Abstract

We investigate Hotelling observer performance (i.e., signal detectability) of a phased array system for tasks of detecting small inhomogeneities and distinguishing adjacent abnormalities in uniform diffusive media. Unlike conventional phased array systems where a single detector is located on the interface between two sources, we consider a detector array, such as a CCD, on a phantom exit surface for calculating the Hotelling observer detectability. The signal detectability for adjacent small abnormalities (2mm displacement) for the CCD-based phased array is related to the resolution of reconstructed images. Simulations show that acquiring high-dimensional data from a detector array in a phased array system dramatically improves the detectability for both tasks when compared to conventional single detector measurements, especially at low modulation frequencies. It is also observed in all studied cases that there exists the modulation frequency optimizing CCD-based phased array systems, where detectability for both tasks is consistently high. These results imply that the CCD-based phased array has the potential to achieve high resolution and signal detectability in tomographic diffusive imaging while operating at a very low modulation frequency. The effect of other configuration parameters, such as a detector pixel size, on the observer performance is also discussed.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D Appl. Phys. 36(14), R207–R227 (2003).
    [CrossRef]
  2. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
    [CrossRef]
  3. S. R. Arridge and W. R. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23(11), 882–884 (1998).
    [CrossRef]
  4. H. K. Kim, U. J. Netz, J. Beuthan, and A. H. Hielscher, “Optimal source-modulation frequencies for transport-theory-based optical tomography of small-tissue volumes,” Opt. Express 16(22), 18082–18101 (2008).
    [CrossRef] [PubMed]
  5. Y. Chen, C. Mu, X. Intes, and B. Chance, “Signal-to-noise analysis for detection sensitivity of small absorbing heterogeneity in turbid media with single-source and dual-interfering-source,” Opt. Express 9(4), 212–224 (2001).
    [CrossRef] [PubMed]
  6. V. Toronov, E. D’Amico, D. Hueber, E. Gratton, B. Barbieri, and A. Webb, “Optimization of the signal-to-noise ratio of frequency-domain instrumentation for near-infrared spectro-imaging of the human brain,” Opt. Express 11(21), 2717–2729 (2003).
    [CrossRef] [PubMed]
  7. U. J. Netz, J. Beuthan, and A. H. Hielscher, “Multipixel system for gigahertz frequency-domain optical imaging of finger joints,” Rev. Sci. Instrum. 79(3), 034301 (2008).
    [CrossRef] [PubMed]
  8. U. J. Netz, A. H. Hielscher, A. K. Scheel, and J. Beuthan, “Signal-to-noise analysis for propagation of laser radiation through a tissue-like medium by diffuse photon-density waves,” Laser Phys. 17(4), 453–460 (2007).
    [CrossRef]
  9. K. Lee, S. D. Konecky, R. Choe, H. Y. Ban, A. Corlu, T. Durduran, and A. G. Yodh, “Transmission RF diffuse optical tomography instrument for human breast imaging,” Proc. SPIE 6629, 66291R, 66291R-6 (2007).
    [CrossRef]
  10. A. B. Thompson and E. M. Sevick-Muraca, “Near-infrared fluorescence contrast-enhanced imaging with intensified charge-coupled device homodyne detection: measurement precision and accuracy,” J. Biomed. Opt. 8(1), 111–120 (2003).
    [CrossRef] [PubMed]
  11. J. M. Schmitt, A. Knüttel, and J. R. Knutson, “Interference of diffusive light waves,” J. Opt. Soc. Am. A 9(10), 1832–1843 (1992).
    [CrossRef] [PubMed]
  12. D. G. Papaioannou, G. W. ‘t Hooft, S. B. Colak, and J. T. Oostveen, “Detection limit in localizing objects hidden in a turbid medium using an optically scanned phased array,” J. Biomed. Opt. 1(3), 305 (1996).
    [CrossRef]
  13. S. P. Morgan and K. Y. Yong, “Amplitude-phase crosstalk cancelation in frequency domain instrumentation,” Proc. SPIE 4250, 269–275 (2001).
    [CrossRef]
  14. X. Intes, V. Ntziachristos, and B. Chance, “Analytical model for dual-interfering sources diffuse optical tomography,” Opt. Express 10(1), 2–14 (2002).
    [PubMed]
  15. Y. Chen, G. Zheng, Z. H. Zhang, D. Blessington, M. Zhang, H. Li, Q. Liu, L. Zhou, X. Intes, S. Achilefu, and B. Chance, “Metabolism-enhanced tumor localization by fluorescence imaging: in vivo animal studies,” Opt. Lett. 28(21), 2070–2072 (2003).
    [CrossRef] [PubMed]
  16. B. Kanmani and R. M. Vasu, “Noise-tolerance analysis for detection and reconstruction of absorbing inhomogeneities with diffuse optical tomography using single- and phase-correlated dual-source schemes,” Phys. Med. Biol. 52(5), 1409–1429 (2007).
    [CrossRef] [PubMed]
  17. S. K. Biswas, K. Rajan, and R. M. Vasu, “Diffuse optical tomographic imager using a single light source,” J. Appl. Phys. 105(2), 024702 (2009).
    [CrossRef]
  18. Y. Chen, C. Mu, X. Intes, and B. Chance, “Signal-to-noise analysis for detection sensitivity of small absorbing heterogeneity in turbid media with single-source and dual-interfering-source,” Opt. Express 9(4), 212–224 (2001).
    [CrossRef] [PubMed]
  19. S. P. Morgan and K. Y. Yong, “Controlling the phase response of a diffusive wave phased array system,” Opt. Express 7(13), 540–546 (2000).
    [CrossRef] [PubMed]
  20. S. P. Morgan, “Detection performance of a diffusive wave phased array,” Appl. Opt. 43(10), 2071–2078 (2004).
    [CrossRef] [PubMed]
  21. H. H. Barrett, J. L. Denny, R. F. Wagner, and K. J. Myers, “Objective assessment of image quality. II. Fisher information, Fourier crosstalk, and figures of merit for task performance,” J. Opt. Soc. Am. A 12(5), 834–852 (1995).
    [CrossRef]
  22. H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley, 2004).
  23. J. S. Reynolds, T. L. Troy, and E. M. Sevick-Muraca, “Multipixel techniques for frequency-domain photon migration imaging,” Biotechnol. Prog. 13(5), 669–680 (1997).
    [CrossRef] [PubMed]
  24. Z. M. Wang, G. Y. Panasyuk, V. A. Markel, and J. C. Schotland, “Experimental demonstration of an analytic method for image reconstruction in optical diffusion tomography with large data sets,” Opt. Lett. 30(24), 3338–3340 (2005).
    [CrossRef]
  25. R. B. Schulz, J. Peter, W. Semmler, C. D’Andrea, G. Valentini, and R. Cubeddu, “Comparison of noncontact and fiber-based fluorescence-mediated tomography,” Opt. Lett. 31(6), 769–771 (2006).
    [CrossRef] [PubMed]
  26. G. Y. Panasyuk, Z. M. Wang, J. C. Schotland, and V. A. Markel, “Fluorescent optical tomography with large data sets,” Opt. Lett. 33(15), 1744–1746 (2008).
    [CrossRef] [PubMed]
  27. H. H. Barrett, “Objective assessment of image quality: effects of quantum noise and object variability,” J. Opt. Soc. Am. A 7(7), 1266–1278 (1990).
    [CrossRef] [PubMed]
  28. A. R. Pineda, M. Schweiger, S. R. Arridge, and H. H. Barrett, “Information content of data types in time-domain optical tomography,” J. Opt. Soc. Am. A 23(12), 2989–2996 (2006).
    [CrossRef]
  29. D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10(3), 159–170 (2002).
    [PubMed]
  30. N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
    [CrossRef] [PubMed]
  31. M. S. Nair, N. Ghosh, N. S. Raju, and A. Pradhan, “Determination of optical parameters of human breast tissue from spatially resolved fluorescence: a diffusion theory model,” Appl. Opt. 41(19), 4024–4035 (2002).
    [CrossRef] [PubMed]
  32. D. Kang and M.A. Kupinski, “Effect of noise on modulation amplitude and phase in frequency-domain diffusive imaging,” J. Biomed. Opt. (to be submitted).
    [PubMed]
  33. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
    [CrossRef] [PubMed]
  34. D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(Suppl 1), S275–S288 (2004).
    [CrossRef] [PubMed]
  35. B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express 2(10), 411–423 (1998).
    [CrossRef] [PubMed]

2009 (1)

S. K. Biswas, K. Rajan, and R. M. Vasu, “Diffuse optical tomographic imager using a single light source,” J. Appl. Phys. 105(2), 024702 (2009).
[CrossRef]

2008 (3)

2007 (3)

U. J. Netz, A. H. Hielscher, A. K. Scheel, and J. Beuthan, “Signal-to-noise analysis for propagation of laser radiation through a tissue-like medium by diffuse photon-density waves,” Laser Phys. 17(4), 453–460 (2007).
[CrossRef]

K. Lee, S. D. Konecky, R. Choe, H. Y. Ban, A. Corlu, T. Durduran, and A. G. Yodh, “Transmission RF diffuse optical tomography instrument for human breast imaging,” Proc. SPIE 6629, 66291R, 66291R-6 (2007).
[CrossRef]

B. Kanmani and R. M. Vasu, “Noise-tolerance analysis for detection and reconstruction of absorbing inhomogeneities with diffuse optical tomography using single- and phase-correlated dual-source schemes,” Phys. Med. Biol. 52(5), 1409–1429 (2007).
[CrossRef] [PubMed]

2006 (2)

2005 (2)

2004 (2)

S. P. Morgan, “Detection performance of a diffusive wave phased array,” Appl. Opt. 43(10), 2071–2078 (2004).
[CrossRef] [PubMed]

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

2003 (4)

Y. Chen, G. Zheng, Z. H. Zhang, D. Blessington, M. Zhang, H. Li, Q. Liu, L. Zhou, X. Intes, S. Achilefu, and B. Chance, “Metabolism-enhanced tumor localization by fluorescence imaging: in vivo animal studies,” Opt. Lett. 28(21), 2070–2072 (2003).
[CrossRef] [PubMed]

V. Toronov, E. D’Amico, D. Hueber, E. Gratton, B. Barbieri, and A. Webb, “Optimization of the signal-to-noise ratio of frequency-domain instrumentation for near-infrared spectro-imaging of the human brain,” Opt. Express 11(21), 2717–2729 (2003).
[CrossRef] [PubMed]

A. B. Thompson and E. M. Sevick-Muraca, “Near-infrared fluorescence contrast-enhanced imaging with intensified charge-coupled device homodyne detection: measurement precision and accuracy,” J. Biomed. Opt. 8(1), 111–120 (2003).
[CrossRef] [PubMed]

C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D Appl. Phys. 36(14), R207–R227 (2003).
[CrossRef]

2002 (3)

2001 (4)

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[CrossRef] [PubMed]

S. P. Morgan and K. Y. Yong, “Amplitude-phase crosstalk cancelation in frequency domain instrumentation,” Proc. SPIE 4250, 269–275 (2001).
[CrossRef]

Y. Chen, C. Mu, X. Intes, and B. Chance, “Signal-to-noise analysis for detection sensitivity of small absorbing heterogeneity in turbid media with single-source and dual-interfering-source,” Opt. Express 9(4), 212–224 (2001).
[CrossRef] [PubMed]

Y. Chen, C. Mu, X. Intes, and B. Chance, “Signal-to-noise analysis for detection sensitivity of small absorbing heterogeneity in turbid media with single-source and dual-interfering-source,” Opt. Express 9(4), 212–224 (2001).
[CrossRef] [PubMed]

2000 (1)

1999 (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[CrossRef]

1998 (2)

1997 (1)

J. S. Reynolds, T. L. Troy, and E. M. Sevick-Muraca, “Multipixel techniques for frequency-domain photon migration imaging,” Biotechnol. Prog. 13(5), 669–680 (1997).
[CrossRef] [PubMed]

1996 (1)

D. G. Papaioannou, G. W. ‘t Hooft, S. B. Colak, and J. T. Oostveen, “Detection limit in localizing objects hidden in a turbid medium using an optically scanned phased array,” J. Biomed. Opt. 1(3), 305 (1996).
[CrossRef]

1995 (1)

1992 (1)

1990 (1)

‘t Hooft, G. W.

D. G. Papaioannou, G. W. ‘t Hooft, S. B. Colak, and J. T. Oostveen, “Detection limit in localizing objects hidden in a turbid medium using an optically scanned phased array,” J. Biomed. Opt. 1(3), 305 (1996).
[CrossRef]

Achilefu, S.

Anday, E.

Arridge, S. R.

Ban, H. Y.

K. Lee, S. D. Konecky, R. Choe, H. Y. Ban, A. Corlu, T. Durduran, and A. G. Yodh, “Transmission RF diffuse optical tomography instrument for human breast imaging,” Proc. SPIE 6629, 66291R, 66291R-6 (2007).
[CrossRef]

Barbieri, B.

Barrett, H. H.

Beuthan, J.

U. J. Netz, J. Beuthan, and A. H. Hielscher, “Multipixel system for gigahertz frequency-domain optical imaging of finger joints,” Rev. Sci. Instrum. 79(3), 034301 (2008).
[CrossRef] [PubMed]

H. K. Kim, U. J. Netz, J. Beuthan, and A. H. Hielscher, “Optimal source-modulation frequencies for transport-theory-based optical tomography of small-tissue volumes,” Opt. Express 16(22), 18082–18101 (2008).
[CrossRef] [PubMed]

U. J. Netz, A. H. Hielscher, A. K. Scheel, and J. Beuthan, “Signal-to-noise analysis for propagation of laser radiation through a tissue-like medium by diffuse photon-density waves,” Laser Phys. 17(4), 453–460 (2007).
[CrossRef]

Biswas, S. K.

S. K. Biswas, K. Rajan, and R. M. Vasu, “Diffuse optical tomographic imager using a single light source,” J. Appl. Phys. 105(2), 024702 (2009).
[CrossRef]

Blessington, D.

Boas, D. A.

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10(3), 159–170 (2002).
[PubMed]

Butler, J.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[CrossRef] [PubMed]

Cerussi, A.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[CrossRef] [PubMed]

Chance, B.

Chen, Y.

Choe, R.

K. Lee, S. D. Konecky, R. Choe, H. Y. Ban, A. Corlu, T. Durduran, and A. G. Yodh, “Transmission RF diffuse optical tomography instrument for human breast imaging,” Proc. SPIE 6629, 66291R, 66291R-6 (2007).
[CrossRef]

Colak, S. B.

D. G. Papaioannou, G. W. ‘t Hooft, S. B. Colak, and J. T. Oostveen, “Detection limit in localizing objects hidden in a turbid medium using an optically scanned phased array,” J. Biomed. Opt. 1(3), 305 (1996).
[CrossRef]

Corlu, A.

K. Lee, S. D. Konecky, R. Choe, H. Y. Ban, A. Corlu, T. Durduran, and A. G. Yodh, “Transmission RF diffuse optical tomography instrument for human breast imaging,” Proc. SPIE 6629, 66291R, 66291R-6 (2007).
[CrossRef]

Cubeddu, R.

Culver, J. P.

D’Amico, E.

D’Andrea, C.

Dale, A. M.

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

Denny, J. L.

Dunn, A. K.

Dunsby, C.

C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D Appl. Phys. 36(14), R207–R227 (2003).
[CrossRef]

Durduran, T.

K. Lee, S. D. Konecky, R. Choe, H. Y. Ban, A. Corlu, T. Durduran, and A. G. Yodh, “Transmission RF diffuse optical tomography instrument for human breast imaging,” Proc. SPIE 6629, 66291R, 66291R-6 (2007).
[CrossRef]

Eker, C.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[CrossRef] [PubMed]

Espinoza, J.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[CrossRef] [PubMed]

Fishkin, J.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[CrossRef] [PubMed]

Franceschini, M. A.

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

French, P. M. W.

C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D Appl. Phys. 36(14), R207–R227 (2003).
[CrossRef]

Ghosh, N.

Gibson, A. P.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[CrossRef] [PubMed]

Gratton, E.

Hebden, J. C.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[CrossRef] [PubMed]

Hielscher, A. H.

H. K. Kim, U. J. Netz, J. Beuthan, and A. H. Hielscher, “Optimal source-modulation frequencies for transport-theory-based optical tomography of small-tissue volumes,” Opt. Express 16(22), 18082–18101 (2008).
[CrossRef] [PubMed]

U. J. Netz, J. Beuthan, and A. H. Hielscher, “Multipixel system for gigahertz frequency-domain optical imaging of finger joints,” Rev. Sci. Instrum. 79(3), 034301 (2008).
[CrossRef] [PubMed]

U. J. Netz, A. H. Hielscher, A. K. Scheel, and J. Beuthan, “Signal-to-noise analysis for propagation of laser radiation through a tissue-like medium by diffuse photon-density waves,” Laser Phys. 17(4), 453–460 (2007).
[CrossRef]

Hong, L.

Hornung, R.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[CrossRef] [PubMed]

Hueber, D.

Intes, X.

Kang, D.

D. Kang and M.A. Kupinski, “Effect of noise on modulation amplitude and phase in frequency-domain diffusive imaging,” J. Biomed. Opt. (to be submitted).
[PubMed]

Kanmani, B.

B. Kanmani and R. M. Vasu, “Noise-tolerance analysis for detection and reconstruction of absorbing inhomogeneities with diffuse optical tomography using single- and phase-correlated dual-source schemes,” Phys. Med. Biol. 52(5), 1409–1429 (2007).
[CrossRef] [PubMed]

Kim, H. K.

Knutson, J. R.

Knüttel, A.

Konecky, S. D.

K. Lee, S. D. Konecky, R. Choe, H. Y. Ban, A. Corlu, T. Durduran, and A. G. Yodh, “Transmission RF diffuse optical tomography instrument for human breast imaging,” Proc. SPIE 6629, 66291R, 66291R-6 (2007).
[CrossRef]

Kupinski, M.A.

D. Kang and M.A. Kupinski, “Effect of noise on modulation amplitude and phase in frequency-domain diffusive imaging,” J. Biomed. Opt. (to be submitted).
[PubMed]

Lee, K.

K. Lee, S. D. Konecky, R. Choe, H. Y. Ban, A. Corlu, T. Durduran, and A. G. Yodh, “Transmission RF diffuse optical tomography instrument for human breast imaging,” Proc. SPIE 6629, 66291R, 66291R-6 (2007).
[CrossRef]

Li, C.

Li, H.

Lionheart, W. R.

Liu, Q.

Markel, V. A.

Morgan, S. P.

Mu, C.

Murray, T.

Myers, K. J.

Nair, M. S.

Netz, U. J.

H. K. Kim, U. J. Netz, J. Beuthan, and A. H. Hielscher, “Optimal source-modulation frequencies for transport-theory-based optical tomography of small-tissue volumes,” Opt. Express 16(22), 18082–18101 (2008).
[CrossRef] [PubMed]

U. J. Netz, J. Beuthan, and A. H. Hielscher, “Multipixel system for gigahertz frequency-domain optical imaging of finger joints,” Rev. Sci. Instrum. 79(3), 034301 (2008).
[CrossRef] [PubMed]

U. J. Netz, A. H. Hielscher, A. K. Scheel, and J. Beuthan, “Signal-to-noise analysis for propagation of laser radiation through a tissue-like medium by diffuse photon-density waves,” Laser Phys. 17(4), 453–460 (2007).
[CrossRef]

Nioka, S.

Ntziachristos, V.

Oostveen, J. T.

D. G. Papaioannou, G. W. ‘t Hooft, S. B. Colak, and J. T. Oostveen, “Detection limit in localizing objects hidden in a turbid medium using an optically scanned phased array,” J. Biomed. Opt. 1(3), 305 (1996).
[CrossRef]

Ovetsky, Y.

Panasyuk, G. Y.

Papaioannou, D. G.

D. G. Papaioannou, G. W. ‘t Hooft, S. B. Colak, and J. T. Oostveen, “Detection limit in localizing objects hidden in a turbid medium using an optically scanned phased array,” J. Biomed. Opt. 1(3), 305 (1996).
[CrossRef]

Peter, J.

Pidikiti, D.

Pineda, A. R.

Pradhan, A.

Rajan, K.

S. K. Biswas, K. Rajan, and R. M. Vasu, “Diffuse optical tomographic imager using a single light source,” J. Appl. Phys. 105(2), 024702 (2009).
[CrossRef]

Raju, N. S.

Reynolds, J. S.

J. S. Reynolds, T. L. Troy, and E. M. Sevick-Muraca, “Multipixel techniques for frequency-domain photon migration imaging,” Biotechnol. Prog. 13(5), 669–680 (1997).
[CrossRef] [PubMed]

Scheel, A. K.

U. J. Netz, A. H. Hielscher, A. K. Scheel, and J. Beuthan, “Signal-to-noise analysis for propagation of laser radiation through a tissue-like medium by diffuse photon-density waves,” Laser Phys. 17(4), 453–460 (2007).
[CrossRef]

Schmitt, J. M.

Schotland, J. C.

Schulz, R. B.

Schweiger, M.

Semmler, W.

Sevick-Muraca, E. M.

A. B. Thompson and E. M. Sevick-Muraca, “Near-infrared fluorescence contrast-enhanced imaging with intensified charge-coupled device homodyne detection: measurement precision and accuracy,” J. Biomed. Opt. 8(1), 111–120 (2003).
[CrossRef] [PubMed]

J. S. Reynolds, T. L. Troy, and E. M. Sevick-Muraca, “Multipixel techniques for frequency-domain photon migration imaging,” Biotechnol. Prog. 13(5), 669–680 (1997).
[CrossRef] [PubMed]

Shah, N.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[CrossRef] [PubMed]

Stott, J. J.

Thomas, R.

Thompson, A. B.

A. B. Thompson and E. M. Sevick-Muraca, “Near-infrared fluorescence contrast-enhanced imaging with intensified charge-coupled device homodyne detection: measurement precision and accuracy,” J. Biomed. Opt. 8(1), 111–120 (2003).
[CrossRef] [PubMed]

Toronov, V.

Tromberg, B.

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[CrossRef] [PubMed]

Troy, T. L.

J. S. Reynolds, T. L. Troy, and E. M. Sevick-Muraca, “Multipixel techniques for frequency-domain photon migration imaging,” Biotechnol. Prog. 13(5), 669–680 (1997).
[CrossRef] [PubMed]

Valentini, G.

Vasu, R. M.

S. K. Biswas, K. Rajan, and R. M. Vasu, “Diffuse optical tomographic imager using a single light source,” J. Appl. Phys. 105(2), 024702 (2009).
[CrossRef]

B. Kanmani and R. M. Vasu, “Noise-tolerance analysis for detection and reconstruction of absorbing inhomogeneities with diffuse optical tomography using single- and phase-correlated dual-source schemes,” Phys. Med. Biol. 52(5), 1409–1429 (2007).
[CrossRef] [PubMed]

Wagner, R. F.

Wang, Z. M.

Webb, A.

Worden, K.

Yodh, A. G.

K. Lee, S. D. Konecky, R. Choe, H. Y. Ban, A. Corlu, T. Durduran, and A. G. Yodh, “Transmission RF diffuse optical tomography instrument for human breast imaging,” Proc. SPIE 6629, 66291R, 66291R-6 (2007).
[CrossRef]

Yong, K. Y.

S. P. Morgan and K. Y. Yong, “Amplitude-phase crosstalk cancelation in frequency domain instrumentation,” Proc. SPIE 4250, 269–275 (2001).
[CrossRef]

S. P. Morgan and K. Y. Yong, “Controlling the phase response of a diffusive wave phased array system,” Opt. Express 7(13), 540–546 (2000).
[CrossRef] [PubMed]

Zhang, M.

Zhang, Z. H.

Zheng, G.

Zhou, L.

Zhou, S.

Appl. Opt. (2)

Biotechnol. Prog. (1)

J. S. Reynolds, T. L. Troy, and E. M. Sevick-Muraca, “Multipixel techniques for frequency-domain photon migration imaging,” Biotechnol. Prog. 13(5), 669–680 (1997).
[CrossRef] [PubMed]

Inverse Probl. (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[CrossRef]

J. Appl. Phys. (1)

S. K. Biswas, K. Rajan, and R. M. Vasu, “Diffuse optical tomographic imager using a single light source,” J. Appl. Phys. 105(2), 024702 (2009).
[CrossRef]

J. Biomed. Opt. (3)

A. B. Thompson and E. M. Sevick-Muraca, “Near-infrared fluorescence contrast-enhanced imaging with intensified charge-coupled device homodyne detection: measurement precision and accuracy,” J. Biomed. Opt. 8(1), 111–120 (2003).
[CrossRef] [PubMed]

D. G. Papaioannou, G. W. ‘t Hooft, S. B. Colak, and J. T. Oostveen, “Detection limit in localizing objects hidden in a turbid medium using an optically scanned phased array,” J. Biomed. Opt. 1(3), 305 (1996).
[CrossRef]

D. Kang and M.A. Kupinski, “Effect of noise on modulation amplitude and phase in frequency-domain diffusive imaging,” J. Biomed. Opt. (to be submitted).
[PubMed]

J. Opt. Soc. Am. A (4)

J. Phys. D Appl. Phys. (1)

C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D Appl. Phys. 36(14), R207–R227 (2003).
[CrossRef]

Laser Phys. (1)

U. J. Netz, A. H. Hielscher, A. K. Scheel, and J. Beuthan, “Signal-to-noise analysis for propagation of laser radiation through a tissue-like medium by diffuse photon-density waves,” Laser Phys. 17(4), 453–460 (2007).
[CrossRef]

Neuroimage (1)

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage 23(Suppl 1), S275–S288 (2004).
[CrossRef] [PubMed]

Opt. Express (8)

B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, and R. Thomas, “A novel method for fast imaging of brain function, non-invasively, with light,” Opt. Express 2(10), 411–423 (1998).
[CrossRef] [PubMed]

D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10(3), 159–170 (2002).
[PubMed]

H. K. Kim, U. J. Netz, J. Beuthan, and A. H. Hielscher, “Optimal source-modulation frequencies for transport-theory-based optical tomography of small-tissue volumes,” Opt. Express 16(22), 18082–18101 (2008).
[CrossRef] [PubMed]

Y. Chen, C. Mu, X. Intes, and B. Chance, “Signal-to-noise analysis for detection sensitivity of small absorbing heterogeneity in turbid media with single-source and dual-interfering-source,” Opt. Express 9(4), 212–224 (2001).
[CrossRef] [PubMed]

V. Toronov, E. D’Amico, D. Hueber, E. Gratton, B. Barbieri, and A. Webb, “Optimization of the signal-to-noise ratio of frequency-domain instrumentation for near-infrared spectro-imaging of the human brain,” Opt. Express 11(21), 2717–2729 (2003).
[CrossRef] [PubMed]

Y. Chen, C. Mu, X. Intes, and B. Chance, “Signal-to-noise analysis for detection sensitivity of small absorbing heterogeneity in turbid media with single-source and dual-interfering-source,” Opt. Express 9(4), 212–224 (2001).
[CrossRef] [PubMed]

S. P. Morgan and K. Y. Yong, “Controlling the phase response of a diffusive wave phased array system,” Opt. Express 7(13), 540–546 (2000).
[CrossRef] [PubMed]

X. Intes, V. Ntziachristos, and B. Chance, “Analytical model for dual-interfering sources diffuse optical tomography,” Opt. Express 10(1), 2–14 (2002).
[PubMed]

Opt. Lett. (5)

Phys. Med. Biol. (2)

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[CrossRef] [PubMed]

B. Kanmani and R. M. Vasu, “Noise-tolerance analysis for detection and reconstruction of absorbing inhomogeneities with diffuse optical tomography using single- and phase-correlated dual-source schemes,” Phys. Med. Biol. 52(5), 1409–1429 (2007).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

N. Shah, A. Cerussi, C. Eker, J. Espinoza, J. Butler, J. Fishkin, R. Hornung, and B. Tromberg, “Noninvasive functional optical spectroscopy of human breast tissue,” Proc. Natl. Acad. Sci. U.S.A. 98(8), 4420–4425 (2001).
[CrossRef] [PubMed]

Proc. SPIE (2)

S. P. Morgan and K. Y. Yong, “Amplitude-phase crosstalk cancelation in frequency domain instrumentation,” Proc. SPIE 4250, 269–275 (2001).
[CrossRef]

K. Lee, S. D. Konecky, R. Choe, H. Y. Ban, A. Corlu, T. Durduran, and A. G. Yodh, “Transmission RF diffuse optical tomography instrument for human breast imaging,” Proc. SPIE 6629, 66291R, 66291R-6 (2007).
[CrossRef]

Rev. Sci. Instrum. (1)

U. J. Netz, J. Beuthan, and A. H. Hielscher, “Multipixel system for gigahertz frequency-domain optical imaging of finger joints,” Rev. Sci. Instrum. 79(3), 034301 (2008).
[CrossRef] [PubMed]

Other (1)

H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Side (a) and top (b) views of the phantom for the Monte Carlo simulation. The detector array shown in Fig. 1(a) is D2 that is also indicated as a dot square in Fig. 1(b). Although not shown here, D1 has the size of 2 × 2mm, which is located on the center of the phantom. The red arrows and dots indicate sources and gray squares indicate possible abnormality locations.

Fig. 2
Fig. 2

Hotelling observer SNRs for the task of detecting small absorbing signals at L Sig = 1 and 3 in a phased array system with the detector D1 ((a) and (b)) and D2 ((c) and (d)) are shown. These SNRs are calculated with modulation phases. SNRs of all examined signal locations at fixed modulation frequencies with D1 and D2 are shown in (e) and (f), respectively.

Fig. 3
Fig. 3

Hotelling observer SNRs for two adjacent signals at for L Sig = 1 and 3 in a phased array system with the detector D1 ((a) and (b)) and D2 ((c) and (d)) are shown. These SNRs are calculated with modulation phases. SNRs of all examined signal locations at fixed modulation frequencies with D1 and D2are shown in (e) and (f), respectively.

Fig. 4
Fig. 4

(a) Mean S N R φ 2 calculated from all L Sig are shown with different τ and μs, where the optimal fm are almost invariant to μs. (b) the variation of S N R φ 2 to L Sig is shown for different detector sizes at τ = 6ns and fm = 55MHz, where the increasing rate of S N R φ 2 is saturated.

Fig. 5
Fig. 5

Hotelling observer SNRs are increased as a detector pixel size ( l D ) decreases for tasks of detecting (a) two adjacent absorbing and (b) scattering abnormalities. These SNR enhancements can be explained with mean phase differences for (c) absorbing and (d) scattering signals.

Fig. 6
Fig. 6

Hotelling observer SNRs for the task of detecting small absorbing abnormalities at = 1 and 3 in phased array systems with detectors (a) D1 and (b) D2 are shown. Hotelling observer SNRs for the task of detecting two adjacent abnormalities are shown in (c) and (d) for D1 and D2, respectively. These quantities of Hotelling observer SNR are calculated with modulation amplitudes.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

σ A = β a D C   and   σ φ = σ A / a A C ,
S N R H 2 = Δ g ¯ t Κ 1 Δ g ¯
S N R H 2 = i = 1 N ( Δ g ¯ i 2 σ i 2 ) .
S N R A 2 = 1 β 2 i = 1 N ( Δ a A C 2 a D C ) i
S N R φ 2 = 1 β 2 i = 1 N ( a A C 2 Δ φ ¯ 2 a D C ) i

Metrics