Abstract

We propose and investigate an ultra-wideband leaky-wave antenna that operates at optical frequencies for the purpose of efficient energy coupling between localized nanoscale optical circuits and the far-field. The antenna consists of an optically narrow aluminum slot on a silicon substrate. We analyze its far-field radiation pattern in the spectral region centered around 1550nm with a 50% bandwidth ranging from 2000nm to 1200nm. This plasmonic leaky-wave slot produces a maximum far-field radiation angle at 32° and a 3dB beamwidth of 24° at its center wavelength. The radiation pattern is preserved within the 50% bandwidth suffering only insignificant changes in both the radiation angle and the beamwidth. This wide-band performance is quite unique when compared to other optical antenna designs. Furthermore, the antenna effective length for radiating 90% and 99.9% of the input power is only 0.5λ 0 and 1.5λ 0 respectively at 1550nm. The versatility and simplicity of the proposed design along with its small footprint makes it extremely attractive for integration with nano-optical components using existing technologies.

© 2011 OSA

Full Article  |  PDF Article

Errata

Yan Wang, Amr S. Helmy, and George V. Eleftheriades, "Ultra-wideband optical leaky-wave slot antennas: errata," Opt. Express 21, 13184-13186 (2013)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-21-11-13184

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef] [PubMed]
  2. J. Takahara and T. Kobayashi, “From subwavelength optics to nano-optics,” Opt. Photon. News 15, 54–59 (2004).
    [CrossRef]
  3. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
    [CrossRef] [PubMed]
  4. P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett. 31, 3288–3290 (2006).
    [CrossRef] [PubMed]
  5. J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-plolariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95, 013504 (2009).
    [CrossRef]
  6. P. Ginzburg and M. Orenstein, “Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching,” Opt. Express 15, 6762–6767 (2007).
    [CrossRef] [PubMed]
  7. H. Giessen and M. Lippitz, “Directing light emission from quantum dots,” Science 329, 910–911 (2010).
    [CrossRef] [PubMed]
  8. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
    [CrossRef] [PubMed]
  9. A. Alú and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2, 307–310 (2008).
    [CrossRef]
  10. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
    [CrossRef]
  11. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006).
    [CrossRef]
  12. N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, “Bowtie plasmonic quantum cascade laser antenna,” Opt. Express 15, 13272–13281 (2007).
    [CrossRef] [PubMed]
  13. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
    [CrossRef] [PubMed]
  14. T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4, 312–315 (2010).
    [CrossRef]
  15. X. X. Liu and A. Alú, “Subwavelength leaky-wave optical nanoantennas: directive radiation from linear arrays of plasmonic nanoparticles,” Phys. Rev. B 82, 144305 (2010).
    [CrossRef]
  16. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
    [CrossRef]
  17. A. Neto and S. Maci, “Green’s function for an infinite slot printed between two homogeneous dielectrics - part I: magnetic currents,” IEEE Trans. Antennas Propag. 51, 1572–1581 (2003).
    [CrossRef]
  18. A. Neto and S. Maci, “Green’s function for an infinite slot printed between two homogeneous dielectrics - part II: uniform asymptotic solution,” IEEE Trans. Antennas Propag. 52, 666–676 (2004).
    [CrossRef]
  19. G. V. Eleftheriades and G. M. Rebeiz, “Self and mutual admittance of slot antennas on a dielectric half-space,” Int. J. Infrared Millim. Waves 14, 1925–1946 (1993).
    [CrossRef]
  20. C. A. Balanis, Antenna Theory: Analysis and Design , 3rd ed. (Wiley, 2005), Chap. 10.
  21. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [CrossRef]
  22. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 55186–5201 (1986).
    [CrossRef]
  23. Y. Wang, R. Islam, and G. V. Eleftheriades, “An ultra-short contra-directional coupler utilizing surface plasmon-polaritons at optical frequencies,” Opt. Express 14, 7279–7290 (2006).
    [CrossRef] [PubMed]
  24. G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett. 30, 3359–3361 (2005).
    [CrossRef]

2010

H. Giessen and M. Lippitz, “Directing light emission from quantum dots,” Science 329, 910–911 (2010).
[CrossRef] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef] [PubMed]

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4, 312–315 (2010).
[CrossRef]

X. X. Liu and A. Alú, “Subwavelength leaky-wave optical nanoantennas: directive radiation from linear arrays of plasmonic nanoparticles,” Phys. Rev. B 82, 144305 (2010).
[CrossRef]

2009

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-plolariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95, 013504 (2009).
[CrossRef]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
[CrossRef]

2008

A. Alú and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2, 307–310 (2008).
[CrossRef]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
[CrossRef]

2007

2006

2005

2004

A. Neto and S. Maci, “Green’s function for an infinite slot printed between two homogeneous dielectrics - part II: uniform asymptotic solution,” IEEE Trans. Antennas Propag. 52, 666–676 (2004).
[CrossRef]

J. Takahara and T. Kobayashi, “From subwavelength optics to nano-optics,” Opt. Photon. News 15, 54–59 (2004).
[CrossRef]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

A. Neto and S. Maci, “Green’s function for an infinite slot printed between two homogeneous dielectrics - part I: magnetic currents,” IEEE Trans. Antennas Propag. 51, 1572–1581 (2003).
[CrossRef]

1998

1993

G. V. Eleftheriades and G. M. Rebeiz, “Self and mutual admittance of slot antennas on a dielectric half-space,” Int. J. Infrared Millim. Waves 14, 1925–1946 (1993).
[CrossRef]

1986

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 55186–5201 (1986).
[CrossRef]

Alú, A.

X. X. Liu and A. Alú, “Subwavelength leaky-wave optical nanoantennas: directive radiation from linear arrays of plasmonic nanoparticles,” Phys. Rev. B 82, 144305 (2010).
[CrossRef]

A. Alú and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2, 307–310 (2008).
[CrossRef]

Arbel, D.

Balanis, C. A.

C. A. Balanis, Antenna Theory: Analysis and Design , 3rd ed. (Wiley, 2005), Chap. 10.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Bharadwaj, P.

Bour, D.

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 55186–5201 (1986).
[CrossRef]

Capasso, F.

Corzine, S.

Crozier, K. B.

Cubukcu, E.

Curto, A. G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Deutsch, B.

Diehl, L.

Djurišic, A. B.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Elazar, J. M.

Eleftheriades, G. V.

Y. Wang, R. Islam, and G. V. Eleftheriades, “An ultra-short contra-directional coupler utilizing surface plasmon-polaritons at optical frequencies,” Opt. Express 14, 7279–7290 (2006).
[CrossRef] [PubMed]

G. V. Eleftheriades and G. M. Rebeiz, “Self and mutual admittance of slot antennas on a dielectric half-space,” Int. J. Infrared Millim. Waves 14, 1925–1946 (1993).
[CrossRef]

Engheta, N.

A. Alú and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2, 307–310 (2008).
[CrossRef]

Fan, S.

Giessen, H.

H. Giessen and M. Lippitz, “Directing light emission from quantum dots,” Science 329, 910–911 (2010).
[CrossRef] [PubMed]

Ginzburg, P.

Höfler, G.

Hofmann, H. F.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4, 312–315 (2010).
[CrossRef]

Islam, R.

Kadoya, Y.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4, 312–315 (2010).
[CrossRef]

Kobayashi, T.

J. Takahara and T. Kobayashi, “From subwavelength optics to nano-optics,” Opt. Photon. News 15, 54–59 (2004).
[CrossRef]

Kort, E. A.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

Kosako, T.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4, 312–315 (2010).
[CrossRef]

Kreuzer, M. P.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef] [PubMed]

Lippitz, M.

H. Giessen and M. Lippitz, “Directing light emission from quantum dots,” Science 329, 910–911 (2010).
[CrossRef] [PubMed]

Liu, X. X.

X. X. Liu and A. Alú, “Subwavelength leaky-wave optical nanoantennas: directive radiation from linear arrays of plasmonic nanoparticles,” Phys. Rev. B 82, 144305 (2010).
[CrossRef]

Maci, S.

A. Neto and S. Maci, “Green’s function for an infinite slot printed between two homogeneous dielectrics - part II: uniform asymptotic solution,” IEEE Trans. Antennas Propag. 52, 666–676 (2004).
[CrossRef]

A. Neto and S. Maci, “Green’s function for an infinite slot printed between two homogeneous dielectrics - part I: magnetic currents,” IEEE Trans. Antennas Propag. 51, 1572–1581 (2003).
[CrossRef]

Majewski, M. L.

Neto, A.

A. Neto and S. Maci, “Green’s function for an infinite slot printed between two homogeneous dielectrics - part II: uniform asymptotic solution,” IEEE Trans. Antennas Propag. 52, 666–676 (2004).
[CrossRef]

A. Neto and S. Maci, “Green’s function for an infinite slot printed between two homogeneous dielectrics - part I: magnetic currents,” IEEE Trans. Antennas Propag. 51, 1572–1581 (2003).
[CrossRef]

Novotny, L.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009).
[CrossRef]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

Orenstein, M.

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

Qiu, M.

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-plolariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95, 013504 (2009).
[CrossRef]

Quidant, R.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef] [PubMed]

Rakic, A. D.

Rebeiz, G. M.

G. V. Eleftheriades and G. M. Rebeiz, “Self and mutual admittance of slot antennas on a dielectric half-space,” Int. J. Infrared Millim. Waves 14, 1925–1946 (1993).
[CrossRef]

Segerink, F. B.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
[CrossRef]

Stefani, F. D.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
[CrossRef]

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 55186–5201 (1986).
[CrossRef]

Takahara, J.

J. Takahara and T. Kobayashi, “From subwavelength optics to nano-optics,” Opt. Photon. News 15, 54–59 (2004).
[CrossRef]

Taminiau, T. H.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef] [PubMed]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
[CrossRef]

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 55186–5201 (1986).
[CrossRef]

Tian, J.

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-plolariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95, 013504 (2009).
[CrossRef]

van Hulst, N. F.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef] [PubMed]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
[CrossRef]

Veronis, G.

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef] [PubMed]

Wang, Y.

Yan, W.

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-plolariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95, 013504 (2009).
[CrossRef]

Yu, N.

Yu, S.

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-plolariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95, 013504 (2009).
[CrossRef]

Zhu, J.

Adv. Opt. Photon.

Appl. Opt.

Appl. Phys. Lett.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

J. Tian, S. Yu, W. Yan, and M. Qiu, “Broadband high-efficiency surface-plasmon-plolariton coupler with silicon-metal interface,” Appl. Phys. Lett. 95, 013504 (2009).
[CrossRef]

IEEE Trans. Antennas Propag.

A. Neto and S. Maci, “Green’s function for an infinite slot printed between two homogeneous dielectrics - part I: magnetic currents,” IEEE Trans. Antennas Propag. 51, 1572–1581 (2003).
[CrossRef]

A. Neto and S. Maci, “Green’s function for an infinite slot printed between two homogeneous dielectrics - part II: uniform asymptotic solution,” IEEE Trans. Antennas Propag. 52, 666–676 (2004).
[CrossRef]

Int. J. Infrared Millim. Waves

G. V. Eleftheriades and G. M. Rebeiz, “Self and mutual admittance of slot antennas on a dielectric half-space,” Int. J. Infrared Millim. Waves 14, 1925–1946 (1993).
[CrossRef]

Nat. Photonics

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics 4, 312–315 (2010).
[CrossRef]

A. Alú and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2, 307–310 (2008).
[CrossRef]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2, 234–237 (2008).
[CrossRef]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Opt. Photon. News

J. Takahara and T. Kobayashi, “From subwavelength optics to nano-optics,” Opt. Photon. News 15, 54–59 (2004).
[CrossRef]

Phys. Rev. B

X. X. Liu and A. Alú, “Subwavelength leaky-wave optical nanoantennas: directive radiation from linear arrays of plasmonic nanoparticles,” Phys. Rev. B 82, 144305 (2010).
[CrossRef]

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 55186–5201 (1986).
[CrossRef]

Phys. Rev. Lett.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

Science

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[CrossRef] [PubMed]

H. Giessen and M. Lippitz, “Directing light emission from quantum dots,” Science 329, 910–911 (2010).
[CrossRef] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[CrossRef] [PubMed]

Other

C. A. Balanis, Antenna Theory: Analysis and Design , 3rd ed. (Wiley, 2005), Chap. 10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The geometry of the proposed plasmonic leaky-wave antenna. The structure consists of a metallic (aluminum) slot placed between two dielectric half-spaces. In our design, the upper medium is silicon and the lower one is air. The slot is 46nm thick and 46nm wide, which corresponds to about 0.03λ 0 at the center operating wavelength of 1550nm. The leaky mode along the slot is excited by an electric dipole (the red arrow) at z = 0, and it radiates energy into the silicon upper space.

Fig. 2
Fig. 2

The directivity of the PEC slot antenna placed between silicon and air. The schematic of the structure is illustrated in Fig. 1. The simulation is conducted in ADS Momentum by Agilent Technologies based on the method of moments (MoM). The slot antenna operates at 1550nm. (a) 3D directivity pattern; (b) 2D directivity pattern in the H-plane.

Fig. 3
Fig. 3

The normalized complex propagation constant (the effective mode index) of the leaky mode for an infinite PEC slot placed between silicon and air. The slot width is fixed at 46nm, which corresponds to 0.03λ 0 at 1550nm. The spectrum ranges from 2000nm to 1200nm. The data is obtained from the eigenmode analysis in Comsol Multiphysics by Comsol Inc. (a) Phase constant β; (b) Leakage constant α.

Fig. 4
Fig. 4

The normalized directivity pattern in the H-plane for an infinite PEC slot placed between air and silicon. The results are based on the theoretical calculation using Eq. (2) and the complex propagation constant in Fig. 3. (a) Normalized directivity for the slot width ranging from 0.01λ 0 to 0.07λ 0; (b) Comparison between the theoretical calculation and the MoM simulation at 1550nm.

Fig. 5
Fig. 5

The dispersion diagrams of the relative electric permittivity of gold, silver and aluminum at optical frequencies. (a) Real component; (b) Imaginary component.

Fig. 6
Fig. 6

The normalized complex propagation constant (the effective mode index) of the slot mode for an infinite PLS placed between air and silicon. The aluminum slot is 46nm thick and 46nm wide. The spectrum of our interest centers at 1550nm and ranges from 2000nm to 1200nm. The data is obtained through the 3D full-wave simulations in Comsol Multiphysics by Comsol Inc. (a) Phase constant β; (b) Attenuation constant α.

Fig. 7
Fig. 7

The comparison of the radiation pattern for an infinite PEC leaky slot and a PLS antenna of the same dimension. (a) The radiation pattern at the center wavelength of 1550nm; (b) The radiation angle variation (squinting) with wavelength; (c) The 3dB beamwidth fluctuation with wavelength.

Fig. 8
Fig. 8

The power remained in the PLS antenna with respect to the input at 1550nm. The dashed line represents the situation where only the radiation loss is accounted for. The solid line represents the one where both the radiation and the metallic dissipation are present.

Fig. 9
Fig. 9

The effect of 10% variation in the aluminum film thickness on the radiation pattern at 1550nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

H θ = j k 2 I m 0 l η 2 e j k 2 r 4 π r sin θ ( e j k 2 l 2 ( cos θ K ) ) sin ( k 2 l 2 ( cos θ K ) ) k 2 l 2 ( cos θ K )
P θ = 1 2 η 2 | H θ | 2
cos ( θ ) = β k 2 ɛ 1 + ɛ 2 2 ɛ 2

Metrics