. Vermeulen, C. Debaes, and H. Thienpont, “Modeling mid-infrared continuous-wave silicon-based Raman lasers,” Proc. SPIE 6455, 64550U (2007).
[CrossRef]

Trevino, C.

A. Villeneuve, J. S. Aitchison, B. Vogele, R. Tapella, J. U. Kang, C. Trevino, and G. I. Stegeman, “Waveguide design for minimum nonlinear effective area and switching energy in AlGaAs at half the bandgap,” Electron. Lett. 31, 549–551 (1995).
[CrossRef]

Turner, A. C.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2007).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef] [PubMed]

Turner-Foster, A. C.

B. J. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21, 182–184 (2009).
[CrossRef]

Vermeulen, N.

N. Vermeulen, C. Debaes, and H. Thienpont, “Modeling mid-infrared continuous-wave silicon-based Raman lasers,” Proc. SPIE 6455, 64550U (2007).
[CrossRef]

Villeneuve, A.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[CrossRef]

A. Villeneuve, J. S. Aitchison, B. Vogele, R. Tapella, J. U. Kang, C. Trevino, and G. I. Stegeman, “Waveguide design for minimum nonlinear effective area and switching energy in AlGaAs at half the bandgap,” Electron. Lett. 31, 549–551 (1995).
[CrossRef]

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-Hemyari, C. C. Yang, C.-H. Lin, H.-H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347–371 (1994).
[CrossRef]

Vogele, B.

A. Villeneuve, J. S. Aitchison, B. Vogele, R. Tapella, J. U. Kang, C. Trevino, and G. I. Stegeman, “Waveguide design for minimum nonlinear effective area and switching energy in AlGaAs at half the bandgap,” Electron. Lett. 31, 549–551 (1995).
[CrossRef]

Vonlanthen, A.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1–xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Xu, D.-X.

Xu, J.

Xu, Q.

Yang, C. C.

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-Hemyari, C. C. Yang, C.-H. Lin, H.-H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347–371 (1994).
[CrossRef]

Electron. Lett. (1)

A. Villeneuve, J. S. Aitchison, B. Vogele, R. Tapella, J. U. Kang, C. Trevino, and G. I. Stegeman, “Waveguide design for minimum nonlinear effective area and switching energy in AlGaAs at half the bandgap,” Electron. Lett. 31, 549–551 (1995).
[CrossRef]

IEEE J. Quantum Electron. (2)

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997).
[CrossRef]

R. J. Deri and E. Kapon, “Low-loss III–V semiconductor optical waveguides,” IEEE J. Quantum Electron. 27, 626–640 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

V. G. Ta’eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, and Y. Ruan, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 360–370 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

B. J. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett. 21, 182–184 (2009).
[CrossRef]

M. D. Pelusi, V. G. Ta’eed, M. R. E. Lamont, S. Madden, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Ultra-high nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing,” IEEE Photon. Technol. Lett. 19, 1496–1498 (2007).
[CrossRef]

W. Astar, P. Apiratikul, T. E. Murphy, and G. M. Carter, “Wavelength conversion of 10-Gb/s RZ-OOK using filtered XPM in a passive GaAs-AlGaAs waveguide,” IEEE Photon. Technol. Lett. 22, 637–639 (2010).
[CrossRef]

Int. J. Nonlinear Opt. Phys. (1)

G. I. Stegeman, A. Villeneuve, J. Kang, J. S. Aitchison, C. N. Ironside, K. Al-Hemyari, C. C. Yang, C.-H. Lin, H.-H. Lin, G. T. Kennedy, R. S. Grant, and W. Sibett, “AlGaAs below half bandgap: the silicon of nonlinear optical materials,” Int. J. Nonlinear Opt. Phys. 3, 347–371 (1994).
[CrossRef]

J. Appl. Phys. (1)

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa1–xAs below the band gap: accurate determination and empirical modeling,” J. Appl. Phys. 87, 7825–7837 (2000).
[CrossRef]

Nat. Photonics (1)

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics 2, 35–38 (2007).
[CrossRef]

Nature (2)

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[CrossRef] [PubMed]

Opt. Express (9)

G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. De Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, “Enhanced third-order nonlinear effects in optical AlGaAs nanowires,” Opt. Express 14, 9377–9384 (2006).
[CrossRef] [PubMed]

V. G. Ta’eed, M. R. E. Lamont, D. J. Moss, B. J. Eggleton, D.-Y. Choi, S. Madden, and B. Luther-Davies, “All optical wavelength conversion via cross phase modulation in chalcogenide glass rib waveguides,” Opt. Express 14, 11242–11247 (2006).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 W−1m−1 As2S3 chalcogenide planar waveguide,” Opt. Express 16, 14938–14944 (2008).
[CrossRef] [PubMed]

W. Mathlouthi, H. Rong, and M. Paniccia, “Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides,” Opt. Express 16, 16735–16745 (2008).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express 16, 20374–20381 (2008).
[CrossRef] [PubMed]

M. Galili, J. Xu, H. C. H. Mulvad, L. K. Oxenlowe, A. T. Clausen, P. Jeppesen, B. Luther-Davies, S. Madden, A. Rode, D.-Y. Choi, M. Pelusi, F. Luan, and B. J. Eggleton, “Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing,” Opt. Express 17, 2182–2187 (2009).
[CrossRef] [PubMed]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express 17, 3514–3520 (2009).
[CrossRef] [PubMed]

F. Li, M. Pelusi, D.-X. Xu, A. Densmore, R. Ma, S. Janz, and D. J. Moss, “Error-free all-optical demultiplexing at 160 Gb/s via FWM in a silicon nanowire,” Opt. Express 18, 3905–3910 (2010).
[CrossRef] [PubMed]

A. Pasquazi, Y. Park, J. Azana, F. Legare, R. Morandotti, B. E. Little, S. T. Chu, and D. J. Moss, “Efficient wavelength conversion and net parametric gain via four wave mixing in a high index doped silica waveguide,” Opt. Express 18, 7634–7641 (2010).
[CrossRef] [PubMed]

Opt. Lett. (4)

Proc. SPIE (1)

N. Vermeulen, C. Debaes, and H. Thienpont, “Modeling mid-infrared continuous-wave silicon-based Raman lasers,” Proc. SPIE 6455, 64550U (2007).
[CrossRef]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics , 3rd ed. (Academic Press, 2001).

D. Duchesne, R. Morandotti, G. A. Siviloglou, R. El-Ganainy, G. I. Stegeman, D. N. Christodoulides, D. Modotto, A. Locatelli, C. De Angelis, F. Pozzi, and M. Sorel, “Nonlinear photonics in AlGaAs photonics nanowires: self phase and cross phase modulation,” International Symposium: Signals, Systems and Electronics , 2007, 475–478.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) The designed AlGaAs wafer composition and (b) the schematic of a strip-loaded waveguide studied in our experiments.

Fig. 2
Fig. 2

Intensity distributions for the fundamental (a) TE and (b) TM modes of an AlGaAs strip-loaded waveguide with the ridge width w = 2μm and height h = 1.2μm.

Fig. 3
Fig. 3

SEM images of (a) Sample 1, (b) Sample 2, (c) Sample 3, and (d) Sample 3 waveguides.

Fig. 4
Fig. 4

Experimental setup for the nonlinear optical characterization of AlGaAs waveguide samples.

Fig. 5
Fig. 5

Spectral broadening due to the SPM in (a) Sample 1, (b) Sample 3, (c) and (d) Sample 4. The OPO output wavelength was set to 1550 nm for (a)–(c), and 1565 nm for (d). The legend shows the values of the in-waveguide peak power and the corresponding values of the nonlinear phase shift. The low-power spectra exhibiting no broadening are shown with thin solid lines.

Fig. 6
Fig. 6

Inverse transmission squared plotted as a function of the peak in-waveguide intensity squared. The experimental data are shown with the points. The dashed lines correspond to the best least-square fit.

Fig. 7
Fig. 7

Cross-phase modulation and four-wave mixing data. (a) An example of a signal broadened due to XPM and an idler generated at 1580 nm due to FWM. For comparison, we show the OPO trace and the spectrum of the cw signal coming out of the EDFA. Wavelength conversion by FWM in (b) Sample 2 and (c) Sample 3 for the OPO wavelength set to 1565 nm, and (d) in Sample 2 for the OPO wavelength at 1547 nm.

Tables (4)

Tables Icon

Table 1 Nonlinear Properties of Materials Used for Integrated Optics at λ = 1550 nm

Tables Icon

Table 2 Effective Mode Area in μm2 for the Fundamental TM Mode

Tables Icon

Table 3 Summary of the AlGaAs Waveguide Samples Prepared for the Nonlinear Optical Characterization

Tables Icon

Table 4. Summary of Losses, Effective Mode Areas and the Values of the Nonlinear Coefficient for the Fundamental TM Mode in the AlGaAs Waveguides Used for the Nonlinear Optical Characterization

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

1 T = n 2 λ 0 α 2 ,
A eff = [ | E ( x , y ) | 2 d x d y ] 2 | E ( x , y ) | 4 d x d y
γ = 2 π n 2 λ 0 A eff ,
L coupl = L tot 2 L refl L prop L .
L NL = 1 P 0 γ ,
L eff = 1 e α L α ,
ω i = ω p1 + ω p 2 ω s ,
ω i = 2 ω p ω s ,
L w = T 0 D Δ λ max .

Metrics