Abstract

Biological applications where nanoparticles are used in a cell environment with laser irradiation are rapidly emerging. Investigation of the localized heating effect due to the laser irradiation on the particle is required to preclude unintended thermal effects. While bulk temperature rise can be determined using macroscale measurement methods, observation of the actual temperature within the nanoscale domain around the particle is difficult and here we propose a method to measure the local temperature around a single gold nanoparticle in liquid, using white light scattering spectroscopy. Using 40-nm-diameter gold nanoparticles coated with thermo-responsive polymer, we monitored the localized heating effect through the plasmon peak shift. The shift occurs due to the temperature-dependent refractive index change in surrounding polymer medium. The results indicate that the particle experiences a temperature rise of around 10 degrees Celsius when irradiated with tightly focused irradiation of ~1 mW at 532 nm.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
    [CrossRef]
  2. A. Barhoumi, R. Huschka, R. Bardhan, M. W. Knight, and N. J. Halas, “Light-induced release of DNA from Plasmon-resonant nanoparticles: Towards light-controlled gene therapy,” Chem. Phys. Lett. 482(4-6), 171–179 (2009).
    [CrossRef]
  3. R. R. Anderson and J. A. Parrish, “Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation,” Science 220(4596), 524–527 (1983).
    [CrossRef] [PubMed]
  4. X. D. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
    [CrossRef] [PubMed]
  5. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
    [CrossRef] [PubMed]
  6. K. Fujita, S. Ishitobi, K. Hamada, N. I. Smith, A. Taguchi, Y. Inouye, and S. Kawata, “Time-resolved observation of surface-enhanced Raman scattering from gold nanoparticles during transport through a living cell,” J. Biomed. Opt. 14(2), 024038 (2009).
    [CrossRef] [PubMed]
  7. X. X. Han, B. Zhao, and Y. Ozaki, “Surface-enhanced Raman scattering for protein detection,” Anal. Bioanal. Chem. 394(7), 1719–1727 (2009).
    [CrossRef] [PubMed]
  8. W. Haeberle, M. Pantea, and J. K. H. Hoerber, “Nanometer-scale heat-conductivity measurements on biological samples,” Ultramicroscopy 106(8-9), 678–686 (2006).
    [CrossRef] [PubMed]
  9. C. M. Tan, J. Jia, and W. Yu, “Temperature dependence of the field emission of multiwalled carbon nanotubes,” Appl. Phys. Lett. 86(26), 263104 (2005).
    [CrossRef]
  10. H. Aizawa, T. Katsumata, S. Komuro, T. Morikawa, H. Ishizawa, and E. Toba, “Fluorescence thermometer based on the photoluminescence intensity ratio in Tb doped phosphor materials,” Sens. Actuators A Phys. 101(1), 78–82 (2002).
  11. J. Lee, A. O. Govorov, and N. A. Kotov, “Nanoparticle assemblies with molecular springs: a nanoscale thermometer,” Angew. Chem. 117(45), 7605–7608 (2005).
    [CrossRef]
  12. C. Gota, K. Okabe, T. Funatsu, Y. Harada, and S. Uchiyama, “Hydrophilic fluorescent nanogel thermometer for intracellular thermometry,” J. Am. Chem. Soc. 131(8), 2766–2767 (2009).
    [CrossRef] [PubMed]
  13. H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch, “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett. 6(4), 783–788 (2006).
    [CrossRef] [PubMed]
  14. J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
    [CrossRef] [PubMed]
  15. X. He, W. F. Wolkers, J. H. Crowe, D. J. Swanlund, and J. C. Bischof, “In situ thermal denaturation of proteins in dunning AT-1 prostate cancer cells: implication for hyperthermic cell injury,” Ann. Biomed. Eng. 32(10), 1384–1398 (2004).
    [CrossRef] [PubMed]
  16. M. Y. Sfeir, F. Wang, L. Huang, C. C. Chuang, J. Hone, S. P. O’Brien, T. F. Heinz, and L. E. Brus, “Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering,” Science 306(5701), 1540–1543 (2004).
    [CrossRef] [PubMed]
  17. S. Kawata, Near-Field Optics and Surface Plasmon Polaritons (Springer, 2001).
  18. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  19. B. W. Garner, T. Cai, S. Ghosh, Z. Hu, and A. Neogi, “Refractive Index change due to volume-phase transition in polyacrylamide gel nanospheres for optoelectronics and bio-photonics,” Appl. Phys. Express 2, 057001 (2009).
    [CrossRef]
  20. R. Contreras-Cáceres, J. Pacifico, I. Pastoriza-Santos, J. Perez-Juste, A. Fernandez-Barbero, and L. M. Liz-Marzan, “Au@pNIPAM thermosensitive nanostructures: control over shell cross-linking, overall dimensions, and core growth,” Adv. Funct. Mater. 19(19), 3070–3076 (2009).
    [CrossRef]
  21. R. M. J. Cotterill, Biophysics (Wiley, 2002).
    [PubMed]
  22. T. Okamoto and I. Yamaguchi, “Field enhancement by a metallic sphere on dielectric substrates,” Opt. Rev. 6(3), 211–214 (1999).
    [CrossRef]
  23. P. Keblinski, D. G. Cahill, A. Bodapati, C. R. Sullivan, and T. A. Taton, “Limits of localized heating by electromagnetically excited nanoparticles,” J. Appl. Phys. 100(5), 054305 (2006).
    [CrossRef]
  24. J. Hofkens, J. Hotta, K. Sasaki, H. Masuhara, and K. Iwai, “Molecular assembling by the radiation pressure of a focused laser beam: poly(N-isopropylacrylamide) in aqueous solution,” Langmuir 13(3), 414–419 (1997).
    [CrossRef]
  25. S. Iwanaga, N. I. Smith, K. Fujita, and S. Kawata, “Slow Ca(2+) wave stimulation using low repetition rate femtosecond pulsed irradiation,” Opt. Express 14(2), 717–725 (2006).
    [CrossRef] [PubMed]

2009

A. Barhoumi, R. Huschka, R. Bardhan, M. W. Knight, and N. J. Halas, “Light-induced release of DNA from Plasmon-resonant nanoparticles: Towards light-controlled gene therapy,” Chem. Phys. Lett. 482(4-6), 171–179 (2009).
[CrossRef]

K. Fujita, S. Ishitobi, K. Hamada, N. I. Smith, A. Taguchi, Y. Inouye, and S. Kawata, “Time-resolved observation of surface-enhanced Raman scattering from gold nanoparticles during transport through a living cell,” J. Biomed. Opt. 14(2), 024038 (2009).
[CrossRef] [PubMed]

X. X. Han, B. Zhao, and Y. Ozaki, “Surface-enhanced Raman scattering for protein detection,” Anal. Bioanal. Chem. 394(7), 1719–1727 (2009).
[CrossRef] [PubMed]

C. Gota, K. Okabe, T. Funatsu, Y. Harada, and S. Uchiyama, “Hydrophilic fluorescent nanogel thermometer for intracellular thermometry,” J. Am. Chem. Soc. 131(8), 2766–2767 (2009).
[CrossRef] [PubMed]

B. W. Garner, T. Cai, S. Ghosh, Z. Hu, and A. Neogi, “Refractive Index change due to volume-phase transition in polyacrylamide gel nanospheres for optoelectronics and bio-photonics,” Appl. Phys. Express 2, 057001 (2009).
[CrossRef]

R. Contreras-Cáceres, J. Pacifico, I. Pastoriza-Santos, J. Perez-Juste, A. Fernandez-Barbero, and L. M. Liz-Marzan, “Au@pNIPAM thermosensitive nanostructures: control over shell cross-linking, overall dimensions, and core growth,” Adv. Funct. Mater. 19(19), 3070–3076 (2009).
[CrossRef]

2008

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[CrossRef]

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[CrossRef] [PubMed]

2006

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch, “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett. 6(4), 783–788 (2006).
[CrossRef] [PubMed]

W. Haeberle, M. Pantea, and J. K. H. Hoerber, “Nanometer-scale heat-conductivity measurements on biological samples,” Ultramicroscopy 106(8-9), 678–686 (2006).
[CrossRef] [PubMed]

P. Keblinski, D. G. Cahill, A. Bodapati, C. R. Sullivan, and T. A. Taton, “Limits of localized heating by electromagnetically excited nanoparticles,” J. Appl. Phys. 100(5), 054305 (2006).
[CrossRef]

S. Iwanaga, N. I. Smith, K. Fujita, and S. Kawata, “Slow Ca(2+) wave stimulation using low repetition rate femtosecond pulsed irradiation,” Opt. Express 14(2), 717–725 (2006).
[CrossRef] [PubMed]

2005

C. M. Tan, J. Jia, and W. Yu, “Temperature dependence of the field emission of multiwalled carbon nanotubes,” Appl. Phys. Lett. 86(26), 263104 (2005).
[CrossRef]

J. Lee, A. O. Govorov, and N. A. Kotov, “Nanoparticle assemblies with molecular springs: a nanoscale thermometer,” Angew. Chem. 117(45), 7605–7608 (2005).
[CrossRef]

2004

X. He, W. F. Wolkers, J. H. Crowe, D. J. Swanlund, and J. C. Bischof, “In situ thermal denaturation of proteins in dunning AT-1 prostate cancer cells: implication for hyperthermic cell injury,” Ann. Biomed. Eng. 32(10), 1384–1398 (2004).
[CrossRef] [PubMed]

M. Y. Sfeir, F. Wang, L. Huang, C. C. Chuang, J. Hone, S. P. O’Brien, T. F. Heinz, and L. E. Brus, “Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering,” Science 306(5701), 1540–1543 (2004).
[CrossRef] [PubMed]

2003

X. D. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

2002

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

H. Aizawa, T. Katsumata, S. Komuro, T. Morikawa, H. Ishizawa, and E. Toba, “Fluorescence thermometer based on the photoluminescence intensity ratio in Tb doped phosphor materials,” Sens. Actuators A Phys. 101(1), 78–82 (2002).

1999

T. Okamoto and I. Yamaguchi, “Field enhancement by a metallic sphere on dielectric substrates,” Opt. Rev. 6(3), 211–214 (1999).
[CrossRef]

1997

J. Hofkens, J. Hotta, K. Sasaki, H. Masuhara, and K. Iwai, “Molecular assembling by the radiation pressure of a focused laser beam: poly(N-isopropylacrylamide) in aqueous solution,” Langmuir 13(3), 414–419 (1997).
[CrossRef]

1983

R. R. Anderson and J. A. Parrish, “Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation,” Science 220(4596), 524–527 (1983).
[CrossRef] [PubMed]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Aglyamov, S.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[CrossRef] [PubMed]

Aizawa, H.

H. Aizawa, T. Katsumata, S. Komuro, T. Morikawa, H. Ishizawa, and E. Toba, “Fluorescence thermometer based on the photoluminescence intensity ratio in Tb doped phosphor materials,” Sens. Actuators A Phys. 101(1), 78–82 (2002).

Anderson, R. R.

R. R. Anderson and J. A. Parrish, “Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation,” Science 220(4596), 524–527 (1983).
[CrossRef] [PubMed]

Bardhan, R.

A. Barhoumi, R. Huschka, R. Bardhan, M. W. Knight, and N. J. Halas, “Light-induced release of DNA from Plasmon-resonant nanoparticles: Towards light-controlled gene therapy,” Chem. Phys. Lett. 482(4-6), 171–179 (2009).
[CrossRef]

Barhoumi, A.

A. Barhoumi, R. Huschka, R. Bardhan, M. W. Knight, and N. J. Halas, “Light-induced release of DNA from Plasmon-resonant nanoparticles: Towards light-controlled gene therapy,” Chem. Phys. Lett. 482(4-6), 171–179 (2009).
[CrossRef]

Bischof, J. C.

X. He, W. F. Wolkers, J. H. Crowe, D. J. Swanlund, and J. C. Bischof, “In situ thermal denaturation of proteins in dunning AT-1 prostate cancer cells: implication for hyperthermic cell injury,” Ann. Biomed. Eng. 32(10), 1384–1398 (2004).
[CrossRef] [PubMed]

Bodapati, A.

P. Keblinski, D. G. Cahill, A. Bodapati, C. R. Sullivan, and T. A. Taton, “Limits of localized heating by electromagnetically excited nanoparticles,” J. Appl. Phys. 100(5), 054305 (2006).
[CrossRef]

Boyer, D.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

Brus, L. E.

M. Y. Sfeir, F. Wang, L. Huang, C. C. Chuang, J. Hone, S. P. O’Brien, T. F. Heinz, and L. E. Brus, “Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering,” Science 306(5701), 1540–1543 (2004).
[CrossRef] [PubMed]

Cahill, D. G.

P. Keblinski, D. G. Cahill, A. Bodapati, C. R. Sullivan, and T. A. Taton, “Limits of localized heating by electromagnetically excited nanoparticles,” J. Appl. Phys. 100(5), 054305 (2006).
[CrossRef]

Cai, T.

B. W. Garner, T. Cai, S. Ghosh, Z. Hu, and A. Neogi, “Refractive Index change due to volume-phase transition in polyacrylamide gel nanospheres for optoelectronics and bio-photonics,” Appl. Phys. Express 2, 057001 (2009).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Chuang, C. C.

M. Y. Sfeir, F. Wang, L. Huang, C. C. Chuang, J. Hone, S. P. O’Brien, T. F. Heinz, and L. E. Brus, “Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering,” Science 306(5701), 1540–1543 (2004).
[CrossRef] [PubMed]

Contreras-Cáceres, R.

R. Contreras-Cáceres, J. Pacifico, I. Pastoriza-Santos, J. Perez-Juste, A. Fernandez-Barbero, and L. M. Liz-Marzan, “Au@pNIPAM thermosensitive nanostructures: control over shell cross-linking, overall dimensions, and core growth,” Adv. Funct. Mater. 19(19), 3070–3076 (2009).
[CrossRef]

Crowe, J. H.

X. He, W. F. Wolkers, J. H. Crowe, D. J. Swanlund, and J. C. Bischof, “In situ thermal denaturation of proteins in dunning AT-1 prostate cancer cells: implication for hyperthermic cell injury,” Ann. Biomed. Eng. 32(10), 1384–1398 (2004).
[CrossRef] [PubMed]

El-Sayed, I. H.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[CrossRef]

El-Sayed, M. A.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[CrossRef]

Emelianov, S. Y.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[CrossRef] [PubMed]

Fernandez-Barbero, A.

R. Contreras-Cáceres, J. Pacifico, I. Pastoriza-Santos, J. Perez-Juste, A. Fernandez-Barbero, and L. M. Liz-Marzan, “Au@pNIPAM thermosensitive nanostructures: control over shell cross-linking, overall dimensions, and core growth,” Adv. Funct. Mater. 19(19), 3070–3076 (2009).
[CrossRef]

Fujita, K.

K. Fujita, S. Ishitobi, K. Hamada, N. I. Smith, A. Taguchi, Y. Inouye, and S. Kawata, “Time-resolved observation of surface-enhanced Raman scattering from gold nanoparticles during transport through a living cell,” J. Biomed. Opt. 14(2), 024038 (2009).
[CrossRef] [PubMed]

S. Iwanaga, N. I. Smith, K. Fujita, and S. Kawata, “Slow Ca(2+) wave stimulation using low repetition rate femtosecond pulsed irradiation,” Opt. Express 14(2), 717–725 (2006).
[CrossRef] [PubMed]

Funatsu, T.

C. Gota, K. Okabe, T. Funatsu, Y. Harada, and S. Uchiyama, “Hydrophilic fluorescent nanogel thermometer for intracellular thermometry,” J. Am. Chem. Soc. 131(8), 2766–2767 (2009).
[CrossRef] [PubMed]

Garner, B. W.

B. W. Garner, T. Cai, S. Ghosh, Z. Hu, and A. Neogi, “Refractive Index change due to volume-phase transition in polyacrylamide gel nanospheres for optoelectronics and bio-photonics,” Appl. Phys. Express 2, 057001 (2009).
[CrossRef]

Ghosh, S.

B. W. Garner, T. Cai, S. Ghosh, Z. Hu, and A. Neogi, “Refractive Index change due to volume-phase transition in polyacrylamide gel nanospheres for optoelectronics and bio-photonics,” Appl. Phys. Express 2, 057001 (2009).
[CrossRef]

Gota, C.

C. Gota, K. Okabe, T. Funatsu, Y. Harada, and S. Uchiyama, “Hydrophilic fluorescent nanogel thermometer for intracellular thermometry,” J. Am. Chem. Soc. 131(8), 2766–2767 (2009).
[CrossRef] [PubMed]

Govorov, A. O.

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch, “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett. 6(4), 783–788 (2006).
[CrossRef] [PubMed]

J. Lee, A. O. Govorov, and N. A. Kotov, “Nanoparticle assemblies with molecular springs: a nanoscale thermometer,” Angew. Chem. 117(45), 7605–7608 (2005).
[CrossRef]

Haeberle, W.

W. Haeberle, M. Pantea, and J. K. H. Hoerber, “Nanometer-scale heat-conductivity measurements on biological samples,” Ultramicroscopy 106(8-9), 678–686 (2006).
[CrossRef] [PubMed]

Halas, N. J.

A. Barhoumi, R. Huschka, R. Bardhan, M. W. Knight, and N. J. Halas, “Light-induced release of DNA from Plasmon-resonant nanoparticles: Towards light-controlled gene therapy,” Chem. Phys. Lett. 482(4-6), 171–179 (2009).
[CrossRef]

Hamada, K.

K. Fujita, S. Ishitobi, K. Hamada, N. I. Smith, A. Taguchi, Y. Inouye, and S. Kawata, “Time-resolved observation of surface-enhanced Raman scattering from gold nanoparticles during transport through a living cell,” J. Biomed. Opt. 14(2), 024038 (2009).
[CrossRef] [PubMed]

Han, X. X.

X. X. Han, B. Zhao, and Y. Ozaki, “Surface-enhanced Raman scattering for protein detection,” Anal. Bioanal. Chem. 394(7), 1719–1727 (2009).
[CrossRef] [PubMed]

Harada, Y.

C. Gota, K. Okabe, T. Funatsu, Y. Harada, and S. Uchiyama, “Hydrophilic fluorescent nanogel thermometer for intracellular thermometry,” J. Am. Chem. Soc. 131(8), 2766–2767 (2009).
[CrossRef] [PubMed]

He, X.

X. He, W. F. Wolkers, J. H. Crowe, D. J. Swanlund, and J. C. Bischof, “In situ thermal denaturation of proteins in dunning AT-1 prostate cancer cells: implication for hyperthermic cell injury,” Ann. Biomed. Eng. 32(10), 1384–1398 (2004).
[CrossRef] [PubMed]

Heinz, T. F.

M. Y. Sfeir, F. Wang, L. Huang, C. C. Chuang, J. Hone, S. P. O’Brien, T. F. Heinz, and L. E. Brus, “Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering,” Science 306(5701), 1540–1543 (2004).
[CrossRef] [PubMed]

Hickman, Z. N.

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch, “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett. 6(4), 783–788 (2006).
[CrossRef] [PubMed]

Hoerber, J. K. H.

W. Haeberle, M. Pantea, and J. K. H. Hoerber, “Nanometer-scale heat-conductivity measurements on biological samples,” Ultramicroscopy 106(8-9), 678–686 (2006).
[CrossRef] [PubMed]

Hofkens, J.

J. Hofkens, J. Hotta, K. Sasaki, H. Masuhara, and K. Iwai, “Molecular assembling by the radiation pressure of a focused laser beam: poly(N-isopropylacrylamide) in aqueous solution,” Langmuir 13(3), 414–419 (1997).
[CrossRef]

Hone, J.

M. Y. Sfeir, F. Wang, L. Huang, C. C. Chuang, J. Hone, S. P. O’Brien, T. F. Heinz, and L. E. Brus, “Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering,” Science 306(5701), 1540–1543 (2004).
[CrossRef] [PubMed]

Hotta, J.

J. Hofkens, J. Hotta, K. Sasaki, H. Masuhara, and K. Iwai, “Molecular assembling by the radiation pressure of a focused laser beam: poly(N-isopropylacrylamide) in aqueous solution,” Langmuir 13(3), 414–419 (1997).
[CrossRef]

Hu, Z.

B. W. Garner, T. Cai, S. Ghosh, Z. Hu, and A. Neogi, “Refractive Index change due to volume-phase transition in polyacrylamide gel nanospheres for optoelectronics and bio-photonics,” Appl. Phys. Express 2, 057001 (2009).
[CrossRef]

Huang, L.

M. Y. Sfeir, F. Wang, L. Huang, C. C. Chuang, J. Hone, S. P. O’Brien, T. F. Heinz, and L. E. Brus, “Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering,” Science 306(5701), 1540–1543 (2004).
[CrossRef] [PubMed]

Huang, X.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[CrossRef]

Huschka, R.

A. Barhoumi, R. Huschka, R. Bardhan, M. W. Knight, and N. J. Halas, “Light-induced release of DNA from Plasmon-resonant nanoparticles: Towards light-controlled gene therapy,” Chem. Phys. Lett. 482(4-6), 171–179 (2009).
[CrossRef]

Inouye, Y.

K. Fujita, S. Ishitobi, K. Hamada, N. I. Smith, A. Taguchi, Y. Inouye, and S. Kawata, “Time-resolved observation of surface-enhanced Raman scattering from gold nanoparticles during transport through a living cell,” J. Biomed. Opt. 14(2), 024038 (2009).
[CrossRef] [PubMed]

Ishitobi, S.

K. Fujita, S. Ishitobi, K. Hamada, N. I. Smith, A. Taguchi, Y. Inouye, and S. Kawata, “Time-resolved observation of surface-enhanced Raman scattering from gold nanoparticles during transport through a living cell,” J. Biomed. Opt. 14(2), 024038 (2009).
[CrossRef] [PubMed]

Ishizawa, H.

H. Aizawa, T. Katsumata, S. Komuro, T. Morikawa, H. Ishizawa, and E. Toba, “Fluorescence thermometer based on the photoluminescence intensity ratio in Tb doped phosphor materials,” Sens. Actuators A Phys. 101(1), 78–82 (2002).

Iwai, K.

J. Hofkens, J. Hotta, K. Sasaki, H. Masuhara, and K. Iwai, “Molecular assembling by the radiation pressure of a focused laser beam: poly(N-isopropylacrylamide) in aqueous solution,” Langmuir 13(3), 414–419 (1997).
[CrossRef]

Iwanaga, S.

Jain, P. K.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[CrossRef]

Jia, J.

C. M. Tan, J. Jia, and W. Yu, “Temperature dependence of the field emission of multiwalled carbon nanotubes,” Appl. Phys. Lett. 86(26), 263104 (2005).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Johnston, K.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[CrossRef] [PubMed]

Katsumata, T.

H. Aizawa, T. Katsumata, S. Komuro, T. Morikawa, H. Ishizawa, and E. Toba, “Fluorescence thermometer based on the photoluminescence intensity ratio in Tb doped phosphor materials,” Sens. Actuators A Phys. 101(1), 78–82 (2002).

Kawata, S.

K. Fujita, S. Ishitobi, K. Hamada, N. I. Smith, A. Taguchi, Y. Inouye, and S. Kawata, “Time-resolved observation of surface-enhanced Raman scattering from gold nanoparticles during transport through a living cell,” J. Biomed. Opt. 14(2), 024038 (2009).
[CrossRef] [PubMed]

S. Iwanaga, N. I. Smith, K. Fujita, and S. Kawata, “Slow Ca(2+) wave stimulation using low repetition rate femtosecond pulsed irradiation,” Opt. Express 14(2), 717–725 (2006).
[CrossRef] [PubMed]

Keblinski, P.

P. Keblinski, D. G. Cahill, A. Bodapati, C. R. Sullivan, and T. A. Taton, “Limits of localized heating by electromagnetically excited nanoparticles,” J. Appl. Phys. 100(5), 054305 (2006).
[CrossRef]

Knight, M. W.

A. Barhoumi, R. Huschka, R. Bardhan, M. W. Knight, and N. J. Halas, “Light-induced release of DNA from Plasmon-resonant nanoparticles: Towards light-controlled gene therapy,” Chem. Phys. Lett. 482(4-6), 171–179 (2009).
[CrossRef]

Komuro, S.

H. Aizawa, T. Katsumata, S. Komuro, T. Morikawa, H. Ishizawa, and E. Toba, “Fluorescence thermometer based on the photoluminescence intensity ratio in Tb doped phosphor materials,” Sens. Actuators A Phys. 101(1), 78–82 (2002).

Kordesch, M. E.

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch, “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett. 6(4), 783–788 (2006).
[CrossRef] [PubMed]

Kotov, N. A.

J. Lee, A. O. Govorov, and N. A. Kotov, “Nanoparticle assemblies with molecular springs: a nanoscale thermometer,” Angew. Chem. 117(45), 7605–7608 (2005).
[CrossRef]

Ku, G.

X. D. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Larson, T.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[CrossRef] [PubMed]

Lee, J.

J. Lee, A. O. Govorov, and N. A. Kotov, “Nanoparticle assemblies with molecular springs: a nanoscale thermometer,” Angew. Chem. 117(45), 7605–7608 (2005).
[CrossRef]

Liz-Marzan, L. M.

R. Contreras-Cáceres, J. Pacifico, I. Pastoriza-Santos, J. Perez-Juste, A. Fernandez-Barbero, and L. M. Liz-Marzan, “Au@pNIPAM thermosensitive nanostructures: control over shell cross-linking, overall dimensions, and core growth,” Adv. Funct. Mater. 19(19), 3070–3076 (2009).
[CrossRef]

Lounis, B.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

Ma, L.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[CrossRef] [PubMed]

Maali, A.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

Masuhara, H.

J. Hofkens, J. Hotta, K. Sasaki, H. Masuhara, and K. Iwai, “Molecular assembling by the radiation pressure of a focused laser beam: poly(N-isopropylacrylamide) in aqueous solution,” Langmuir 13(3), 414–419 (1997).
[CrossRef]

Milner, T.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[CrossRef] [PubMed]

Morikawa, T.

H. Aizawa, T. Katsumata, S. Komuro, T. Morikawa, H. Ishizawa, and E. Toba, “Fluorescence thermometer based on the photoluminescence intensity ratio in Tb doped phosphor materials,” Sens. Actuators A Phys. 101(1), 78–82 (2002).

Neogi, A.

B. W. Garner, T. Cai, S. Ghosh, Z. Hu, and A. Neogi, “Refractive Index change due to volume-phase transition in polyacrylamide gel nanospheres for optoelectronics and bio-photonics,” Appl. Phys. Express 2, 057001 (2009).
[CrossRef]

O’Brien, S. P.

M. Y. Sfeir, F. Wang, L. Huang, C. C. Chuang, J. Hone, S. P. O’Brien, T. F. Heinz, and L. E. Brus, “Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering,” Science 306(5701), 1540–1543 (2004).
[CrossRef] [PubMed]

Okabe, K.

C. Gota, K. Okabe, T. Funatsu, Y. Harada, and S. Uchiyama, “Hydrophilic fluorescent nanogel thermometer for intracellular thermometry,” J. Am. Chem. Soc. 131(8), 2766–2767 (2009).
[CrossRef] [PubMed]

Okamoto, T.

T. Okamoto and I. Yamaguchi, “Field enhancement by a metallic sphere on dielectric substrates,” Opt. Rev. 6(3), 211–214 (1999).
[CrossRef]

Orrit, M.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

Ozaki, Y.

X. X. Han, B. Zhao, and Y. Ozaki, “Surface-enhanced Raman scattering for protein detection,” Anal. Bioanal. Chem. 394(7), 1719–1727 (2009).
[CrossRef] [PubMed]

Pacifico, J.

R. Contreras-Cáceres, J. Pacifico, I. Pastoriza-Santos, J. Perez-Juste, A. Fernandez-Barbero, and L. M. Liz-Marzan, “Au@pNIPAM thermosensitive nanostructures: control over shell cross-linking, overall dimensions, and core growth,” Adv. Funct. Mater. 19(19), 3070–3076 (2009).
[CrossRef]

Pang, Y.

X. D. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Pantea, M.

W. Haeberle, M. Pantea, and J. K. H. Hoerber, “Nanometer-scale heat-conductivity measurements on biological samples,” Ultramicroscopy 106(8-9), 678–686 (2006).
[CrossRef] [PubMed]

Park, S.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[CrossRef] [PubMed]

Parrish, J. A.

R. R. Anderson and J. A. Parrish, “Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation,” Science 220(4596), 524–527 (1983).
[CrossRef] [PubMed]

Pastoriza-Santos, I.

R. Contreras-Cáceres, J. Pacifico, I. Pastoriza-Santos, J. Perez-Juste, A. Fernandez-Barbero, and L. M. Liz-Marzan, “Au@pNIPAM thermosensitive nanostructures: control over shell cross-linking, overall dimensions, and core growth,” Adv. Funct. Mater. 19(19), 3070–3076 (2009).
[CrossRef]

Perez-Juste, J.

R. Contreras-Cáceres, J. Pacifico, I. Pastoriza-Santos, J. Perez-Juste, A. Fernandez-Barbero, and L. M. Liz-Marzan, “Au@pNIPAM thermosensitive nanostructures: control over shell cross-linking, overall dimensions, and core growth,” Adv. Funct. Mater. 19(19), 3070–3076 (2009).
[CrossRef]

Richardson, H. H.

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch, “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett. 6(4), 783–788 (2006).
[CrossRef] [PubMed]

Sasaki, K.

J. Hofkens, J. Hotta, K. Sasaki, H. Masuhara, and K. Iwai, “Molecular assembling by the radiation pressure of a focused laser beam: poly(N-isopropylacrylamide) in aqueous solution,” Langmuir 13(3), 414–419 (1997).
[CrossRef]

Sfeir, M. Y.

M. Y. Sfeir, F. Wang, L. Huang, C. C. Chuang, J. Hone, S. P. O’Brien, T. F. Heinz, and L. E. Brus, “Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering,” Science 306(5701), 1540–1543 (2004).
[CrossRef] [PubMed]

Shah, J.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[CrossRef] [PubMed]

Smith, N. I.

K. Fujita, S. Ishitobi, K. Hamada, N. I. Smith, A. Taguchi, Y. Inouye, and S. Kawata, “Time-resolved observation of surface-enhanced Raman scattering from gold nanoparticles during transport through a living cell,” J. Biomed. Opt. 14(2), 024038 (2009).
[CrossRef] [PubMed]

S. Iwanaga, N. I. Smith, K. Fujita, and S. Kawata, “Slow Ca(2+) wave stimulation using low repetition rate femtosecond pulsed irradiation,” Opt. Express 14(2), 717–725 (2006).
[CrossRef] [PubMed]

Sokolov, K.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[CrossRef] [PubMed]

Stoica, G.

X. D. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Sullivan, C. R.

P. Keblinski, D. G. Cahill, A. Bodapati, C. R. Sullivan, and T. A. Taton, “Limits of localized heating by electromagnetically excited nanoparticles,” J. Appl. Phys. 100(5), 054305 (2006).
[CrossRef]

Swanlund, D. J.

X. He, W. F. Wolkers, J. H. Crowe, D. J. Swanlund, and J. C. Bischof, “In situ thermal denaturation of proteins in dunning AT-1 prostate cancer cells: implication for hyperthermic cell injury,” Ann. Biomed. Eng. 32(10), 1384–1398 (2004).
[CrossRef] [PubMed]

Taguchi, A.

K. Fujita, S. Ishitobi, K. Hamada, N. I. Smith, A. Taguchi, Y. Inouye, and S. Kawata, “Time-resolved observation of surface-enhanced Raman scattering from gold nanoparticles during transport through a living cell,” J. Biomed. Opt. 14(2), 024038 (2009).
[CrossRef] [PubMed]

Tamarat, P.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

Tan, C. M.

C. M. Tan, J. Jia, and W. Yu, “Temperature dependence of the field emission of multiwalled carbon nanotubes,” Appl. Phys. Lett. 86(26), 263104 (2005).
[CrossRef]

Taton, T. A.

P. Keblinski, D. G. Cahill, A. Bodapati, C. R. Sullivan, and T. A. Taton, “Limits of localized heating by electromagnetically excited nanoparticles,” J. Appl. Phys. 100(5), 054305 (2006).
[CrossRef]

Thomas, A. C.

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch, “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett. 6(4), 783–788 (2006).
[CrossRef] [PubMed]

Toba, E.

H. Aizawa, T. Katsumata, S. Komuro, T. Morikawa, H. Ishizawa, and E. Toba, “Fluorescence thermometer based on the photoluminescence intensity ratio in Tb doped phosphor materials,” Sens. Actuators A Phys. 101(1), 78–82 (2002).

Uchiyama, S.

C. Gota, K. Okabe, T. Funatsu, Y. Harada, and S. Uchiyama, “Hydrophilic fluorescent nanogel thermometer for intracellular thermometry,” J. Am. Chem. Soc. 131(8), 2766–2767 (2009).
[CrossRef] [PubMed]

Wang, F.

M. Y. Sfeir, F. Wang, L. Huang, C. C. Chuang, J. Hone, S. P. O’Brien, T. F. Heinz, and L. E. Brus, “Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering,” Science 306(5701), 1540–1543 (2004).
[CrossRef] [PubMed]

Wang, L. V.

X. D. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Wang, X. D.

X. D. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Wolkers, W. F.

X. He, W. F. Wolkers, J. H. Crowe, D. J. Swanlund, and J. C. Bischof, “In situ thermal denaturation of proteins in dunning AT-1 prostate cancer cells: implication for hyperthermic cell injury,” Ann. Biomed. Eng. 32(10), 1384–1398 (2004).
[CrossRef] [PubMed]

Xie, X.

X. D. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Yamaguchi, I.

T. Okamoto and I. Yamaguchi, “Field enhancement by a metallic sphere on dielectric substrates,” Opt. Rev. 6(3), 211–214 (1999).
[CrossRef]

Yu, W.

C. M. Tan, J. Jia, and W. Yu, “Temperature dependence of the field emission of multiwalled carbon nanotubes,” Appl. Phys. Lett. 86(26), 263104 (2005).
[CrossRef]

Zhang, W.

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch, “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett. 6(4), 783–788 (2006).
[CrossRef] [PubMed]

Zhao, B.

X. X. Han, B. Zhao, and Y. Ozaki, “Surface-enhanced Raman scattering for protein detection,” Anal. Bioanal. Chem. 394(7), 1719–1727 (2009).
[CrossRef] [PubMed]

Adv. Funct. Mater.

R. Contreras-Cáceres, J. Pacifico, I. Pastoriza-Santos, J. Perez-Juste, A. Fernandez-Barbero, and L. M. Liz-Marzan, “Au@pNIPAM thermosensitive nanostructures: control over shell cross-linking, overall dimensions, and core growth,” Adv. Funct. Mater. 19(19), 3070–3076 (2009).
[CrossRef]

Anal. Bioanal. Chem.

X. X. Han, B. Zhao, and Y. Ozaki, “Surface-enhanced Raman scattering for protein detection,” Anal. Bioanal. Chem. 394(7), 1719–1727 (2009).
[CrossRef] [PubMed]

Angew. Chem.

J. Lee, A. O. Govorov, and N. A. Kotov, “Nanoparticle assemblies with molecular springs: a nanoscale thermometer,” Angew. Chem. 117(45), 7605–7608 (2005).
[CrossRef]

Ann. Biomed. Eng.

X. He, W. F. Wolkers, J. H. Crowe, D. J. Swanlund, and J. C. Bischof, “In situ thermal denaturation of proteins in dunning AT-1 prostate cancer cells: implication for hyperthermic cell injury,” Ann. Biomed. Eng. 32(10), 1384–1398 (2004).
[CrossRef] [PubMed]

Appl. Phys. Express

B. W. Garner, T. Cai, S. Ghosh, Z. Hu, and A. Neogi, “Refractive Index change due to volume-phase transition in polyacrylamide gel nanospheres for optoelectronics and bio-photonics,” Appl. Phys. Express 2, 057001 (2009).
[CrossRef]

Appl. Phys. Lett.

C. M. Tan, J. Jia, and W. Yu, “Temperature dependence of the field emission of multiwalled carbon nanotubes,” Appl. Phys. Lett. 86(26), 263104 (2005).
[CrossRef]

Chem. Phys. Lett.

A. Barhoumi, R. Huschka, R. Bardhan, M. W. Knight, and N. J. Halas, “Light-induced release of DNA from Plasmon-resonant nanoparticles: Towards light-controlled gene therapy,” Chem. Phys. Lett. 482(4-6), 171–179 (2009).
[CrossRef]

J. Am. Chem. Soc.

C. Gota, K. Okabe, T. Funatsu, Y. Harada, and S. Uchiyama, “Hydrophilic fluorescent nanogel thermometer for intracellular thermometry,” J. Am. Chem. Soc. 131(8), 2766–2767 (2009).
[CrossRef] [PubMed]

J. Appl. Phys.

P. Keblinski, D. G. Cahill, A. Bodapati, C. R. Sullivan, and T. A. Taton, “Limits of localized heating by electromagnetically excited nanoparticles,” J. Appl. Phys. 100(5), 054305 (2006).
[CrossRef]

J. Biomed. Opt.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13(3), 034024 (2008).
[CrossRef] [PubMed]

K. Fujita, S. Ishitobi, K. Hamada, N. I. Smith, A. Taguchi, Y. Inouye, and S. Kawata, “Time-resolved observation of surface-enhanced Raman scattering from gold nanoparticles during transport through a living cell,” J. Biomed. Opt. 14(2), 024038 (2009).
[CrossRef] [PubMed]

Langmuir

J. Hofkens, J. Hotta, K. Sasaki, H. Masuhara, and K. Iwai, “Molecular assembling by the radiation pressure of a focused laser beam: poly(N-isopropylacrylamide) in aqueous solution,” Langmuir 13(3), 414–419 (1997).
[CrossRef]

Lasers Med. Sci.

X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Plasmonic photothermal therapy (PPTT) using gold nanoparticles,” Lasers Med. Sci. 23(3), 217–228 (2008).
[CrossRef]

Nano Lett.

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch, “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett. 6(4), 783–788 (2006).
[CrossRef] [PubMed]

Nat. Biotechnol.

X. D. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Rev.

T. Okamoto and I. Yamaguchi, “Field enhancement by a metallic sphere on dielectric substrates,” Opt. Rev. 6(3), 211–214 (1999).
[CrossRef]

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Science

M. Y. Sfeir, F. Wang, L. Huang, C. C. Chuang, J. Hone, S. P. O’Brien, T. F. Heinz, and L. E. Brus, “Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering,” Science 306(5701), 1540–1543 (2004).
[CrossRef] [PubMed]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

R. R. Anderson and J. A. Parrish, “Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation,” Science 220(4596), 524–527 (1983).
[CrossRef] [PubMed]

Sens. Actuators A Phys.

H. Aizawa, T. Katsumata, S. Komuro, T. Morikawa, H. Ishizawa, and E. Toba, “Fluorescence thermometer based on the photoluminescence intensity ratio in Tb doped phosphor materials,” Sens. Actuators A Phys. 101(1), 78–82 (2002).

Ultramicroscopy

W. Haeberle, M. Pantea, and J. K. H. Hoerber, “Nanometer-scale heat-conductivity measurements on biological samples,” Ultramicroscopy 106(8-9), 678–686 (2006).
[CrossRef] [PubMed]

Other

S. Kawata, Near-Field Optics and Surface Plasmon Polaritons (Springer, 2001).

R. M. J. Cotterill, Biophysics (Wiley, 2002).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Calculated spectra showing (a) absorption spectra for a gold nanoparticle with diameter of 40 nm and surrounding refractive index of 1.33. Scattering spectra are shown in (b) for gold nanoparticles of different sizes. (c) shows scattering spectra for “dielectric-a” coated gold nanoparticles (c) with different refractive indices.

Fig. 2
Fig. 2

SEM Scanning electron microscope images of (a) pNIPAM-coated and (b) uncoated gold nanoparticles on a silicon substrate. The scale bar indicates 100 nm.

Fig. 3
Fig. 3

Optical setup for white light scattering spectroscopy and heating gold nanoparticles heating by laser.

Fig. 4
Fig. 4

Response of a pNIPAM-coated gold nanoparticles nanoparticle solution to bulk temperature heating effects. Spectra are measured by UV-VIS absorption spectroscopy in a temperature controlled cell. The peak shift of surface plasmon absorption is evident.

Fig. 5
Fig. 5

(a) Scattering spectra of pNIPAM-coated gold nanoparticles irradiated with increasing laser at each power, and (b) the relationship between the scattering peak wavelength and laser power. Laser power was converted to that equivalent to the focal spot size.

Fig. 6
Fig. 6

Relationship between peak wavelength and laser power with (a) 532 nm laser and (b) 488 nm laser.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Q s c a = 2 x 2 n = 1 ( 2 n + 1 ) ( | a n | 2 + | b n | 2 )
Q e x t = 2 x 2 n = 1 ( 2 n + 1 ) Re [ a n + b n ] )
Q a b s = Q e x t Q s c a ,

Metrics