Abstract

Trans-to-cis photoisomerization efficiency of azobenzene dye is artificially modified from 0.09 to 0.38 when dye molecules are placed close to gold nanoparticle films with different structures. Transient fluorescence and surface enhanced Raman scattering measurement verify that the enhancement and reduction of photoisomerization efficiency come from the competition between enhanced local optical field from surface plasmon resonance and the accelerated nonradiative decay of excited dye molecules. The photoisomerization efficiency can be further modified by controlling the distance between azobenzene dye and gold films. Our finding can be applied to improve the performance of photoisomerization effect in photochemistry and photonics.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Loudwig and H. Bayley, “Photoisomerization of an individual azobenzene molecule in water: an on-off switch triggered by light at a fixed wavelength,” J. Am. Chem. Soc. 128(38), 12404–12405 (2006).
    [CrossRef] [PubMed]
  2. T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268(5219), 1873–1875 (1995).
    [CrossRef] [PubMed]
  3. D. C. Burns, F. Z. Zhang, and G. A. Woolley, “Synthesis of 3,3′-bis(sulfonato)-4,4′-bis(chloroacetamido)azobenzene and cysteine cross-linking for photo-control of protein conformation and activity,” Nat. Protoc. 2(2), 251–258 (2007).
    [CrossRef] [PubMed]
  4. X. Pan, C. S. Wang, C. Y. Wang, and X. Q. Zhang, “Image storage based on circular-polarization holography in an azobenzene side-chain liquid-crystalline polymer,” Appl. Opt. 47(1), 93–98 (2008), http://www.opticsinfobase.org/abstract.cfm?uri=ao-47-1-93 .
    [CrossRef]
  5. M. J. Comstock, N. Levy, A. Kirakosian, J. Cho, F. Lauterwasser, J. H. Harvey, D. A. Strubbe, J. M. Fréchet, D. Trauner, S. G. Louie, and M. F. Crommie, “Reversible photomechanical switching of individual engineered molecules at a metallic surface,” Phys. Rev. Lett. 99(3), 038301 (2007).
    [CrossRef] [PubMed]
  6. G. Vogt, G. Krampert, P. Niklaus, P. Nuernberger, and G. Gerber, “Optimal control of photoisomerization,” Phys. Rev. Lett. 94(6), 068305 (2005).
    [CrossRef] [PubMed]
  7. G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nature 241, 20–22 (1973).
  8. Y. K. Park and S. Park, “Directing close-packing of midnanosized gold nanoparticles at a water/hexane interface,” Chem. Mater. 20(6), 2388–2393 (2008).
    [CrossRef]
  9. H. Rau, G. Greiner, G. Gauglitz, and H. Meier, “Optimal control of photoisomerization,” J. Phys. Chem. 94(17), 6523–6524 (1990).
    [CrossRef]
  10. E. Fischer, “The calculation of photostationary states in systems A ⇔ B when only A is known,” J. Phys. Chem. 71(11), 3704–3706 (1967).
    [CrossRef]
  11. M. Futamata, Y. Maruyama, and M. Ishikawa, “Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method,” J. Phys. Chem. B 107(31), 7607–7617 (2003).
    [CrossRef]
  12. H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89(24), 246802 (2002).
    [CrossRef] [PubMed]
  13. E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
    [CrossRef] [PubMed]
  14. B. Dietzek, B. Brüggemann, T. Pascher, and A. Yartsev, “Mechanisms of molecular response in the optimal control of photoisomerization,” Phys. Rev. Lett. 97(25), 258301 (2006).
    [CrossRef]
  15. P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, and P. Royer, “Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources,” ACS Nano 4(2), 759–764 (2010).
    [CrossRef] [PubMed]

2010 (1)

P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, and P. Royer, “Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources,” ACS Nano 4(2), 759–764 (2010).
[CrossRef] [PubMed]

2008 (2)

2007 (2)

D. C. Burns, F. Z. Zhang, and G. A. Woolley, “Synthesis of 3,3′-bis(sulfonato)-4,4′-bis(chloroacetamido)azobenzene and cysteine cross-linking for photo-control of protein conformation and activity,” Nat. Protoc. 2(2), 251–258 (2007).
[CrossRef] [PubMed]

M. J. Comstock, N. Levy, A. Kirakosian, J. Cho, F. Lauterwasser, J. H. Harvey, D. A. Strubbe, J. M. Fréchet, D. Trauner, S. G. Louie, and M. F. Crommie, “Reversible photomechanical switching of individual engineered molecules at a metallic surface,” Phys. Rev. Lett. 99(3), 038301 (2007).
[CrossRef] [PubMed]

2006 (2)

S. Loudwig and H. Bayley, “Photoisomerization of an individual azobenzene molecule in water: an on-off switch triggered by light at a fixed wavelength,” J. Am. Chem. Soc. 128(38), 12404–12405 (2006).
[CrossRef] [PubMed]

B. Dietzek, B. Brüggemann, T. Pascher, and A. Yartsev, “Mechanisms of molecular response in the optimal control of photoisomerization,” Phys. Rev. Lett. 97(25), 258301 (2006).
[CrossRef]

2005 (1)

G. Vogt, G. Krampert, P. Niklaus, P. Nuernberger, and G. Gerber, “Optimal control of photoisomerization,” Phys. Rev. Lett. 94(6), 068305 (2005).
[CrossRef] [PubMed]

2003 (1)

M. Futamata, Y. Maruyama, and M. Ishikawa, “Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method,” J. Phys. Chem. B 107(31), 7607–7617 (2003).
[CrossRef]

2002 (2)

H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89(24), 246802 (2002).
[CrossRef] [PubMed]

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[CrossRef] [PubMed]

1995 (1)

T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268(5219), 1873–1875 (1995).
[CrossRef] [PubMed]

1990 (1)

H. Rau, G. Greiner, G. Gauglitz, and H. Meier, “Optimal control of photoisomerization,” J. Phys. Chem. 94(17), 6523–6524 (1990).
[CrossRef]

1973 (1)

G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nature 241, 20–22 (1973).

1967 (1)

E. Fischer, “The calculation of photostationary states in systems A ⇔ B when only A is known,” J. Phys. Chem. 71(11), 3704–3706 (1967).
[CrossRef]

Adam, P. M.

P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, and P. Royer, “Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources,” ACS Nano 4(2), 759–764 (2010).
[CrossRef] [PubMed]

Bayley, H.

S. Loudwig and H. Bayley, “Photoisomerization of an individual azobenzene molecule in water: an on-off switch triggered by light at a fixed wavelength,” J. Am. Chem. Soc. 128(38), 12404–12405 (2006).
[CrossRef] [PubMed]

Brüggemann, B.

B. Dietzek, B. Brüggemann, T. Pascher, and A. Yartsev, “Mechanisms of molecular response in the optimal control of photoisomerization,” Phys. Rev. Lett. 97(25), 258301 (2006).
[CrossRef]

Burns, D. C.

D. C. Burns, F. Z. Zhang, and G. A. Woolley, “Synthesis of 3,3′-bis(sulfonato)-4,4′-bis(chloroacetamido)azobenzene and cysteine cross-linking for photo-control of protein conformation and activity,” Nat. Protoc. 2(2), 251–258 (2007).
[CrossRef] [PubMed]

Cho, J.

M. J. Comstock, N. Levy, A. Kirakosian, J. Cho, F. Lauterwasser, J. H. Harvey, D. A. Strubbe, J. M. Fréchet, D. Trauner, S. G. Louie, and M. F. Crommie, “Reversible photomechanical switching of individual engineered molecules at a metallic surface,” Phys. Rev. Lett. 99(3), 038301 (2007).
[CrossRef] [PubMed]

Comstock, M. J.

M. J. Comstock, N. Levy, A. Kirakosian, J. Cho, F. Lauterwasser, J. H. Harvey, D. A. Strubbe, J. M. Fréchet, D. Trauner, S. G. Louie, and M. F. Crommie, “Reversible photomechanical switching of individual engineered molecules at a metallic surface,” Phys. Rev. Lett. 99(3), 038301 (2007).
[CrossRef] [PubMed]

Crommie, M. F.

M. J. Comstock, N. Levy, A. Kirakosian, J. Cho, F. Lauterwasser, J. H. Harvey, D. A. Strubbe, J. M. Fréchet, D. Trauner, S. G. Louie, and M. F. Crommie, “Reversible photomechanical switching of individual engineered molecules at a metallic surface,” Phys. Rev. Lett. 99(3), 038301 (2007).
[CrossRef] [PubMed]

Dietzek, B.

B. Dietzek, B. Brüggemann, T. Pascher, and A. Yartsev, “Mechanisms of molecular response in the optimal control of photoisomerization,” Phys. Rev. Lett. 97(25), 258301 (2006).
[CrossRef]

Dulkeith, E.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[CrossRef] [PubMed]

Feldmann, J.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[CrossRef] [PubMed]

Fischer, E.

E. Fischer, “The calculation of photostationary states in systems A ⇔ B when only A is known,” J. Phys. Chem. 71(11), 3704–3706 (1967).
[CrossRef]

Fréchet, J. M.

M. J. Comstock, N. Levy, A. Kirakosian, J. Cho, F. Lauterwasser, J. H. Harvey, D. A. Strubbe, J. M. Fréchet, D. Trauner, S. G. Louie, and M. F. Crommie, “Reversible photomechanical switching of individual engineered molecules at a metallic surface,” Phys. Rev. Lett. 99(3), 038301 (2007).
[CrossRef] [PubMed]

Frens, G.

G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nature 241, 20–22 (1973).

Futamata, M.

M. Futamata, Y. Maruyama, and M. Ishikawa, “Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method,” J. Phys. Chem. B 107(31), 7607–7617 (2003).
[CrossRef]

Gauglitz, G.

H. Rau, G. Greiner, G. Gauglitz, and H. Meier, “Optimal control of photoisomerization,” J. Phys. Chem. 94(17), 6523–6524 (1990).
[CrossRef]

Gerber, G.

G. Vogt, G. Krampert, P. Niklaus, P. Nuernberger, and G. Gerber, “Optimal control of photoisomerization,” Phys. Rev. Lett. 94(6), 068305 (2005).
[CrossRef] [PubMed]

Gittins, D. I.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[CrossRef] [PubMed]

Greiner, G.

H. Rau, G. Greiner, G. Gauglitz, and H. Meier, “Optimal control of photoisomerization,” J. Phys. Chem. 94(17), 6523–6524 (1990).
[CrossRef]

Harvey, J. H.

M. J. Comstock, N. Levy, A. Kirakosian, J. Cho, F. Lauterwasser, J. H. Harvey, D. A. Strubbe, J. M. Fréchet, D. Trauner, S. G. Louie, and M. F. Crommie, “Reversible photomechanical switching of individual engineered molecules at a metallic surface,” Phys. Rev. Lett. 99(3), 038301 (2007).
[CrossRef] [PubMed]

Ikeda, T.

T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268(5219), 1873–1875 (1995).
[CrossRef] [PubMed]

Ishikawa, M.

M. Futamata, Y. Maruyama, and M. Ishikawa, “Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method,” J. Phys. Chem. B 107(31), 7607–7617 (2003).
[CrossRef]

Jaffiol, R.

P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, and P. Royer, “Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources,” ACS Nano 4(2), 759–764 (2010).
[CrossRef] [PubMed]

Käll, M.

H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89(24), 246802 (2002).
[CrossRef] [PubMed]

Kirakosian, A.

M. J. Comstock, N. Levy, A. Kirakosian, J. Cho, F. Lauterwasser, J. H. Harvey, D. A. Strubbe, J. M. Fréchet, D. Trauner, S. G. Louie, and M. F. Crommie, “Reversible photomechanical switching of individual engineered molecules at a metallic surface,” Phys. Rev. Lett. 99(3), 038301 (2007).
[CrossRef] [PubMed]

Klar, T. A.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[CrossRef] [PubMed]

Krampert, G.

G. Vogt, G. Krampert, P. Niklaus, P. Nuernberger, and G. Gerber, “Optimal control of photoisomerization,” Phys. Rev. Lett. 94(6), 068305 (2005).
[CrossRef] [PubMed]

Lauterwasser, F.

M. J. Comstock, N. Levy, A. Kirakosian, J. Cho, F. Lauterwasser, J. H. Harvey, D. A. Strubbe, J. M. Fréchet, D. Trauner, S. G. Louie, and M. F. Crommie, “Reversible photomechanical switching of individual engineered molecules at a metallic surface,” Phys. Rev. Lett. 99(3), 038301 (2007).
[CrossRef] [PubMed]

Levi, S. A.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[CrossRef] [PubMed]

Levy, N.

M. J. Comstock, N. Levy, A. Kirakosian, J. Cho, F. Lauterwasser, J. H. Harvey, D. A. Strubbe, J. M. Fréchet, D. Trauner, S. G. Louie, and M. F. Crommie, “Reversible photomechanical switching of individual engineered molecules at a metallic surface,” Phys. Rev. Lett. 99(3), 038301 (2007).
[CrossRef] [PubMed]

Loudwig, S.

S. Loudwig and H. Bayley, “Photoisomerization of an individual azobenzene molecule in water: an on-off switch triggered by light at a fixed wavelength,” J. Am. Chem. Soc. 128(38), 12404–12405 (2006).
[CrossRef] [PubMed]

Louie, S. G.

M. J. Comstock, N. Levy, A. Kirakosian, J. Cho, F. Lauterwasser, J. H. Harvey, D. A. Strubbe, J. M. Fréchet, D. Trauner, S. G. Louie, and M. F. Crommie, “Reversible photomechanical switching of individual engineered molecules at a metallic surface,” Phys. Rev. Lett. 99(3), 038301 (2007).
[CrossRef] [PubMed]

Maruyama, Y.

M. Futamata, Y. Maruyama, and M. Ishikawa, “Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method,” J. Phys. Chem. B 107(31), 7607–7617 (2003).
[CrossRef]

Meier, H.

H. Rau, G. Greiner, G. Gauglitz, and H. Meier, “Optimal control of photoisomerization,” J. Phys. Chem. 94(17), 6523–6524 (1990).
[CrossRef]

Möller, M.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[CrossRef] [PubMed]

Morteani, A. C.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[CrossRef] [PubMed]

Niedereichholz, T.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[CrossRef] [PubMed]

Niklaus, P.

G. Vogt, G. Krampert, P. Niklaus, P. Nuernberger, and G. Gerber, “Optimal control of photoisomerization,” Phys. Rev. Lett. 94(6), 068305 (2005).
[CrossRef] [PubMed]

Nuernberger, P.

G. Vogt, G. Krampert, P. Niklaus, P. Nuernberger, and G. Gerber, “Optimal control of photoisomerization,” Phys. Rev. Lett. 94(6), 068305 (2005).
[CrossRef] [PubMed]

Pan, X.

Park, S.

Y. K. Park and S. Park, “Directing close-packing of midnanosized gold nanoparticles at a water/hexane interface,” Chem. Mater. 20(6), 2388–2393 (2008).
[CrossRef]

Park, Y. K.

Y. K. Park and S. Park, “Directing close-packing of midnanosized gold nanoparticles at a water/hexane interface,” Chem. Mater. 20(6), 2388–2393 (2008).
[CrossRef]

Pascher, T.

B. Dietzek, B. Brüggemann, T. Pascher, and A. Yartsev, “Mechanisms of molecular response in the optimal control of photoisomerization,” Phys. Rev. Lett. 97(25), 258301 (2006).
[CrossRef]

Plain, J.

P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, and P. Royer, “Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources,” ACS Nano 4(2), 759–764 (2010).
[CrossRef] [PubMed]

Rau, H.

H. Rau, G. Greiner, G. Gauglitz, and H. Meier, “Optimal control of photoisomerization,” J. Phys. Chem. 94(17), 6523–6524 (1990).
[CrossRef]

Reinhoudt, D. N.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[CrossRef] [PubMed]

Royer, P.

P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, and P. Royer, “Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources,” ACS Nano 4(2), 759–764 (2010).
[CrossRef] [PubMed]

Strubbe, D. A.

M. J. Comstock, N. Levy, A. Kirakosian, J. Cho, F. Lauterwasser, J. H. Harvey, D. A. Strubbe, J. M. Fréchet, D. Trauner, S. G. Louie, and M. F. Crommie, “Reversible photomechanical switching of individual engineered molecules at a metallic surface,” Phys. Rev. Lett. 99(3), 038301 (2007).
[CrossRef] [PubMed]

Trauner, D.

M. J. Comstock, N. Levy, A. Kirakosian, J. Cho, F. Lauterwasser, J. H. Harvey, D. A. Strubbe, J. M. Fréchet, D. Trauner, S. G. Louie, and M. F. Crommie, “Reversible photomechanical switching of individual engineered molecules at a metallic surface,” Phys. Rev. Lett. 99(3), 038301 (2007).
[CrossRef] [PubMed]

Tsutsumi, O.

T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268(5219), 1873–1875 (1995).
[CrossRef] [PubMed]

van Veggel, F. C.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[CrossRef] [PubMed]

Vial, A.

P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, and P. Royer, “Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources,” ACS Nano 4(2), 759–764 (2010).
[CrossRef] [PubMed]

Viste, P.

P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, and P. Royer, “Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources,” ACS Nano 4(2), 759–764 (2010).
[CrossRef] [PubMed]

Vogt, G.

G. Vogt, G. Krampert, P. Niklaus, P. Nuernberger, and G. Gerber, “Optimal control of photoisomerization,” Phys. Rev. Lett. 94(6), 068305 (2005).
[CrossRef] [PubMed]

Wang, C. S.

Wang, C. Y.

Woolley, G. A.

D. C. Burns, F. Z. Zhang, and G. A. Woolley, “Synthesis of 3,3′-bis(sulfonato)-4,4′-bis(chloroacetamido)azobenzene and cysteine cross-linking for photo-control of protein conformation and activity,” Nat. Protoc. 2(2), 251–258 (2007).
[CrossRef] [PubMed]

Xu, H.

H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89(24), 246802 (2002).
[CrossRef] [PubMed]

Yartsev, A.

B. Dietzek, B. Brüggemann, T. Pascher, and A. Yartsev, “Mechanisms of molecular response in the optimal control of photoisomerization,” Phys. Rev. Lett. 97(25), 258301 (2006).
[CrossRef]

Zhang, F. Z.

D. C. Burns, F. Z. Zhang, and G. A. Woolley, “Synthesis of 3,3′-bis(sulfonato)-4,4′-bis(chloroacetamido)azobenzene and cysteine cross-linking for photo-control of protein conformation and activity,” Nat. Protoc. 2(2), 251–258 (2007).
[CrossRef] [PubMed]

Zhang, X. Q.

ACS Nano (1)

P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, and P. Royer, “Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources,” ACS Nano 4(2), 759–764 (2010).
[CrossRef] [PubMed]

Appl. Opt. (1)

Chem. Mater. (1)

Y. K. Park and S. Park, “Directing close-packing of midnanosized gold nanoparticles at a water/hexane interface,” Chem. Mater. 20(6), 2388–2393 (2008).
[CrossRef]

J. Am. Chem. Soc. (1)

S. Loudwig and H. Bayley, “Photoisomerization of an individual azobenzene molecule in water: an on-off switch triggered by light at a fixed wavelength,” J. Am. Chem. Soc. 128(38), 12404–12405 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. (2)

H. Rau, G. Greiner, G. Gauglitz, and H. Meier, “Optimal control of photoisomerization,” J. Phys. Chem. 94(17), 6523–6524 (1990).
[CrossRef]

E. Fischer, “The calculation of photostationary states in systems A ⇔ B when only A is known,” J. Phys. Chem. 71(11), 3704–3706 (1967).
[CrossRef]

J. Phys. Chem. B (1)

M. Futamata, Y. Maruyama, and M. Ishikawa, “Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method,” J. Phys. Chem. B 107(31), 7607–7617 (2003).
[CrossRef]

Nat. Protoc. (1)

D. C. Burns, F. Z. Zhang, and G. A. Woolley, “Synthesis of 3,3′-bis(sulfonato)-4,4′-bis(chloroacetamido)azobenzene and cysteine cross-linking for photo-control of protein conformation and activity,” Nat. Protoc. 2(2), 251–258 (2007).
[CrossRef] [PubMed]

Nature (1)

G. Frens, “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions,” Nature 241, 20–22 (1973).

Phys. Rev. Lett. (5)

H. Xu and M. Käll, “Surface-plasmon-enhanced optical forces in silver nanoaggregates,” Phys. Rev. Lett. 89(24), 246802 (2002).
[CrossRef] [PubMed]

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[CrossRef] [PubMed]

B. Dietzek, B. Brüggemann, T. Pascher, and A. Yartsev, “Mechanisms of molecular response in the optimal control of photoisomerization,” Phys. Rev. Lett. 97(25), 258301 (2006).
[CrossRef]

M. J. Comstock, N. Levy, A. Kirakosian, J. Cho, F. Lauterwasser, J. H. Harvey, D. A. Strubbe, J. M. Fréchet, D. Trauner, S. G. Louie, and M. F. Crommie, “Reversible photomechanical switching of individual engineered molecules at a metallic surface,” Phys. Rev. Lett. 99(3), 038301 (2007).
[CrossRef] [PubMed]

G. Vogt, G. Krampert, P. Niklaus, P. Nuernberger, and G. Gerber, “Optimal control of photoisomerization,” Phys. Rev. Lett. 94(6), 068305 (2005).
[CrossRef] [PubMed]

Science (1)

T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science 268(5219), 1873–1875 (1995).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) AFM image of self-assembled film of 30nm-gold particles. (b) AFM image of gold island film. (c) Size dispersion of 30nm gold nanopartilces (d) The absorption coefficients of gold island film(blue) and self-assembled films of 10nm(black), 30nm(red) and 50nm(green) gold particles. The red dash line indicates the wavelength of 532nm.

Fig. 2
Fig. 2

(a) The transient absorbance of DR1 on self-assembled film of 10nm-gold particles. Pump light was blocked at t = 0 and cis isomer begins to relax to trans isomer thermally. Line is the exponential decay fitting. (b) The relationship between the reciprocal of absorption change ratio with 1/F for pure DR1(green), DR1 on gold island film(red) and DR1 on self-assembled film of 10nm(purple), 30nm(blue) and 50nm(magenta) gold particles. Lines are linear fittings. Lines are the linear fitting.

Fig. 3
Fig. 3

(a) SERS spectra of DR1 on gold island film (red), DR1 on self-assembled film of 10nm (green), 30nm (blue) and 50nm (purple) gold particles. 1400 cm-1 is the N = N Raman mode. (b) Transient fluorescence decay of RhB on glass substrate (pink), gold island film (orange), self-assembled films of 10nm (green), 30nm (blue) and 50nm (red) gold particles.

Fig. 4
Fig. 4

(a) Changes of PQE as a function of spacing between dye and metallic nanostructures. (b) Changes of SERS enhancement when DR1 is isolated from gold nanostructures with a spacing layer. Blue points: DR1 on self-assembled film of 30nm-gold particles; Magenta points: DR1 on gold island film. The red dash line in (a) indicates PQE of free DR1molecule.

Tables (1)

Tables Icon

Table 1 Final cis Occupancies (FCO), cis Isomer Lifetimes and trans-to-cis Photoisomerization Quantum Efficiencies of All Samples

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A 0 A p s s A 0 = ε t ϕ t c + ε c ϕ c t ( ε c ε t ) ϕ t c + 1 ( ε c ε t ) ϕ t c τ c 1 F , F = 1000 ( 1 10 A p s s ) I p / A p s s .

Metrics