L. Zhuang, S. Y. He, X. B. Ye, W. D. Hu, W. X. Yu, and G. Q. Zhu, “The BCGS-FFT method combined with an improved discrete complex image method for EM scattering from electrically large objects in multilayered media,” IEEE Trans. Geosci. Rem. Sens. 48(3), 1180–1185 (2010).

[CrossRef]

S. He, F. Deng, H. Chen, W. Yu, W. Hu, and G. Zhu, “Range profile analysis of the 2-D target above a rough surface based on the electromagnetic numerical simulation,” IEEE Trans. Antenn. Propag. 57(10), 3258–3263 (2009).

[CrossRef]

F. Frezza, P. Martinelli, L. Pajewski, and G. Schettini, “Short-pulse electromagnetic scattering by buried perfectly conducting cylinders,” IEEE Geosci. Remote Sens. Lett. 4(4), 611–615 (2007).

[CrossRef]

Y. H. Zhang, B. X. Xiao, and G. Q. Zhu, “An improved weak-form BCGS-FFT combined with DCIM for analyzing electromagnetic scattering by 3-D objects in planarly layered media,” IEEE Trans. Geosci. Rem. Sens. 44(12), 3540–3546 (2006).

[CrossRef]

T. J. Cui, W. C. Chew, A. A. Aydiner, and Y. H. Zhang, “Fast-forward solvers for the low-frequency detection of buried dielectric objects,” IEEE Trans. Geosci. Rem. Sens. 41(9), 2026–2036 (2003).

[CrossRef]

V. Losada, R. R. Boix, and F. Medina, “Fast and accurate algorithm for the short-pulse electromagnetic scattering from conducting circular plates buried inside a lossy dispersive half-space,” IEEE Trans. Geosci. Rem. Sens. 41(5), 988–997 (2003).

[CrossRef]

K. T. Kim, D. K. Seo, and H. T. Kim, “Radar target identification using one-dimensional scattering cernters,” IEE Proc., Radar Sonar Navig. 148(5), 285–296 (2001).

[CrossRef]

N. Geng and L. Carin, “Wide-band electromagnetic scattering from a dielectric BOR buried in a layered lossy dispersive medium,” IEEE Trans. Antenn. Propag. 47(4), 610–619 (1999).

[CrossRef]

S. Vitebskiy, L. Carin, M. A. Ressler, and F. H. Le, “Ultra-wideband, short-pulse ground-penetrating radar: simulation and measurement,” IEEE Trans. Geosci. Rem. Sens. 35(3), 762–772 (1997).

[CrossRef]

S. Vitebskiy, K. Sturgess, and L. Carin, “Short-pulse plane-wave scattering from buried perfectly conducting bodies of revolution,” IEEE Trans. Antenn. Propag. 44(2), 143–151 (1996).

[CrossRef]

S. Vitebskiy and L. Carin, “Moment-method modeling of short-pulse scattering from and the resonances of a wire buried inside a lossy, dispersive half-space,” IEEE Trans. Antennas Propag. 43(11), 1303–1312 (1995).

T. J. Cui, W. C. Chew, A. A. Aydiner, and Y. H. Zhang, “Fast-forward solvers for the low-frequency detection of buried dielectric objects,” IEEE Trans. Geosci. Rem. Sens. 41(9), 2026–2036 (2003).

[CrossRef]

V. Losada, R. R. Boix, and F. Medina, “Fast and accurate algorithm for the short-pulse electromagnetic scattering from conducting circular plates buried inside a lossy dispersive half-space,” IEEE Trans. Geosci. Rem. Sens. 41(5), 988–997 (2003).

[CrossRef]

N. Geng and L. Carin, “Wide-band electromagnetic scattering from a dielectric BOR buried in a layered lossy dispersive medium,” IEEE Trans. Antenn. Propag. 47(4), 610–619 (1999).

[CrossRef]

S. Vitebskiy, L. Carin, M. A. Ressler, and F. H. Le, “Ultra-wideband, short-pulse ground-penetrating radar: simulation and measurement,” IEEE Trans. Geosci. Rem. Sens. 35(3), 762–772 (1997).

[CrossRef]

S. Vitebskiy, K. Sturgess, and L. Carin, “Short-pulse plane-wave scattering from buried perfectly conducting bodies of revolution,” IEEE Trans. Antenn. Propag. 44(2), 143–151 (1996).

[CrossRef]

S. Vitebskiy and L. Carin, “Moment-method modeling of short-pulse scattering from and the resonances of a wire buried inside a lossy, dispersive half-space,” IEEE Trans. Antennas Propag. 43(11), 1303–1312 (1995).

S. He, F. Deng, H. Chen, W. Yu, W. Hu, and G. Zhu, “Range profile analysis of the 2-D target above a rough surface based on the electromagnetic numerical simulation,” IEEE Trans. Antenn. Propag. 57(10), 3258–3263 (2009).

[CrossRef]

T. J. Cui, W. C. Chew, A. A. Aydiner, and Y. H. Zhang, “Fast-forward solvers for the low-frequency detection of buried dielectric objects,” IEEE Trans. Geosci. Rem. Sens. 41(9), 2026–2036 (2003).

[CrossRef]

T. J. Cui, W. C. Chew, A. A. Aydiner, and Y. H. Zhang, “Fast-forward solvers for the low-frequency detection of buried dielectric objects,” IEEE Trans. Geosci. Rem. Sens. 41(9), 2026–2036 (2003).

[CrossRef]

S. He, F. Deng, H. Chen, W. Yu, W. Hu, and G. Zhu, “Range profile analysis of the 2-D target above a rough surface based on the electromagnetic numerical simulation,” IEEE Trans. Antenn. Propag. 57(10), 3258–3263 (2009).

[CrossRef]

F. Frezza, P. Martinelli, L. Pajewski, and G. Schettini, “Short-pulse electromagnetic scattering by buried perfectly conducting cylinders,” IEEE Geosci. Remote Sens. Lett. 4(4), 611–615 (2007).

[CrossRef]

N. Geng and L. Carin, “Wide-band electromagnetic scattering from a dielectric BOR buried in a layered lossy dispersive medium,” IEEE Trans. Antenn. Propag. 47(4), 610–619 (1999).

[CrossRef]

S. He, F. Deng, H. Chen, W. Yu, W. Hu, and G. Zhu, “Range profile analysis of the 2-D target above a rough surface based on the electromagnetic numerical simulation,” IEEE Trans. Antenn. Propag. 57(10), 3258–3263 (2009).

[CrossRef]

L. Zhuang, S. Y. He, X. B. Ye, W. D. Hu, W. X. Yu, and G. Q. Zhu, “The BCGS-FFT method combined with an improved discrete complex image method for EM scattering from electrically large objects in multilayered media,” IEEE Trans. Geosci. Rem. Sens. 48(3), 1180–1185 (2010).

[CrossRef]

S. He, F. Deng, H. Chen, W. Yu, W. Hu, and G. Zhu, “Range profile analysis of the 2-D target above a rough surface based on the electromagnetic numerical simulation,” IEEE Trans. Antenn. Propag. 57(10), 3258–3263 (2009).

[CrossRef]

L. Zhuang, S. Y. He, X. B. Ye, W. D. Hu, W. X. Yu, and G. Q. Zhu, “The BCGS-FFT method combined with an improved discrete complex image method for EM scattering from electrically large objects in multilayered media,” IEEE Trans. Geosci. Rem. Sens. 48(3), 1180–1185 (2010).

[CrossRef]

K. T. Kim, D. K. Seo, and H. T. Kim, “Radar target identification using one-dimensional scattering cernters,” IEE Proc., Radar Sonar Navig. 148(5), 285–296 (2001).

[CrossRef]

K. T. Kim, D. K. Seo, and H. T. Kim, “Radar target identification using one-dimensional scattering cernters,” IEE Proc., Radar Sonar Navig. 148(5), 285–296 (2001).

[CrossRef]

S. Vitebskiy, L. Carin, M. A. Ressler, and F. H. Le, “Ultra-wideband, short-pulse ground-penetrating radar: simulation and measurement,” IEEE Trans. Geosci. Rem. Sens. 35(3), 762–772 (1997).

[CrossRef]

V. Losada, R. R. Boix, and F. Medina, “Fast and accurate algorithm for the short-pulse electromagnetic scattering from conducting circular plates buried inside a lossy dispersive half-space,” IEEE Trans. Geosci. Rem. Sens. 41(5), 988–997 (2003).

[CrossRef]

F. Frezza, P. Martinelli, L. Pajewski, and G. Schettini, “Short-pulse electromagnetic scattering by buried perfectly conducting cylinders,” IEEE Geosci. Remote Sens. Lett. 4(4), 611–615 (2007).

[CrossRef]

V. Losada, R. R. Boix, and F. Medina, “Fast and accurate algorithm for the short-pulse electromagnetic scattering from conducting circular plates buried inside a lossy dispersive half-space,” IEEE Trans. Geosci. Rem. Sens. 41(5), 988–997 (2003).

[CrossRef]

F. Frezza, P. Martinelli, L. Pajewski, and G. Schettini, “Short-pulse electromagnetic scattering by buried perfectly conducting cylinders,” IEEE Geosci. Remote Sens. Lett. 4(4), 611–615 (2007).

[CrossRef]

S. Vitebskiy, L. Carin, M. A. Ressler, and F. H. Le, “Ultra-wideband, short-pulse ground-penetrating radar: simulation and measurement,” IEEE Trans. Geosci. Rem. Sens. 35(3), 762–772 (1997).

[CrossRef]

F. Frezza, P. Martinelli, L. Pajewski, and G. Schettini, “Short-pulse electromagnetic scattering by buried perfectly conducting cylinders,” IEEE Geosci. Remote Sens. Lett. 4(4), 611–615 (2007).

[CrossRef]

K. T. Kim, D. K. Seo, and H. T. Kim, “Radar target identification using one-dimensional scattering cernters,” IEE Proc., Radar Sonar Navig. 148(5), 285–296 (2001).

[CrossRef]

S. Vitebskiy, K. Sturgess, and L. Carin, “Short-pulse plane-wave scattering from buried perfectly conducting bodies of revolution,” IEEE Trans. Antenn. Propag. 44(2), 143–151 (1996).

[CrossRef]

S. Vitebskiy, L. Carin, M. A. Ressler, and F. H. Le, “Ultra-wideband, short-pulse ground-penetrating radar: simulation and measurement,” IEEE Trans. Geosci. Rem. Sens. 35(3), 762–772 (1997).

[CrossRef]

S. Vitebskiy, K. Sturgess, and L. Carin, “Short-pulse plane-wave scattering from buried perfectly conducting bodies of revolution,” IEEE Trans. Antenn. Propag. 44(2), 143–151 (1996).

[CrossRef]

S. Vitebskiy and L. Carin, “Moment-method modeling of short-pulse scattering from and the resonances of a wire buried inside a lossy, dispersive half-space,” IEEE Trans. Antennas Propag. 43(11), 1303–1312 (1995).

Y. H. Zhang, B. X. Xiao, and G. Q. Zhu, “An improved weak-form BCGS-FFT combined with DCIM for analyzing electromagnetic scattering by 3-D objects in planarly layered media,” IEEE Trans. Geosci. Rem. Sens. 44(12), 3540–3546 (2006).

[CrossRef]

L. Zhuang, S. Y. He, X. B. Ye, W. D. Hu, W. X. Yu, and G. Q. Zhu, “The BCGS-FFT method combined with an improved discrete complex image method for EM scattering from electrically large objects in multilayered media,” IEEE Trans. Geosci. Rem. Sens. 48(3), 1180–1185 (2010).

[CrossRef]

S. He, F. Deng, H. Chen, W. Yu, W. Hu, and G. Zhu, “Range profile analysis of the 2-D target above a rough surface based on the electromagnetic numerical simulation,” IEEE Trans. Antenn. Propag. 57(10), 3258–3263 (2009).

[CrossRef]

L. Zhuang, S. Y. He, X. B. Ye, W. D. Hu, W. X. Yu, and G. Q. Zhu, “The BCGS-FFT method combined with an improved discrete complex image method for EM scattering from electrically large objects in multilayered media,” IEEE Trans. Geosci. Rem. Sens. 48(3), 1180–1185 (2010).

[CrossRef]

Y. H. Zhang, B. X. Xiao, and G. Q. Zhu, “An improved weak-form BCGS-FFT combined with DCIM for analyzing electromagnetic scattering by 3-D objects in planarly layered media,” IEEE Trans. Geosci. Rem. Sens. 44(12), 3540–3546 (2006).

[CrossRef]

T. J. Cui, W. C. Chew, A. A. Aydiner, and Y. H. Zhang, “Fast-forward solvers for the low-frequency detection of buried dielectric objects,” IEEE Trans. Geosci. Rem. Sens. 41(9), 2026–2036 (2003).

[CrossRef]

S. He, F. Deng, H. Chen, W. Yu, W. Hu, and G. Zhu, “Range profile analysis of the 2-D target above a rough surface based on the electromagnetic numerical simulation,” IEEE Trans. Antenn. Propag. 57(10), 3258–3263 (2009).

[CrossRef]

L. Zhuang, S. Y. He, X. B. Ye, W. D. Hu, W. X. Yu, and G. Q. Zhu, “The BCGS-FFT method combined with an improved discrete complex image method for EM scattering from electrically large objects in multilayered media,” IEEE Trans. Geosci. Rem. Sens. 48(3), 1180–1185 (2010).

[CrossRef]

Y. H. Zhang, B. X. Xiao, and G. Q. Zhu, “An improved weak-form BCGS-FFT combined with DCIM for analyzing electromagnetic scattering by 3-D objects in planarly layered media,” IEEE Trans. Geosci. Rem. Sens. 44(12), 3540–3546 (2006).

[CrossRef]

L. Zhuang, S. Y. He, X. B. Ye, W. D. Hu, W. X. Yu, and G. Q. Zhu, “The BCGS-FFT method combined with an improved discrete complex image method for EM scattering from electrically large objects in multilayered media,” IEEE Trans. Geosci. Rem. Sens. 48(3), 1180–1185 (2010).

[CrossRef]

K. T. Kim, D. K. Seo, and H. T. Kim, “Radar target identification using one-dimensional scattering cernters,” IEE Proc., Radar Sonar Navig. 148(5), 285–296 (2001).

[CrossRef]

F. Frezza, P. Martinelli, L. Pajewski, and G. Schettini, “Short-pulse electromagnetic scattering by buried perfectly conducting cylinders,” IEEE Geosci. Remote Sens. Lett. 4(4), 611–615 (2007).

[CrossRef]

S. He, F. Deng, H. Chen, W. Yu, W. Hu, and G. Zhu, “Range profile analysis of the 2-D target above a rough surface based on the electromagnetic numerical simulation,” IEEE Trans. Antenn. Propag. 57(10), 3258–3263 (2009).

[CrossRef]

S. Vitebskiy, K. Sturgess, and L. Carin, “Short-pulse plane-wave scattering from buried perfectly conducting bodies of revolution,” IEEE Trans. Antenn. Propag. 44(2), 143–151 (1996).

[CrossRef]

N. Geng and L. Carin, “Wide-band electromagnetic scattering from a dielectric BOR buried in a layered lossy dispersive medium,” IEEE Trans. Antenn. Propag. 47(4), 610–619 (1999).

[CrossRef]

S. Vitebskiy and L. Carin, “Moment-method modeling of short-pulse scattering from and the resonances of a wire buried inside a lossy, dispersive half-space,” IEEE Trans. Antennas Propag. 43(11), 1303–1312 (1995).

T. J. Cui, W. C. Chew, A. A. Aydiner, and Y. H. Zhang, “Fast-forward solvers for the low-frequency detection of buried dielectric objects,” IEEE Trans. Geosci. Rem. Sens. 41(9), 2026–2036 (2003).

[CrossRef]

V. Losada, R. R. Boix, and F. Medina, “Fast and accurate algorithm for the short-pulse electromagnetic scattering from conducting circular plates buried inside a lossy dispersive half-space,” IEEE Trans. Geosci. Rem. Sens. 41(5), 988–997 (2003).

[CrossRef]

S. Vitebskiy, L. Carin, M. A. Ressler, and F. H. Le, “Ultra-wideband, short-pulse ground-penetrating radar: simulation and measurement,” IEEE Trans. Geosci. Rem. Sens. 35(3), 762–772 (1997).

[CrossRef]

Y. H. Zhang, B. X. Xiao, and G. Q. Zhu, “An improved weak-form BCGS-FFT combined with DCIM for analyzing electromagnetic scattering by 3-D objects in planarly layered media,” IEEE Trans. Geosci. Rem. Sens. 44(12), 3540–3546 (2006).

[CrossRef]

L. Zhuang, S. Y. He, X. B. Ye, W. D. Hu, W. X. Yu, and G. Q. Zhu, “The BCGS-FFT method combined with an improved discrete complex image method for EM scattering from electrically large objects in multilayered media,” IEEE Trans. Geosci. Rem. Sens. 48(3), 1180–1185 (2010).

[CrossRef]

W. C. Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, 1990).