Abstract

We experimentally demonstrate a high resolution integrated spectrometer on silicon on insulator (SOI) substrate using a large-scale array of microdonut resonators. Through top-view imaging and processing, the measured spectral response of the spectrometer shows a linewidth of ~0.6 nm with an operating bandwidth of ~50 nm. This high resolution and bandwidth is achieved in a compact size using miniaturized microdonut resonators (radius ~2μm) with a high quality factor, single-mode operation, and a large free spectral range. The microspectrometer is realized using silicon process compatible fabrication and has a great potential as a high-resolution, large dynamic range, light-weight, compact, high-speed, and versatile microspectrometer.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hubner, A. M. Jorgensen, T. A. Anhoj, and D. A. Zauner, “Integrated optical systems for lab-on-chip applications,” Proc. SPIE 5728, 269–277 (2005).
    [CrossRef]
  2. J. Xu, D. Suarez, and D. S. Gottfried, “Detection of avian influenza virus using an interferometric biosensor,” Anal. Bioanal. Chem. 389(4), 1193–1199 (2007).
    [CrossRef] [PubMed]
  3. B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, E. Shah Hosseini, and A. Adibi, “Silicon nanophotonic devices for integrated sensing,” J. Nanophoton. 3(1), 031001 (2009).
    [CrossRef]
  4. T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(No. 5B), L673–L675 (2004).
    [CrossRef]
  5. K. Kodate and Y. Komai, “Compact spectroscopic sensor using an arrayed waveguide grating,” J. Opt. A, Pure Appl. Opt. 10(4), 044011 (2008).
    [CrossRef]
  6. S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16(2), 503–505 (2004).
    [CrossRef]
  7. J. Song and N. Zhu, “Design and fabrication of compact etched diffraction grating demultiplexers based on α-Si nanowire technology,” Electron. Lett. 44(13), 816–818 (2008).
    [CrossRef]
  8. F. Horst, W. M. J. Green, B. J. Offrein, and Y. Vlasov, “Echelle grating WDM demultiplexers in SOI technology, based on a design with two stigmatic points,” Proc. SPIE 6996, 69960R, 69960R-8 (2008).
    [CrossRef]
  9. B. Momeni, M. Chamanzar, E. Shah Hosseini, M. Askari, M. Soltani, and A. Adibi, “Strong angular dispersion using higher bands of planar silicon photonic crystals,” Opt. Express 16(18), 14213–14220 (2008).
    [CrossRef] [PubMed]
  10. B. Momeni, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun. 282(15), 3168–3171 (2009).
    [CrossRef]
  11. B. B. C. Kyotoku, L. Chen, and M. Lipson, “Sub-nm resolution cavity enhanced microspectrometer,” Opt. Express 18(1), 102–107 (2010).
    [CrossRef] [PubMed]
  12. R. F. Wolffenbuttel, “State-of-the-Art in integrated optical microspectrometers,” IEEE Trans. Instrum. Meas. 53(1), 197–202 (2004).
    [CrossRef]
  13. S.-W. Wang, C. Xia, X. Chen, W. Lu, M. Li, H. Wang, W. Zheng, and T. Zhang, “Concept of a high-resolution miniature spectrometer using an integrated filter array,” Opt. Lett. 32(6), 632–634 (2007).
    [CrossRef] [PubMed]
  14. R. G. DeCorby, N. Ponnampalam, E. Epp, T. Allen, and J. N. McMullin, “Chip-scale spectrometry based on tapered hollow Bragg waveguides,” Opt. Express 17(19), 16632–16645 (2009).
    [CrossRef] [PubMed]
  15. M. Soltani, Q. Li, S. Yegnanarayanan, B. Momeni, A. A. Eftekhar, and A. Adibi, “Large-scale array of small high-Q microdisk resonators for on-chip spectral analysis,” in Proceedings of IEEE LEOS Annual Meeting Conference (Institute of Electrical and Electronics Engineers, Belek-Antalya, Turkey, 2009), pp. 703–704.
  16. M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, “Toward ultimate miniaturization of high Q silicon traveling-wave microresonators,” Opt. Express 18(19), 19541–19557 (2010).
    [CrossRef] [PubMed]
  17. Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-microm radius,” Opt. Express 16(6), 4309–4315 (2008).
    [CrossRef] [PubMed]
  18. Q. Li, M. Soltani, S. Yegnanarayanan, and A. Adibi, “Design and demonstration of compact, wide bandwidth coupled-resonator filters on a silicon-on- insulator platform,” Opt. Express 17(4), 2247–2254 (2009).
    [CrossRef] [PubMed]
  19. J. Schrauwen, D. Van Thourhout, and R. Baets, “Trimming of silicon ring resonator by electron beam induced compaction and strain,” Opt. Express 16(6), 3738–3743 (2008).
    [CrossRef] [PubMed]
  20. C. W. Holzwarth, T. Barwicz, M. A. Popovic, P. T. Rakich, E. P. Ippen, F. X. Kartner, and H. I. Smith, “Accurate resonant frequency spacing of microring filters without postfabrication trimming,” J. Vac. Sci. Technol. B 24(6), 3244–3247 (2006).
    [CrossRef]
  21. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
    [CrossRef]
  22. D. K. Sparacin, C. Y. Hong, L. C. Kimerling, J. Michel, J. P. Lock, and K. K. Gleason, “Trimming of microring resonators by photooxidation of a plasma-polymerized organosilane cladding material,” Opt. Lett. 30(17), 2251–2253 (2005).
    [CrossRef] [PubMed]
  23. C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett. 96(8), 081107 (2010).
    [CrossRef]
  24. C.-C. Chang and H.-N. Lee, “On the estimation of target spectrum for filter-array based spectrometers,” Opt. Express 16(2), 1056–1061 (2008).
    [CrossRef] [PubMed]

2010

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[CrossRef]

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett. 96(8), 081107 (2010).
[CrossRef]

B. B. C. Kyotoku, L. Chen, and M. Lipson, “Sub-nm resolution cavity enhanced microspectrometer,” Opt. Express 18(1), 102–107 (2010).
[CrossRef] [PubMed]

M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, “Toward ultimate miniaturization of high Q silicon traveling-wave microresonators,” Opt. Express 18(19), 19541–19557 (2010).
[CrossRef] [PubMed]

2009

Q. Li, M. Soltani, S. Yegnanarayanan, and A. Adibi, “Design and demonstration of compact, wide bandwidth coupled-resonator filters on a silicon-on- insulator platform,” Opt. Express 17(4), 2247–2254 (2009).
[CrossRef] [PubMed]

R. G. DeCorby, N. Ponnampalam, E. Epp, T. Allen, and J. N. McMullin, “Chip-scale spectrometry based on tapered hollow Bragg waveguides,” Opt. Express 17(19), 16632–16645 (2009).
[CrossRef] [PubMed]

B. Momeni, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun. 282(15), 3168–3171 (2009).
[CrossRef]

B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, E. Shah Hosseini, and A. Adibi, “Silicon nanophotonic devices for integrated sensing,” J. Nanophoton. 3(1), 031001 (2009).
[CrossRef]

2008

K. Kodate and Y. Komai, “Compact spectroscopic sensor using an arrayed waveguide grating,” J. Opt. A, Pure Appl. Opt. 10(4), 044011 (2008).
[CrossRef]

J. Song and N. Zhu, “Design and fabrication of compact etched diffraction grating demultiplexers based on α-Si nanowire technology,” Electron. Lett. 44(13), 816–818 (2008).
[CrossRef]

F. Horst, W. M. J. Green, B. J. Offrein, and Y. Vlasov, “Echelle grating WDM demultiplexers in SOI technology, based on a design with two stigmatic points,” Proc. SPIE 6996, 69960R, 69960R-8 (2008).
[CrossRef]

C.-C. Chang and H.-N. Lee, “On the estimation of target spectrum for filter-array based spectrometers,” Opt. Express 16(2), 1056–1061 (2008).
[CrossRef] [PubMed]

J. Schrauwen, D. Van Thourhout, and R. Baets, “Trimming of silicon ring resonator by electron beam induced compaction and strain,” Opt. Express 16(6), 3738–3743 (2008).
[CrossRef] [PubMed]

Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-microm radius,” Opt. Express 16(6), 4309–4315 (2008).
[CrossRef] [PubMed]

B. Momeni, M. Chamanzar, E. Shah Hosseini, M. Askari, M. Soltani, and A. Adibi, “Strong angular dispersion using higher bands of planar silicon photonic crystals,” Opt. Express 16(18), 14213–14220 (2008).
[CrossRef] [PubMed]

2007

J. Xu, D. Suarez, and D. S. Gottfried, “Detection of avian influenza virus using an interferometric biosensor,” Anal. Bioanal. Chem. 389(4), 1193–1199 (2007).
[CrossRef] [PubMed]

S.-W. Wang, C. Xia, X. Chen, W. Lu, M. Li, H. Wang, W. Zheng, and T. Zhang, “Concept of a high-resolution miniature spectrometer using an integrated filter array,” Opt. Lett. 32(6), 632–634 (2007).
[CrossRef] [PubMed]

2006

C. W. Holzwarth, T. Barwicz, M. A. Popovic, P. T. Rakich, E. P. Ippen, F. X. Kartner, and H. I. Smith, “Accurate resonant frequency spacing of microring filters without postfabrication trimming,” J. Vac. Sci. Technol. B 24(6), 3244–3247 (2006).
[CrossRef]

2005

2004

T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(No. 5B), L673–L675 (2004).
[CrossRef]

R. F. Wolffenbuttel, “State-of-the-Art in integrated optical microspectrometers,” IEEE Trans. Instrum. Meas. 53(1), 197–202 (2004).
[CrossRef]

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16(2), 503–505 (2004).
[CrossRef]

Adibi, A.

Allen, T.

Anhoj, T. A.

J. Hubner, A. M. Jorgensen, T. A. Anhoj, and D. A. Zauner, “Integrated optical systems for lab-on-chip applications,” Proc. SPIE 5728, 269–277 (2005).
[CrossRef]

Askari, M.

B. Momeni, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun. 282(15), 3168–3171 (2009).
[CrossRef]

B. Momeni, M. Chamanzar, E. Shah Hosseini, M. Askari, M. Soltani, and A. Adibi, “Strong angular dispersion using higher bands of planar silicon photonic crystals,” Opt. Express 16(18), 14213–14220 (2008).
[CrossRef] [PubMed]

Assefa, S.

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett. 96(8), 081107 (2010).
[CrossRef]

Baba, T.

T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(No. 5B), L673–L675 (2004).
[CrossRef]

Baets, R.

Balakrishnan, A.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16(2), 503–505 (2004).
[CrossRef]

Barwicz, T.

C. W. Holzwarth, T. Barwicz, M. A. Popovic, P. T. Rakich, E. P. Ippen, F. X. Kartner, and H. I. Smith, “Accurate resonant frequency spacing of microring filters without postfabrication trimming,” J. Vac. Sci. Technol. B 24(6), 3244–3247 (2006).
[CrossRef]

Beausoleil, R. G.

Chamanzar, M.

Chang, C.-C.

Charbonneau, S.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16(2), 503–505 (2004).
[CrossRef]

Cheben, P.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16(2), 503–505 (2004).
[CrossRef]

Chen, C. J.

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett. 96(8), 081107 (2010).
[CrossRef]

Chen, L.

Chen, X.

Cloutier, M.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16(2), 503–505 (2004).
[CrossRef]

DeCorby, R. G.

Delage, A.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16(2), 503–505 (2004).
[CrossRef]

Dossou, K.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16(2), 503–505 (2004).
[CrossRef]

Eftekhar, A. A.

B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, E. Shah Hosseini, and A. Adibi, “Silicon nanophotonic devices for integrated sensing,” J. Nanophoton. 3(1), 031001 (2009).
[CrossRef]

Epp, E.

Erickson, L.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16(2), 503–505 (2004).
[CrossRef]

Fattal, D.

Fukazawa, T.

T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(No. 5B), L673–L675 (2004).
[CrossRef]

Gao, M.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16(2), 503–505 (2004).
[CrossRef]

Gleason, K. K.

Gottfried, D. S.

J. Xu, D. Suarez, and D. S. Gottfried, “Detection of avian influenza virus using an interferometric biosensor,” Anal. Bioanal. Chem. 389(4), 1193–1199 (2007).
[CrossRef] [PubMed]

Green, W. M. J.

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett. 96(8), 081107 (2010).
[CrossRef]

F. Horst, W. M. J. Green, B. J. Offrein, and Y. Vlasov, “Echelle grating WDM demultiplexers in SOI technology, based on a design with two stigmatic points,” Proc. SPIE 6996, 69960R, 69960R-8 (2008).
[CrossRef]

Holzwarth, C. W.

C. W. Holzwarth, T. Barwicz, M. A. Popovic, P. T. Rakich, E. P. Ippen, F. X. Kartner, and H. I. Smith, “Accurate resonant frequency spacing of microring filters without postfabrication trimming,” J. Vac. Sci. Technol. B 24(6), 3244–3247 (2006).
[CrossRef]

Hong, C. Y.

Horst, F.

F. Horst, W. M. J. Green, B. J. Offrein, and Y. Vlasov, “Echelle grating WDM demultiplexers in SOI technology, based on a design with two stigmatic points,” Proc. SPIE 6996, 69960R, 69960R-8 (2008).
[CrossRef]

Hosseini, E. S.

B. Momeni, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun. 282(15), 3168–3171 (2009).
[CrossRef]

Hubner, J.

J. Hubner, A. M. Jorgensen, T. A. Anhoj, and D. A. Zauner, “Integrated optical systems for lab-on-chip applications,” Proc. SPIE 5728, 269–277 (2005).
[CrossRef]

Husko, C. A.

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett. 96(8), 081107 (2010).
[CrossRef]

Ippen, E. P.

C. W. Holzwarth, T. Barwicz, M. A. Popovic, P. T. Rakich, E. P. Ippen, F. X. Kartner, and H. I. Smith, “Accurate resonant frequency spacing of microring filters without postfabrication trimming,” J. Vac. Sci. Technol. B 24(6), 3244–3247 (2006).
[CrossRef]

Janz, S.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16(2), 503–505 (2004).
[CrossRef]

Jorgensen, A. M.

J. Hubner, A. M. Jorgensen, T. A. Anhoj, and D. A. Zauner, “Integrated optical systems for lab-on-chip applications,” Proc. SPIE 5728, 269–277 (2005).
[CrossRef]

Kartner, F. X.

C. W. Holzwarth, T. Barwicz, M. A. Popovic, P. T. Rakich, E. P. Ippen, F. X. Kartner, and H. I. Smith, “Accurate resonant frequency spacing of microring filters without postfabrication trimming,” J. Vac. Sci. Technol. B 24(6), 3244–3247 (2006).
[CrossRef]

Kimerling, L. C.

Kodate, K.

K. Kodate and Y. Komai, “Compact spectroscopic sensor using an arrayed waveguide grating,” J. Opt. A, Pure Appl. Opt. 10(4), 044011 (2008).
[CrossRef]

Komai, Y.

K. Kodate and Y. Komai, “Compact spectroscopic sensor using an arrayed waveguide grating,” J. Opt. A, Pure Appl. Opt. 10(4), 044011 (2008).
[CrossRef]

Krug, P. A.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16(2), 503–505 (2004).
[CrossRef]

Kyotoku, B. B. C.

Lamontagne, B.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16(2), 503–505 (2004).
[CrossRef]

Lee, H.-N.

Li, M.

Li, Q.

Lipson, M.

Lock, J. P.

Lu, W.

McMullin, J. N.

Meric, I.

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett. 96(8), 081107 (2010).
[CrossRef]

Michel, J.

Momeni, B.

B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, E. Shah Hosseini, and A. Adibi, “Silicon nanophotonic devices for integrated sensing,” J. Nanophoton. 3(1), 031001 (2009).
[CrossRef]

B. Momeni, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun. 282(15), 3168–3171 (2009).
[CrossRef]

B. Momeni, M. Chamanzar, E. Shah Hosseini, M. Askari, M. Soltani, and A. Adibi, “Strong angular dispersion using higher bands of planar silicon photonic crystals,” Opt. Express 16(18), 14213–14220 (2008).
[CrossRef] [PubMed]

Offrein, B. J.

F. Horst, W. M. J. Green, B. J. Offrein, and Y. Vlasov, “Echelle grating WDM demultiplexers in SOI technology, based on a design with two stigmatic points,” Proc. SPIE 6996, 69960R, 69960R-8 (2008).
[CrossRef]

Ohno, F.

T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(No. 5B), L673–L675 (2004).
[CrossRef]

Packirisamy, M.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16(2), 503–505 (2004).
[CrossRef]

Pearson, M.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16(2), 503–505 (2004).
[CrossRef]

Ponnampalam, N.

Popovic, M. A.

C. W. Holzwarth, T. Barwicz, M. A. Popovic, P. T. Rakich, E. P. Ippen, F. X. Kartner, and H. I. Smith, “Accurate resonant frequency spacing of microring filters without postfabrication trimming,” J. Vac. Sci. Technol. B 24(6), 3244–3247 (2006).
[CrossRef]

Rakich, P. T.

C. W. Holzwarth, T. Barwicz, M. A. Popovic, P. T. Rakich, E. P. Ippen, F. X. Kartner, and H. I. Smith, “Accurate resonant frequency spacing of microring filters without postfabrication trimming,” J. Vac. Sci. Technol. B 24(6), 3244–3247 (2006).
[CrossRef]

Schrauwen, J.

Shah Hosseini, E.

B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, E. Shah Hosseini, and A. Adibi, “Silicon nanophotonic devices for integrated sensing,” J. Nanophoton. 3(1), 031001 (2009).
[CrossRef]

B. Momeni, M. Chamanzar, E. Shah Hosseini, M. Askari, M. Soltani, and A. Adibi, “Strong angular dispersion using higher bands of planar silicon photonic crystals,” Opt. Express 16(18), 14213–14220 (2008).
[CrossRef] [PubMed]

Shepard, K. L.

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett. 96(8), 081107 (2010).
[CrossRef]

Smith, H. I.

C. W. Holzwarth, T. Barwicz, M. A. Popovic, P. T. Rakich, E. P. Ippen, F. X. Kartner, and H. I. Smith, “Accurate resonant frequency spacing of microring filters without postfabrication trimming,” J. Vac. Sci. Technol. B 24(6), 3244–3247 (2006).
[CrossRef]

Soltani, M.

Song, J.

J. Song and N. Zhu, “Design and fabrication of compact etched diffraction grating demultiplexers based on α-Si nanowire technology,” Electron. Lett. 44(13), 816–818 (2008).
[CrossRef]

Soref, R.

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[CrossRef]

Sparacin, D. K.

Suarez, D.

J. Xu, D. Suarez, and D. S. Gottfried, “Detection of avian influenza virus using an interferometric biosensor,” Anal. Bioanal. Chem. 389(4), 1193–1199 (2007).
[CrossRef] [PubMed]

Van Thourhout, D.

Vlasov, Y.

F. Horst, W. M. J. Green, B. J. Offrein, and Y. Vlasov, “Echelle grating WDM demultiplexers in SOI technology, based on a design with two stigmatic points,” Proc. SPIE 6996, 69960R, 69960R-8 (2008).
[CrossRef]

Vlasov, Y. A.

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett. 96(8), 081107 (2010).
[CrossRef]

Wang, H.

Wang, S.-W.

Wolffenbuttel, R. F.

R. F. Wolffenbuttel, “State-of-the-Art in integrated optical microspectrometers,” IEEE Trans. Instrum. Meas. 53(1), 197–202 (2004).
[CrossRef]

Wong, C. W.

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett. 96(8), 081107 (2010).
[CrossRef]

Xia, C.

Xu, D.-X.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16(2), 503–505 (2004).
[CrossRef]

Xu, J.

J. Xu, D. Suarez, and D. S. Gottfried, “Detection of avian influenza virus using an interferometric biosensor,” Anal. Bioanal. Chem. 389(4), 1193–1199 (2007).
[CrossRef] [PubMed]

Xu, Q.

Yegnanarayanan, S.

Zauner, D. A.

J. Hubner, A. M. Jorgensen, T. A. Anhoj, and D. A. Zauner, “Integrated optical systems for lab-on-chip applications,” Proc. SPIE 5728, 269–277 (2005).
[CrossRef]

Zhang, T.

Zheng, W.

Zhu, N.

J. Song and N. Zhu, “Design and fabrication of compact etched diffraction grating demultiplexers based on α-Si nanowire technology,” Electron. Lett. 44(13), 816–818 (2008).
[CrossRef]

Anal. Bioanal. Chem.

J. Xu, D. Suarez, and D. S. Gottfried, “Detection of avian influenza virus using an interferometric biosensor,” Anal. Bioanal. Chem. 389(4), 1193–1199 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett.

C. J. Chen, C. A. Husko, I. Meric, K. L. Shepard, C. W. Wong, W. M. J. Green, Y. A. Vlasov, and S. Assefa, “Deterministic tuning of slow-light in photonic-crystal waveguides through the C and L bands by atomic layer deposition,” Appl. Phys. Lett. 96(8), 081107 (2010).
[CrossRef]

Electron. Lett.

J. Song and N. Zhu, “Design and fabrication of compact etched diffraction grating demultiplexers based on α-Si nanowire technology,” Electron. Lett. 44(13), 816–818 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16(2), 503–505 (2004).
[CrossRef]

IEEE Trans. Instrum. Meas.

R. F. Wolffenbuttel, “State-of-the-Art in integrated optical microspectrometers,” IEEE Trans. Instrum. Meas. 53(1), 197–202 (2004).
[CrossRef]

J. Nanophoton.

B. Momeni, S. Yegnanarayanan, M. Soltani, A. A. Eftekhar, E. Shah Hosseini, and A. Adibi, “Silicon nanophotonic devices for integrated sensing,” J. Nanophoton. 3(1), 031001 (2009).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

K. Kodate and Y. Komai, “Compact spectroscopic sensor using an arrayed waveguide grating,” J. Opt. A, Pure Appl. Opt. 10(4), 044011 (2008).
[CrossRef]

J. Vac. Sci. Technol. B

C. W. Holzwarth, T. Barwicz, M. A. Popovic, P. T. Rakich, E. P. Ippen, F. X. Kartner, and H. I. Smith, “Accurate resonant frequency spacing of microring filters without postfabrication trimming,” J. Vac. Sci. Technol. B 24(6), 3244–3247 (2006).
[CrossRef]

Jpn. J. Appl. Phys.

T. Fukazawa, F. Ohno, and T. Baba, “Very compact arrayed-waveguide-grating demultiplexer using Si photonic wire waveguides,” Jpn. J. Appl. Phys. 43(No. 5B), L673–L675 (2004).
[CrossRef]

Nat. Photonics

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[CrossRef]

Opt. Commun.

B. Momeni, E. S. Hosseini, M. Askari, M. Soltani, and A. Adibi, “Integrated photonic crystal spectrometers for sensing applications,” Opt. Commun. 282(15), 3168–3171 (2009).
[CrossRef]

Opt. Express

C.-C. Chang and H.-N. Lee, “On the estimation of target spectrum for filter-array based spectrometers,” Opt. Express 16(2), 1056–1061 (2008).
[CrossRef] [PubMed]

J. Schrauwen, D. Van Thourhout, and R. Baets, “Trimming of silicon ring resonator by electron beam induced compaction and strain,” Opt. Express 16(6), 3738–3743 (2008).
[CrossRef] [PubMed]

Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-microm radius,” Opt. Express 16(6), 4309–4315 (2008).
[CrossRef] [PubMed]

B. Momeni, M. Chamanzar, E. Shah Hosseini, M. Askari, M. Soltani, and A. Adibi, “Strong angular dispersion using higher bands of planar silicon photonic crystals,” Opt. Express 16(18), 14213–14220 (2008).
[CrossRef] [PubMed]

Q. Li, M. Soltani, S. Yegnanarayanan, and A. Adibi, “Design and demonstration of compact, wide bandwidth coupled-resonator filters on a silicon-on- insulator platform,” Opt. Express 17(4), 2247–2254 (2009).
[CrossRef] [PubMed]

R. G. DeCorby, N. Ponnampalam, E. Epp, T. Allen, and J. N. McMullin, “Chip-scale spectrometry based on tapered hollow Bragg waveguides,” Opt. Express 17(19), 16632–16645 (2009).
[CrossRef] [PubMed]

B. B. C. Kyotoku, L. Chen, and M. Lipson, “Sub-nm resolution cavity enhanced microspectrometer,” Opt. Express 18(1), 102–107 (2010).
[CrossRef] [PubMed]

M. Soltani, Q. Li, S. Yegnanarayanan, and A. Adibi, “Toward ultimate miniaturization of high Q silicon traveling-wave microresonators,” Opt. Express 18(19), 19541–19557 (2010).
[CrossRef] [PubMed]

Opt. Lett.

Proc. SPIE

F. Horst, W. M. J. Green, B. J. Offrein, and Y. Vlasov, “Echelle grating WDM demultiplexers in SOI technology, based on a design with two stigmatic points,” Proc. SPIE 6996, 69960R, 69960R-8 (2008).
[CrossRef]

J. Hubner, A. M. Jorgensen, T. A. Anhoj, and D. A. Zauner, “Integrated optical systems for lab-on-chip applications,” Proc. SPIE 5728, 269–277 (2005).
[CrossRef]

Other

M. Soltani, Q. Li, S. Yegnanarayanan, B. Momeni, A. A. Eftekhar, and A. Adibi, “Large-scale array of small high-Q microdisk resonators for on-chip spectral analysis,” in Proceedings of IEEE LEOS Annual Meeting Conference (Institute of Electrical and Electronics Engineers, Belek-Antalya, Turkey, 2009), pp. 703–704.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Configuration of the resonator-array spectrometer: a 1-D array of small microdonut resonators samples different spectral channels of the input signal propagating in the bus waveguide. Each spectral channel is coupled by one resonator to a corresponding drop waveguide and then scattered out-of-plane in an arrangement prepared for a detector array on top of the structure. (b) Working principle of the resonator-array spectrometer: the unknown input spectrum is sampled by the series of resonances provided by the resonators in the array followed by data processing to obtain the reconstructed spectrum of the input signal.

Fig. 2
Fig. 2

(a) The SEM image of a microdonut resonator in an add/drop configuration: the width and thickness for both waveguides are 400 nm and 230 nm, respectively. The outer radius of the microdonut resonator is rout = 1.97 µm with a center hole with a radius of rin = 0.6 µm. The gap between the waveguide and the resonator is 240 nm. The microdonut resonator has a 2 µm thick oxide cladding layer. (b) The experimental transmission spectrum of the drop port of the resonator in Part (a) for TE polarization showing two resonances belonging to the fundamental radial modes with different azimuth mode numbers (m) specified in the figure. The measured linewidth is ~50 pm and the FSR is ~57 nm. (c) Simulated fundamental TE mode profile of the microdonut resonator with m = 18, indicating a majority of light is confined at the outer perimeter of the resonator.

Fig. 3
Fig. 3

(a) Micrograph of the proposed spectrometer: incoming light is coupled to the structure through the input waveguide on the lower left of the figure. Each of the resonators is side coupled to the input waveguide from one side and to a drop waveguide from the other side to filter the input signal in a narrow spectral window. The filtered signal is scattered out of the chip by a scatterer at the end of the drop waveguide. (b) The 2-D array of the scatterers with channel numbers labeled. (c) The SEM image of two microdonut resonators coupled to the input waveguide and their corresponding drop waveguides. The center-to-center distance between the two adjacent microdonut resonators is 10.0 μm, the gap between the microdonut and each waveguide is 130 nm, and the widths of the input and bus waveguides are 400 nm. (d) The SEM image of a portion of the 2-D array of the scatterers.

Fig. 4
Fig. 4

(a) Transmission spectrum measured from the through port waveguide, indicating an FSR of ~60 nm. (b) Plot of the measured resonance wavelengths of different resonators (vertical axis, y) versus their resonator number in the resonator array (horizontal axis, x, x = 1-81, which only include the working 81 resonators with observed resonances). The inset formula shows the linear functions fitted to the measured resonance wavelengths. The correlation between the measured data points and the fitted linear model (R2) is 0.999.

Fig. 5
Fig. 5

(a) Real time images captured by the IR camera showing different channel responses at five different input wavelengths (nm): 1582.45, 1584.80, 1589.05, 1591.25, and 1595.65, when the input spectrum falls within channel numbers 53, 57, 63, 67, 74, respectively. Note that this figure only shows the upper portion of the scatterer array. (b) Post-processed light pattern scattered by channel #74 at different input wavelengths around its resonance.

Fig. 6
Fig. 6

(a) Calibration spectrum of the 13 channels covering the wavelength range from 1594.30 nm to 1602.00 nm; (b) comparison of resonances obtained by the through port spectrum (triangles) and the calibration spectrum based on the top-view images (squares). A linear model is fitted to the measured resonance wavelengths. The standard deviation of the resonance wavelengths from the linear model is only 176 pm.

Metrics