Abstract

Self-phase modulation in fiber amplifiers can significantly degrade the quality of compressed pulses in chirped pulse amplification systems. Parabolic pulses with linear frequency chirp are suitable for suppressing nonlinearities, and to achieve high peak power pulses after compression. In this paper, we present an active time domain technique to generate parabolic pulses for chirped pulse amplification applications. Pulses from a mode-locked laser are temporally stretched and launched into an amplitude modulator, where the drive voltage is designed using the spectral shape of the input pulse and the transfer function of the modulator, resulting in the generation of parabolic pulses. Experimental results of pulse shaping with a pulse train from a mode-locked laser are presented, with a residual error of less than 5%. Moreover, an extinction ratio of 27 dB is achieved, which is ideal for chirped pulse amplification applications.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
    [CrossRef]
  2. M. Pessot, P. Maine, and G. Mourou, “1000 times expansion/compression of optical pulses for chirped pulse amplification,” Opt. Commun. 62(6), 419–421 (1987).
    [CrossRef]
  3. F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66(1), 121–128 (1998).
    [CrossRef]
  4. C. Sauteret, D. Husson, G. Thiell, S. Seznec, S. Gary, A. Migus, and G. Mourou, “Generation of 20-TW pulses of picosecond duration using chirped-pulse amplification in a Nd:glass power chain,” Opt. Lett. 16(4), 238–240 (1991).
    [CrossRef] [PubMed]
  5. A. Dubietis, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,” Opt. Commun. 88(4-6), 437–440 (1992).
    [CrossRef]
  6. K. Kim, S. Lee, and P. J. Delfyett, “1.4kW high peak power generation from an all semiconductor mode-locked master oscillator power amplifier system based on eXtreme Chirped Pulse Amplification(X-CPA),” Opt. Express 13(12), 4600–4606 (2005).
    [CrossRef] [PubMed]
  7. K. Kim, S. Lee, and P. J. Delfyett, “eXtreme chirped pulse amplification-beyond the fundamental energy storage limit of semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 12(2), 245–254 (2006) (Invited paper).
    [CrossRef]
  8. D. N. Schimpf, J. Limpert, and A. Tünnermann, “Controlling the influence of SPM in fiber-based chirped-pulse amplification systems by using an actively shaped parabolic spectrum,” Opt. Express 15(25), 16945–16953 (2007).
    [CrossRef] [PubMed]
  9. J. van Howe, G. Zhu, and C. Xu, “Compensation of self-phase modulation in fiber-based chirped-pulse amplification systems,” Opt. Lett. 31(11), 1756–1758 (2006).
    [CrossRef] [PubMed]
  10. D. N. Schimpf, E. Seise, T. Eidam, J. Limpert, and A. Tünnermann, “Control of the optical Kerr effect in chirped-pulse-amplification systems using model-based phase shaping,” Opt. Lett. 34(24), 3788–3790 (2009).
    [CrossRef] [PubMed]
  11. V. I. Kruglov, A. C. Peacock, J. M. Dudley, and J. D. Harvey, “Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers,” Opt. Lett. 25(24), 1753–1755 (2000).
    [CrossRef]
  12. S. Boscolo, S. K. Turitsyn, V. Yu. Novokshenov, and J. H. Nijhof, “Self-similar parabolic optical solitary waves,” Theor. Math. Phys. 133(3), 1647–1656 (2002).
    [CrossRef]
  13. D. Anderson, M. Desaix, M. Karlsson, M. Lisak, and M. L. Quiroga-Teixeiro, “Wave-breaking-free pulses in nonlinear-optical fibers,” J. Opt. Soc. Am. B 10(7), 1185 (1993).
    [CrossRef]
  14. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
    [CrossRef] [PubMed]
  15. F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. F. Roelens, P. Petropoulos, and D. J. Richardson, “Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating,” Opt. Express 14(17), 7617–7622 (2006).
    [CrossRef] [PubMed]
  16. V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, “Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers,” J. Opt. Soc. Am. B 19(3), 461 (2002).
    [CrossRef]
  17. T. Hirooka and M. Nakazawa, “Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion,” Opt. Lett. 29(5), 498–500 (2004).
    [CrossRef] [PubMed]
  18. B. Kibler, C. Billet, P. A. Lacourt, R. Ferrière, L. Larger, and J. M. Dudley, “Parabolic pulse generation in comb-like profiled dispersion decreasing fibre,” Electron. Lett. 42(17), 965–966 (2006).
    [CrossRef]
  19. C. Finot, G. Millot, C. Billet, and J. Dudley, “Experimental generation of parabolic pulses via Raman amplification in optical fiber,” Opt. Express 11(13), 1547–1552 (2003).
    [CrossRef] [PubMed]
  20. C. Finot, B. Barviau, G. Millot, A. Guryanov, A. Sysoliatin, and S. Wabnitz, “Parabolic pulse generation with active or passive dispersion decreasing optical fibers,” Opt. Express 15(24), 15824–15835 (2007).
    [CrossRef] [PubMed]
  21. A. Y. Plotski, A. A. Sysoliatin, A. I. Latkin, V. F. Khopin, P. Harper, J. Harrison, and S. K. Turitsyn, “Experiments on the generation of parabolic pulses in fibers with length-varying normal chromatic dispersion,” JETP Lett. 85(7), 319–322 (2007).
    [CrossRef]
  22. A. Peacock and N. Healy, “Parabolic pulse generation in tapered silicon fibers,” Opt. Lett. 35(11), 1780–1782 (2010).
    [CrossRef] [PubMed]
  23. A. I. Latkin, S. K. Turitsyn, and A. A. Sysoliatin, “Theory of parabolic pulse generation in tapered fiber,” Opt. Lett. 32(4), 331–333 (2007).
    [CrossRef] [PubMed]
  24. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
    [CrossRef]
  25. S. Lee, D. Mandridis, and P. J. Delfyett, “eXtreme chirped pulse oscillator operating in the nanosecond stretched pulse regime,” Opt. Express 16(7), 4766–4773 (2008).
    [CrossRef] [PubMed]

2010 (1)

2009 (1)

2008 (1)

2007 (4)

2006 (4)

K. Kim, S. Lee, and P. J. Delfyett, “eXtreme chirped pulse amplification-beyond the fundamental energy storage limit of semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 12(2), 245–254 (2006) (Invited paper).
[CrossRef]

B. Kibler, C. Billet, P. A. Lacourt, R. Ferrière, L. Larger, and J. M. Dudley, “Parabolic pulse generation in comb-like profiled dispersion decreasing fibre,” Electron. Lett. 42(17), 965–966 (2006).
[CrossRef]

J. van Howe, G. Zhu, and C. Xu, “Compensation of self-phase modulation in fiber-based chirped-pulse amplification systems,” Opt. Lett. 31(11), 1756–1758 (2006).
[CrossRef] [PubMed]

F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. F. Roelens, P. Petropoulos, and D. J. Richardson, “Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating,” Opt. Express 14(17), 7617–7622 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (1)

2003 (1)

2002 (2)

V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, “Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers,” J. Opt. Soc. Am. B 19(3), 461 (2002).
[CrossRef]

S. Boscolo, S. K. Turitsyn, V. Yu. Novokshenov, and J. H. Nijhof, “Self-similar parabolic optical solitary waves,” Theor. Math. Phys. 133(3), 1647–1656 (2002).
[CrossRef]

2000 (2)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[CrossRef] [PubMed]

V. I. Kruglov, A. C. Peacock, J. M. Dudley, and J. D. Harvey, “Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers,” Opt. Lett. 25(24), 1753–1755 (2000).
[CrossRef]

1998 (1)

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66(1), 121–128 (1998).
[CrossRef]

1994 (1)

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
[CrossRef]

1993 (1)

1992 (1)

A. Dubietis, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,” Opt. Commun. 88(4-6), 437–440 (1992).
[CrossRef]

1991 (1)

1987 (1)

M. Pessot, P. Maine, and G. Mourou, “1000 times expansion/compression of optical pulses for chirped pulse amplification,” Opt. Commun. 62(6), 419–421 (1987).
[CrossRef]

1985 (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

Anderson, D.

Barviau, B.

Bille, J. F.

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66(1), 121–128 (1998).
[CrossRef]

Billet, C.

B. Kibler, C. Billet, P. A. Lacourt, R. Ferrière, L. Larger, and J. M. Dudley, “Parabolic pulse generation in comb-like profiled dispersion decreasing fibre,” Electron. Lett. 42(17), 965–966 (2006).
[CrossRef]

C. Finot, G. Millot, C. Billet, and J. Dudley, “Experimental generation of parabolic pulses via Raman amplification in optical fiber,” Opt. Express 11(13), 1547–1552 (2003).
[CrossRef] [PubMed]

Boscolo, S.

S. Boscolo, S. K. Turitsyn, V. Yu. Novokshenov, and J. H. Nijhof, “Self-similar parabolic optical solitary waves,” Theor. Math. Phys. 133(3), 1647–1656 (2002).
[CrossRef]

Delfyett, P. J.

Desaix, M.

Dubietis, A.

A. Dubietis, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,” Opt. Commun. 88(4-6), 437–440 (1992).
[CrossRef]

Dudley, J.

Dudley, J. M.

B. Kibler, C. Billet, P. A. Lacourt, R. Ferrière, L. Larger, and J. M. Dudley, “Parabolic pulse generation in comb-like profiled dispersion decreasing fibre,” Electron. Lett. 42(17), 965–966 (2006).
[CrossRef]

V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, “Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers,” J. Opt. Soc. Am. B 19(3), 461 (2002).
[CrossRef]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[CrossRef] [PubMed]

V. I. Kruglov, A. C. Peacock, J. M. Dudley, and J. D. Harvey, “Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers,” Opt. Lett. 25(24), 1753–1755 (2000).
[CrossRef]

Eidam, T.

Fermann, M. E.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[CrossRef] [PubMed]

Ferrière, R.

B. Kibler, C. Billet, P. A. Lacourt, R. Ferrière, L. Larger, and J. M. Dudley, “Parabolic pulse generation in comb-like profiled dispersion decreasing fibre,” Electron. Lett. 42(17), 965–966 (2006).
[CrossRef]

Finot, C.

Fischer, J. P.

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66(1), 121–128 (1998).
[CrossRef]

Gary, S.

Götz, M. H.

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66(1), 121–128 (1998).
[CrossRef]

Guryanov, A.

Harper, P.

A. Y. Plotski, A. A. Sysoliatin, A. I. Latkin, V. F. Khopin, P. Harper, J. Harrison, and S. K. Turitsyn, “Experiments on the generation of parabolic pulses in fibers with length-varying normal chromatic dispersion,” JETP Lett. 85(7), 319–322 (2007).
[CrossRef]

Harrison, J.

A. Y. Plotski, A. A. Sysoliatin, A. I. Latkin, V. F. Khopin, P. Harper, J. Harrison, and S. K. Turitsyn, “Experiments on the generation of parabolic pulses in fibers with length-varying normal chromatic dispersion,” JETP Lett. 85(7), 319–322 (2007).
[CrossRef]

Harvey, J. D.

Healy, N.

Hirooka, T.

Horvath, C.

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66(1), 121–128 (1998).
[CrossRef]

Husson, D.

Ibsen, M.

Juhasz, T.

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66(1), 121–128 (1998).
[CrossRef]

Karlsson, M.

Khopin, V. F.

A. Y. Plotski, A. A. Sysoliatin, A. I. Latkin, V. F. Khopin, P. Harper, J. Harrison, and S. K. Turitsyn, “Experiments on the generation of parabolic pulses in fibers with length-varying normal chromatic dispersion,” JETP Lett. 85(7), 319–322 (2007).
[CrossRef]

Kibler, B.

B. Kibler, C. Billet, P. A. Lacourt, R. Ferrière, L. Larger, and J. M. Dudley, “Parabolic pulse generation in comb-like profiled dispersion decreasing fibre,” Electron. Lett. 42(17), 965–966 (2006).
[CrossRef]

Kim, K.

K. Kim, S. Lee, and P. J. Delfyett, “eXtreme chirped pulse amplification-beyond the fundamental energy storage limit of semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 12(2), 245–254 (2006) (Invited paper).
[CrossRef]

K. Kim, S. Lee, and P. J. Delfyett, “1.4kW high peak power generation from an all semiconductor mode-locked master oscillator power amplifier system based on eXtreme Chirped Pulse Amplification(X-CPA),” Opt. Express 13(12), 4600–4606 (2005).
[CrossRef] [PubMed]

Kolner, B. H.

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
[CrossRef]

Kruglov, V. I.

Lacourt, P. A.

B. Kibler, C. Billet, P. A. Lacourt, R. Ferrière, L. Larger, and J. M. Dudley, “Parabolic pulse generation in comb-like profiled dispersion decreasing fibre,” Electron. Lett. 42(17), 965–966 (2006).
[CrossRef]

Larger, L.

B. Kibler, C. Billet, P. A. Lacourt, R. Ferrière, L. Larger, and J. M. Dudley, “Parabolic pulse generation in comb-like profiled dispersion decreasing fibre,” Electron. Lett. 42(17), 965–966 (2006).
[CrossRef]

Latkin, A. I.

A. Y. Plotski, A. A. Sysoliatin, A. I. Latkin, V. F. Khopin, P. Harper, J. Harrison, and S. K. Turitsyn, “Experiments on the generation of parabolic pulses in fibers with length-varying normal chromatic dispersion,” JETP Lett. 85(7), 319–322 (2007).
[CrossRef]

A. I. Latkin, S. K. Turitsyn, and A. A. Sysoliatin, “Theory of parabolic pulse generation in tapered fiber,” Opt. Lett. 32(4), 331–333 (2007).
[CrossRef] [PubMed]

Lee, S.

Limpert, J.

Lisak, M.

Loesel, F. H.

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66(1), 121–128 (1998).
[CrossRef]

Maine, P.

M. Pessot, P. Maine, and G. Mourou, “1000 times expansion/compression of optical pulses for chirped pulse amplification,” Opt. Commun. 62(6), 419–421 (1987).
[CrossRef]

Mandridis, D.

Migus, A.

Millot, G.

Mourou, G.

C. Sauteret, D. Husson, G. Thiell, S. Seznec, S. Gary, A. Migus, and G. Mourou, “Generation of 20-TW pulses of picosecond duration using chirped-pulse amplification in a Nd:glass power chain,” Opt. Lett. 16(4), 238–240 (1991).
[CrossRef] [PubMed]

M. Pessot, P. Maine, and G. Mourou, “1000 times expansion/compression of optical pulses for chirped pulse amplification,” Opt. Commun. 62(6), 419–421 (1987).
[CrossRef]

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

Mukasa, K.

Nakazawa, M.

Nijhof, J. H.

S. Boscolo, S. K. Turitsyn, V. Yu. Novokshenov, and J. H. Nijhof, “Self-similar parabolic optical solitary waves,” Theor. Math. Phys. 133(3), 1647–1656 (2002).
[CrossRef]

Noack, F.

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66(1), 121–128 (1998).
[CrossRef]

Novokshenov, V. Yu.

S. Boscolo, S. K. Turitsyn, V. Yu. Novokshenov, and J. H. Nijhof, “Self-similar parabolic optical solitary waves,” Theor. Math. Phys. 133(3), 1647–1656 (2002).
[CrossRef]

Parmigiani, F.

Peacock, A.

Peacock, A. C.

Pessot, M.

M. Pessot, P. Maine, and G. Mourou, “1000 times expansion/compression of optical pulses for chirped pulse amplification,” Opt. Commun. 62(6), 419–421 (1987).
[CrossRef]

Petropoulos, P.

Plotski, A. Y.

A. Y. Plotski, A. A. Sysoliatin, A. I. Latkin, V. F. Khopin, P. Harper, J. Harrison, and S. K. Turitsyn, “Experiments on the generation of parabolic pulses in fibers with length-varying normal chromatic dispersion,” JETP Lett. 85(7), 319–322 (2007).
[CrossRef]

Quiroga-Teixeiro, M. L.

Richardson, D. J.

Roelens, M. A. F.

Sauteret, C.

Schimpf, D. N.

Seise, E.

Seznec, S.

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

Suhm, N.

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66(1), 121–128 (1998).
[CrossRef]

Sysoliatin, A.

Sysoliatin, A. A.

A. Y. Plotski, A. A. Sysoliatin, A. I. Latkin, V. F. Khopin, P. Harper, J. Harrison, and S. K. Turitsyn, “Experiments on the generation of parabolic pulses in fibers with length-varying normal chromatic dispersion,” JETP Lett. 85(7), 319–322 (2007).
[CrossRef]

A. I. Latkin, S. K. Turitsyn, and A. A. Sysoliatin, “Theory of parabolic pulse generation in tapered fiber,” Opt. Lett. 32(4), 331–333 (2007).
[CrossRef] [PubMed]

Thiell, G.

Thomsen, B. C.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[CrossRef] [PubMed]

Tünnermann, A.

Turitsyn, S. K.

A. I. Latkin, S. K. Turitsyn, and A. A. Sysoliatin, “Theory of parabolic pulse generation in tapered fiber,” Opt. Lett. 32(4), 331–333 (2007).
[CrossRef] [PubMed]

A. Y. Plotski, A. A. Sysoliatin, A. I. Latkin, V. F. Khopin, P. Harper, J. Harrison, and S. K. Turitsyn, “Experiments on the generation of parabolic pulses in fibers with length-varying normal chromatic dispersion,” JETP Lett. 85(7), 319–322 (2007).
[CrossRef]

S. Boscolo, S. K. Turitsyn, V. Yu. Novokshenov, and J. H. Nijhof, “Self-similar parabolic optical solitary waves,” Theor. Math. Phys. 133(3), 1647–1656 (2002).
[CrossRef]

van Howe, J.

Wabnitz, S.

Xu, C.

Zhu, G.

Appl. Phys. B (1)

F. H. Loesel, J. P. Fischer, M. H. Götz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, “Non-thermal ablation of neural tissue with femtosecond laser pulses,” Appl. Phys. B 66(1), 121–128 (1998).
[CrossRef]

Electron. Lett. (1)

B. Kibler, C. Billet, P. A. Lacourt, R. Ferrière, L. Larger, and J. M. Dudley, “Parabolic pulse generation in comb-like profiled dispersion decreasing fibre,” Electron. Lett. 42(17), 965–966 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Kim, S. Lee, and P. J. Delfyett, “eXtreme chirped pulse amplification-beyond the fundamental energy storage limit of semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 12(2), 245–254 (2006) (Invited paper).
[CrossRef]

J. Opt. Soc. Am. B (2)

JETP Lett. (1)

A. Y. Plotski, A. A. Sysoliatin, A. I. Latkin, V. F. Khopin, P. Harper, J. Harrison, and S. K. Turitsyn, “Experiments on the generation of parabolic pulses in fibers with length-varying normal chromatic dispersion,” JETP Lett. 85(7), 319–322 (2007).
[CrossRef]

Opt. Commun. (3)

A. Dubietis, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,” Opt. Commun. 88(4-6), 437–440 (1992).
[CrossRef]

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

M. Pessot, P. Maine, and G. Mourou, “1000 times expansion/compression of optical pulses for chirped pulse amplification,” Opt. Commun. 62(6), 419–421 (1987).
[CrossRef]

Opt. Express (6)

Opt. Lett. (7)

Phys. Rev. Lett. (1)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26), 6010–6013 (2000).
[CrossRef] [PubMed]

Theor. Math. Phys. (1)

S. Boscolo, S. K. Turitsyn, V. Yu. Novokshenov, and J. H. Nijhof, “Self-similar parabolic optical solitary waves,” Theor. Math. Phys. 133(3), 1647–1656 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for pulse shaping. Cir: circulator, PD: Photodiode.

Fig. 2
Fig. 2

Time domain parabolic pulse creation using a CW laser source.

Fig. 3
Fig. 3

(a) Required and generated drive signal for square input pulse; inset: zoom-in of the peak (b) Experimental and calculated power spectrum of drive signal.

Fig. 4
Fig. 4

(a) Sampling scope trace of output parabolic pulses (b) Residual error of generated parabolic pulse.

Fig. 5
Fig. 5

(a) Drive signal for parabolic input pulse (b) Experimental and calculated power spectrum of drive signal.

Fig. 6
Fig. 6

(a) Optical spectrum before and after pulse shaping (b) Residual error of parabolic pulse.

Fig. 7
Fig. 7

Sampling oscilloscope trace of pulse after pulse shaping.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T ( V )   =  sin 2 ( π V / 2V π )
P ( t )   =  I ( t ) output /  I ( t ) input ,
V ( t )   =  arcsin  ( P ( t ) 1 / 2 )  2V π / π

Metrics