Abstract

Recently, coherent pulse-preserving and octave-spanning supercontinuum (SC) generation was theoretically predicted and experimentally shown in photonic crystal fibers (PCFs) with all-normal dispersion behavior. Since this behavior is due only to the all-normal dispersion profile and not to the photonic crystal cladding, other all-normal optical waveguides exhibit these properties as well. We extend this concept to suspended-core fibers and optical nanofibers and show experimental demonstrations of this way of SC generation. We show that optical suspended-core fibers and optical nanofibers of appropriate dimensions exhibit all-normal dispersion and address octave-spanning single pulse SC generation in the visible (VIS) and ultra violet (UV) wavelength range. In addition, we discuss the feasibility of fiber taper transitions for suitable input coupling schemes in sub-micron diameter fibers and show the importance of short adiabatic transition profiles for utilizing high-energy pulses to obtain maximum spectral broadening. They are essential for coherent broadband UV SC generation in optical nanofibers.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [CrossRef]
  2. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
    [CrossRef] [PubMed]
  3. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25(19), 1415–1417 (2000).
    [CrossRef]
  4. M. A. Foster and A. Gaeta, “Ultra-low threshold supercontinuum generation in sub-wavelength waveguides,” Opt. Express 12(14), 3137–3143 (2004).
    [CrossRef] [PubMed]
  5. R. R. Gattass, G. T. Svacha, L. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express 14(20), 9408–9414 (2006).
    [CrossRef] [PubMed]
  6. A. M. Heidt, A. Hartung, and H. Bartelt, “Deep ultraviolett supercontinuum generation in optical nanofibers by femtosecond-pulses at 400nm wavelength,” Proc. SPIE 7714, 771407 (2010).
    [CrossRef]
  7. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys. B 77(2-3), 269–277 (2003).
    [CrossRef]
  8. J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
    [CrossRef]
  9. L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “All-normal dispersion photonic crystal fiber for coherent supercontinuum generation,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuX4.
  10. A. M. Heidt, “Pulse preserving flat top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B 27(3), 550–559 (2010).
    [CrossRef]
  11. A. M. Heidt, A. Hartung, E. Rohwer, and H. Bartelt, “Infrared, visible and ultraviolet broadband coherent supercontinuum generation in all-normal dispersion fibers,” in 2nd Workshop on Specialty Optical Fibers and their Applications Proc. SPIE 7839, 78390X, 78390X-4 (2010).
    [CrossRef]
  12. A. Hartung, A. M. Heidt, and H. Bartelt, “Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation,” Opt. Express 19(8), 7742–7749 (2011).
    [CrossRef] [PubMed]
  13. A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775–3787 (2011).
    [CrossRef] [PubMed]
  14. A. Hartung, S. Brueckner, and H. Bartelt, “Limits of light guidance in optical nanofibers,” Opt. Express 18(4), 3754–3761 (2010).
    [CrossRef] [PubMed]
  15. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices Part 1: Adiabaticity criteria,” IEE Proc. 138, 343–354 (1991).
  16. J. Hult, “A fourth-order Runge-Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers,” J. Lightwave Technol. 25(12), 3770–3775 (2007).
    [CrossRef]
  17. A. M. Heidt, “Efficient adaptive step size method for the simulation of supercontinuum generation in optical fibers,” J. Lightwave Technol. 27(18), 3984–3991 (2009).
    [CrossRef]
  18. U. Megerle, I. Pugliesi, C. Schriever, C. F. Sailer, and E. Riedle, “Sub-50 fs broadband absorption spectroscopy with tunable excitation: putting the analysis of ultrafast molecular dynamics on solid ground,” Appl. Phys. B 96(2-3), 215–231 (2009).
    [CrossRef]

2011 (2)

2010 (4)

A. Hartung, S. Brueckner, and H. Bartelt, “Limits of light guidance in optical nanofibers,” Opt. Express 18(4), 3754–3761 (2010).
[CrossRef] [PubMed]

A. M. Heidt, A. Hartung, and H. Bartelt, “Deep ultraviolett supercontinuum generation in optical nanofibers by femtosecond-pulses at 400nm wavelength,” Proc. SPIE 7714, 771407 (2010).
[CrossRef]

A. M. Heidt, “Pulse preserving flat top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B 27(3), 550–559 (2010).
[CrossRef]

A. M. Heidt, A. Hartung, E. Rohwer, and H. Bartelt, “Infrared, visible and ultraviolet broadband coherent supercontinuum generation in all-normal dispersion fibers,” in 2nd Workshop on Specialty Optical Fibers and their Applications Proc. SPIE 7839, 78390X, 78390X-4 (2010).
[CrossRef]

2009 (2)

A. M. Heidt, “Efficient adaptive step size method for the simulation of supercontinuum generation in optical fibers,” J. Lightwave Technol. 27(18), 3984–3991 (2009).
[CrossRef]

U. Megerle, I. Pugliesi, C. Schriever, C. F. Sailer, and E. Riedle, “Sub-50 fs broadband absorption spectroscopy with tunable excitation: putting the analysis of ultrafast molecular dynamics on solid ground,” Appl. Phys. B 96(2-3), 215–231 (2009).
[CrossRef]

2007 (1)

2006 (2)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

R. R. Gattass, G. T. Svacha, L. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express 14(20), 9408–9414 (2006).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys. B 77(2-3), 269–277 (2003).
[CrossRef]

2002 (2)

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
[CrossRef]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[CrossRef] [PubMed]

2000 (1)

1991 (1)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices Part 1: Adiabaticity criteria,” IEE Proc. 138, 343–354 (1991).

Bartelt, H.

A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775–3787 (2011).
[CrossRef] [PubMed]

A. Hartung, A. M. Heidt, and H. Bartelt, “Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation,” Opt. Express 19(8), 7742–7749 (2011).
[CrossRef] [PubMed]

A. Hartung, S. Brueckner, and H. Bartelt, “Limits of light guidance in optical nanofibers,” Opt. Express 18(4), 3754–3761 (2010).
[CrossRef] [PubMed]

A. M. Heidt, A. Hartung, and H. Bartelt, “Deep ultraviolett supercontinuum generation in optical nanofibers by femtosecond-pulses at 400nm wavelength,” Proc. SPIE 7714, 771407 (2010).
[CrossRef]

A. M. Heidt, A. Hartung, E. Rohwer, and H. Bartelt, “Infrared, visible and ultraviolet broadband coherent supercontinuum generation in all-normal dispersion fibers,” in 2nd Workshop on Specialty Optical Fibers and their Applications Proc. SPIE 7839, 78390X, 78390X-4 (2010).
[CrossRef]

Birks, T. A.

Black, R. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices Part 1: Adiabaticity criteria,” IEE Proc. 138, 343–354 (1991).

Bosman, G. W.

Brueckner, S.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys. B 77(2-3), 269–277 (2003).
[CrossRef]

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
[CrossRef]

Corwin, K. L.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys. B 77(2-3), 269–277 (2003).
[CrossRef]

Diddams, S. A.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys. B 77(2-3), 269–277 (2003).
[CrossRef]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys. B 77(2-3), 269–277 (2003).
[CrossRef]

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
[CrossRef]

Foster, M. A.

Gaeta, A.

Gattass, R. R.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Gonthier, F.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices Part 1: Adiabaticity criteria,” IEE Proc. 138, 343–354 (1991).

Griebner, U.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[CrossRef] [PubMed]

Hartung, A.

A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775–3787 (2011).
[CrossRef] [PubMed]

A. Hartung, A. M. Heidt, and H. Bartelt, “Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation,” Opt. Express 19(8), 7742–7749 (2011).
[CrossRef] [PubMed]

A. Hartung, S. Brueckner, and H. Bartelt, “Limits of light guidance in optical nanofibers,” Opt. Express 18(4), 3754–3761 (2010).
[CrossRef] [PubMed]

A. M. Heidt, A. Hartung, and H. Bartelt, “Deep ultraviolett supercontinuum generation in optical nanofibers by femtosecond-pulses at 400nm wavelength,” Proc. SPIE 7714, 771407 (2010).
[CrossRef]

A. M. Heidt, A. Hartung, E. Rohwer, and H. Bartelt, “Infrared, visible and ultraviolet broadband coherent supercontinuum generation in all-normal dispersion fibers,” in 2nd Workshop on Specialty Optical Fibers and their Applications Proc. SPIE 7839, 78390X, 78390X-4 (2010).
[CrossRef]

Heidt, A. M.

Henry, W. M.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices Part 1: Adiabaticity criteria,” IEE Proc. 138, 343–354 (1991).

Herrmann, J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[CrossRef] [PubMed]

Hult, J.

Husakou, A.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[CrossRef] [PubMed]

Knight, J. C.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[CrossRef] [PubMed]

Korn, G.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[CrossRef] [PubMed]

Krok, P.

Lacroix, S.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices Part 1: Adiabaticity criteria,” IEE Proc. 138, 343–354 (1991).

Love, J. D.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices Part 1: Adiabaticity criteria,” IEE Proc. 138, 343–354 (1991).

Mazur, E.

Megerle, U.

U. Megerle, I. Pugliesi, C. Schriever, C. F. Sailer, and E. Riedle, “Sub-50 fs broadband absorption spectroscopy with tunable excitation: putting the analysis of ultrafast molecular dynamics on solid ground,” Appl. Phys. B 96(2-3), 215–231 (2009).
[CrossRef]

Newbury, N. R.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys. B 77(2-3), 269–277 (2003).
[CrossRef]

Nickel, D.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[CrossRef] [PubMed]

Pugliesi, I.

U. Megerle, I. Pugliesi, C. Schriever, C. F. Sailer, and E. Riedle, “Sub-50 fs broadband absorption spectroscopy with tunable excitation: putting the analysis of ultrafast molecular dynamics on solid ground,” Appl. Phys. B 96(2-3), 215–231 (2009).
[CrossRef]

Riedle, E.

U. Megerle, I. Pugliesi, C. Schriever, C. F. Sailer, and E. Riedle, “Sub-50 fs broadband absorption spectroscopy with tunable excitation: putting the analysis of ultrafast molecular dynamics on solid ground,” Appl. Phys. B 96(2-3), 215–231 (2009).
[CrossRef]

Rohwer, E.

A. M. Heidt, A. Hartung, E. Rohwer, and H. Bartelt, “Infrared, visible and ultraviolet broadband coherent supercontinuum generation in all-normal dispersion fibers,” in 2nd Workshop on Specialty Optical Fibers and their Applications Proc. SPIE 7839, 78390X, 78390X-4 (2010).
[CrossRef]

Rohwer, E. G.

Russell, P. S. J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[CrossRef] [PubMed]

Russell, P. St. J.

Sailer, C. F.

U. Megerle, I. Pugliesi, C. Schriever, C. F. Sailer, and E. Riedle, “Sub-50 fs broadband absorption spectroscopy with tunable excitation: putting the analysis of ultrafast molecular dynamics on solid ground,” Appl. Phys. B 96(2-3), 215–231 (2009).
[CrossRef]

Schriever, C.

U. Megerle, I. Pugliesi, C. Schriever, C. F. Sailer, and E. Riedle, “Sub-50 fs broadband absorption spectroscopy with tunable excitation: putting the analysis of ultrafast molecular dynamics on solid ground,” Appl. Phys. B 96(2-3), 215–231 (2009).
[CrossRef]

Schwoerer, H.

Stewart, W. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices Part 1: Adiabaticity criteria,” IEE Proc. 138, 343–354 (1991).

Svacha, G. T.

Tong, L.

Wadsworth, W. J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[CrossRef] [PubMed]

T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25(19), 1415–1417 (2000).
[CrossRef]

Washburn, B. R.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys. B 77(2-3), 269–277 (2003).
[CrossRef]

Weber, K.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys. B 77(2-3), 269–277 (2003).
[CrossRef]

Windeler, R. S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys. B 77(2-3), 269–277 (2003).
[CrossRef]

Zhavoronkov, N.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[CrossRef] [PubMed]

Appl. Phys. B (2)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber,” Appl. Phys. B 77(2-3), 269–277 (2003).
[CrossRef]

U. Megerle, I. Pugliesi, C. Schriever, C. F. Sailer, and E. Riedle, “Sub-50 fs broadband absorption spectroscopy with tunable excitation: putting the analysis of ultrafast molecular dynamics on solid ground,” Appl. Phys. B 96(2-3), 215–231 (2009).
[CrossRef]

IEE Proc. (1)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices Part 1: Adiabaticity criteria,” IEE Proc. 138, 343–354 (1991).

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[CrossRef] [PubMed]

Proc. SPIE (2)

A. M. Heidt, A. Hartung, and H. Bartelt, “Deep ultraviolett supercontinuum generation in optical nanofibers by femtosecond-pulses at 400nm wavelength,” Proc. SPIE 7714, 771407 (2010).
[CrossRef]

A. M. Heidt, A. Hartung, E. Rohwer, and H. Bartelt, “Infrared, visible and ultraviolet broadband coherent supercontinuum generation in all-normal dispersion fibers,” in 2nd Workshop on Specialty Optical Fibers and their Applications Proc. SPIE 7839, 78390X, 78390X-4 (2010).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Other (1)

L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “All-normal dispersion photonic crystal fiber for coherent supercontinuum generation,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuX4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

a) Geometric construction of a suspended core as the centre of three hexagons with rounded corner points. b) Evolution of dispersion profiles D with core diameter of a suspended-core fiber and a bare silica nanofiber.

Fig. 2
Fig. 2

Scanning electron microscopy (SEM) images of a suspended-core fiber a) before and b) after tapering.

Fig. 3
Fig. 3

Comparison between theory and experimental data of the dispersion profile for the initial suspended-core fiber with an incircle core diameter of 2000 nm, and for a fiber nanotaper with a waist diameter of 850 nm including exponential transitions and a small section of untapered fiber on both sides of the waist.

Fig. 4
Fig. 4

Supercontinuum spectra for an output pulse energy of 1.3 nJ, a) generated mainly in the waist section at 1.3 nJ everywhere along the fiber and b) generated mainly in the untapered introductory part of fiber at 10 nJ, assuming appropriate losses down to 1.3 nJ at the taper transition.

Fig. 5
Fig. 5

Spectral evolution during propagation a) for the narrow but flat top spectrum mainly generated in the waist and b) the wide spectrum mainly generated in the 2 mm part of untapered input fiber.

Fig. 6
Fig. 6

a) Calculated spectrogram and b) calculated coherence function of the 1.3 nJ SC pulse after 10 mm propagation distance. A single pulse is maintained in the time domain, and the spectrum is highly coherent over the entire bandwidth.

Metrics