Abstract

The presence of coupled resonators induced transparency (CRIT) effects in side-coupled integrated spaced sequence of resonators (SCISSOR) of different radii has been studied. By controlling the rings radii and their center to center distance, it is possible to form transmission channels within the SCISSOR stop-band. Two different methods to exploit the CRIT effect in add/drop filters are proposed. Their performances, e. g. linewidth, crosstalk and losses, are examined also for random variations in the structural parameters. Finally, few examples of high performances mux/demux structures and 2 × 2 routers based on these modified SCISSOR are presented. CRIT based SCISSOR optical devices are particularly promising for ultra-dense wavelength division multiplexing applications.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. E. Little, S. T. Chu, J. V. Hryniewicz, and P. P. Absil, “Filter synthesis for periodically coupled microring resonators,” Opt. Lett. 25, 344–346 (2000).
    [CrossRef]
  2. Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E 62, 7389–7404 (2000).
    [CrossRef]
  3. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
    [CrossRef]
  4. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
    [CrossRef] [PubMed]
  5. K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
    [CrossRef] [PubMed]
  6. B. Maes, P. Bienstman, and R. Baets, “Switching in coupled nonlinear photonic-crystal resonators,” J. Opt. Soc. Am. B 22, 1778–1784 (2005).
    [CrossRef]
  7. R. W. Boyd and D. J. Gauthier, “Transparency on an optical chip,” Nature (London) 441, 701–702 (2006).
    [CrossRef]
  8. M. Mancinelli, R. Guider, M. Masi, P. Bettotti, M. R. Vanacharla, J. M. Fedeli, and L. Pavesi, “Optical characterization of a SCISSOR device,” submitted to Optics Express.
  9. Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
    [CrossRef] [PubMed]
  10. B. E. Little and J. Laine, “Surface-roughness-induced contradirectional coupling in ring and disk resonators,” Opt. Lett. 22, 4–6 (1997).
    [CrossRef] [PubMed]
  11. S. Cho and R. Soref, “Apodized SCISSORs for filtering and switching,” Opt. Express 16, 19078–19090 (2008).
    [CrossRef]
  12. C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Commun. 8, 948–964 (1990).
    [CrossRef]
  13. M. Masi, R. Orobtchouk, G. F. Fan, and L. Pavesi, “Towards realistic modeling of ultra-compact racetrack resonators,” J. Lightwave Technol. 22, 3233–3242 (2010).
  14. Q. Xu, J. Shakya, and M. Lipson, “Direct measurement of tunable optical delays on chip analogue to electromagnetically induced transparency,” Opt. Express 14, 6463–6468 (2006).
    [CrossRef] [PubMed]
  15. Z. Sheng, L. Liu, S. He, D. Van Thourhout, and R. Baets, “Silicon-on-insulator microring resonator for ultra dense WDM applications,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2009), pp 122–124.
    [CrossRef]

2010 (1)

M. Masi, R. Orobtchouk, G. F. Fan, and L. Pavesi, “Towards realistic modeling of ultra-compact racetrack resonators,” J. Lightwave Technol. 22, 3233–3242 (2010).

2008 (1)

2007 (1)

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[CrossRef] [PubMed]

2006 (3)

R. W. Boyd and D. J. Gauthier, “Transparency on an optical chip,” Nature (London) 441, 701–702 (2006).
[CrossRef]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Q. Xu, J. Shakya, and M. Lipson, “Direct measurement of tunable optical delays on chip analogue to electromagnetically induced transparency,” Opt. Express 14, 6463–6468 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (2)

Y. A. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
[CrossRef] [PubMed]

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[CrossRef]

2000 (2)

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E 62, 7389–7404 (2000).
[CrossRef]

B. E. Little, S. T. Chu, J. V. Hryniewicz, and P. P. Absil, “Filter synthesis for periodically coupled microring resonators,” Opt. Lett. 25, 344–346 (2000).
[CrossRef]

1997 (1)

1990 (1)

C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Commun. 8, 948–964 (1990).
[CrossRef]

Absil, P. P.

Baets, R.

B. Maes, P. Bienstman, and R. Baets, “Switching in coupled nonlinear photonic-crystal resonators,” J. Opt. Soc. Am. B 22, 1778–1784 (2005).
[CrossRef]

Z. Sheng, L. Liu, S. He, D. Van Thourhout, and R. Baets, “Silicon-on-insulator microring resonator for ultra dense WDM applications,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2009), pp 122–124.
[CrossRef]

Bienstman, P.

Boyd, R. W.

R. W. Boyd and D. J. Gauthier, “Transparency on an optical chip,” Nature (London) 441, 701–702 (2006).
[CrossRef]

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[CrossRef]

Brackett, C. A.

C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Commun. 8, 948–964 (1990).
[CrossRef]

Chang, H.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[CrossRef]

Cho, S.

Chu, S. T.

Fan, G. F.

M. Masi, R. Orobtchouk, G. F. Fan, and L. Pavesi, “Towards realistic modeling of ultra-compact racetrack resonators,” J. Lightwave Technol. 22, 3233–3242 (2010).

Fan, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Fuller, K. A.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[CrossRef]

Gauthier, D. J.

R. W. Boyd and D. J. Gauthier, “Transparency on an optical chip,” Nature (London) 441, 701–702 (2006).
[CrossRef]

He, S.

Z. Sheng, L. Liu, S. He, D. Van Thourhout, and R. Baets, “Silicon-on-insulator microring resonator for ultra dense WDM applications,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2009), pp 122–124.
[CrossRef]

Hryniewicz, J. V.

Kobayashi, N.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[CrossRef] [PubMed]

Laine, J.

Lee, R. K.

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E 62, 7389–7404 (2000).
[CrossRef]

Li, Y.

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E 62, 7389–7404 (2000).
[CrossRef]

Lipson, M.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Q. Xu, J. Shakya, and M. Lipson, “Direct measurement of tunable optical delays on chip analogue to electromagnetically induced transparency,” Opt. Express 14, 6463–6468 (2006).
[CrossRef] [PubMed]

Little, B. E.

Liu, L.

Z. Sheng, L. Liu, S. He, D. Van Thourhout, and R. Baets, “Silicon-on-insulator microring resonator for ultra dense WDM applications,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2009), pp 122–124.
[CrossRef]

Maes, B.

Masi, M.

M. Masi, R. Orobtchouk, G. F. Fan, and L. Pavesi, “Towards realistic modeling of ultra-compact racetrack resonators,” J. Lightwave Technol. 22, 3233–3242 (2010).

McNab, S. J.

Orobtchouk, R.

M. Masi, R. Orobtchouk, G. F. Fan, and L. Pavesi, “Towards realistic modeling of ultra-compact racetrack resonators,” J. Lightwave Technol. 22, 3233–3242 (2010).

Pavesi, L.

M. Masi, R. Orobtchouk, G. F. Fan, and L. Pavesi, “Towards realistic modeling of ultra-compact racetrack resonators,” J. Lightwave Technol. 22, 3233–3242 (2010).

Povinelli, M. L.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Rosenberger, A. T.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[CrossRef]

Sandhu, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Shakya, J.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Q. Xu, J. Shakya, and M. Lipson, “Direct measurement of tunable optical delays on chip analogue to electromagnetically induced transparency,” Opt. Express 14, 6463–6468 (2006).
[CrossRef] [PubMed]

Sheng, Z.

Z. Sheng, L. Liu, S. He, D. Van Thourhout, and R. Baets, “Silicon-on-insulator microring resonator for ultra dense WDM applications,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2009), pp 122–124.
[CrossRef]

Smith, D. D.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[CrossRef]

Soref, R.

Tomita, M.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[CrossRef] [PubMed]

Totsuka, K.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[CrossRef] [PubMed]

Van Thourhout, D.

Z. Sheng, L. Liu, S. He, D. Van Thourhout, and R. Baets, “Silicon-on-insulator microring resonator for ultra dense WDM applications,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2009), pp 122–124.
[CrossRef]

Vlasov, Y. A.

Xu, Q.

Q. Xu, J. Shakya, and M. Lipson, “Direct measurement of tunable optical delays on chip analogue to electromagnetically induced transparency,” Opt. Express 14, 6463–6468 (2006).
[CrossRef] [PubMed]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Xu, Y.

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E 62, 7389–7404 (2000).
[CrossRef]

Yariv, A.

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E 62, 7389–7404 (2000).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Commun. 8, 948–964 (1990).
[CrossRef]

J. Lightwave Technol. (1)

M. Masi, R. Orobtchouk, G. F. Fan, and L. Pavesi, “Towards realistic modeling of ultra-compact racetrack resonators,” J. Lightwave Technol. 22, 3233–3242 (2010).

J. Opt. Soc. Am. B (1)

Nature (London) (1)

R. W. Boyd and D. J. Gauthier, “Transparency on an optical chip,” Nature (London) 441, 701–702 (2006).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. A (1)

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69, 063804 (2004).
[CrossRef]

Phys. Rev. E (1)

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E 62, 7389–7404 (2000).
[CrossRef]

Phys. Rev. Lett. (2)

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[CrossRef] [PubMed]

Other (2)

M. Mancinelli, R. Guider, M. Masi, P. Bettotti, M. R. Vanacharla, J. M. Fedeli, and L. Pavesi, “Optical characterization of a SCISSOR device,” submitted to Optics Express.

Z. Sheng, L. Liu, S. He, D. Van Thourhout, and R. Baets, “Silicon-on-insulator microring resonator for ultra dense WDM applications,” in Proceedings of IEEE Conference on Group IV Photonics (IEEE, 2009), pp 122–124.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Schema of the new SCISSOR for 7 ring resonators: R represents the radius of the central resonator, ΔR the detuning and Lc the coherence length. The resonators are labelled from 1 to 7 starting from the left. (b) Simulated spectra of the through signal for each resonator. The black rectangles and red arrows correspond to the possible wavelength where CRIT might occur.

Fig. 2
Fig. 2

Example of the through port response for a CRITAD made with 7 ring resonators in which all pairs are in constructive (red line) and destructive (black line) interference.

Fig. 3
Fig. 3

Schematic representation of the two types of structure, RAD (structure a) and CRITAD (structure b) with the wavelength response of the through signal in equal simulation conditions. The black (red) arrow represent the passive (active) state. The CRITAD is composed by 7 resonators in which the active couple is the fourth (not shown in the schema).

Fig. 4
Fig. 4

Schema of the 3 rings local CRITAD structure (a) and spectrum of the through signal (b) for: (Top) destructive interference, (Middle) constructive interference of the first pair, (Bottom) constructive interference of the second pair. The radius of the rings differs by ΔR.

Fig. 5
Fig. 5

Schema of the 7 rings Bragg CRITAD structure (a) and spectra of the through signal for different coherent distances Lc 1 (red) and Lc 2 (blu). (b) Schematic view of the position of the Bragg band inside the stop-band and (c) spectral response of the through port for the 2 different Lc . The radius of all rings differs by ΔR.

Fig. 7
Fig. 7

(a) Bandwidth of a CRIT channel versus the coupling coefficient used in the simulation. These values are for the local method and a ΔR of 5 nm. (b) Crosstalk versus the number of rings that compose the CRITAD for different values of channel bandwidth (reported in the legend) and different design: (black) Bragg method, (red) local method. The losses were fixed to 6 dB/cm.

Fig. 6
Fig. 6

Cross talk (red line) and losses (black line) of CRIT channel as a function of the bandwidth for 3 different values of the bend loss: 0dB/cm (Square), 6dB/cm (Triangle) and 12dB/cm (Circle). (a) Local method with ΔR = 5 nm (b) Local method with ΔR = 10 nm (c) Bragg method with ΔR = 5 nm. (d) Bragg method with ΔR = 10 nm. Other parameters are detailed in the text.

Fig. 8
Fig. 8

(a) Spectral response of the through signal for a CRITAD with the local design and a ΔR = 5 nm: signal intensity (black) and signal phase shift (red). (b) Group delay (blue) of the through signal.

Fig. 9
Fig. 9

Through port response for 2 CRITAD devices made with local method: (black) 3th channel open, (red) 4 th channel open. The multiple red (black) curves represent the effect of 3σ = 3 nm fabrication error. The parameters used are R = 6.75μm, coupling coefficient 20%, Lc = 3/2πRm .

Fig. 10
Fig. 10

(a) Schema representing a 4 × 1(1 × 4) multiplexer (demultiplexer) based on local method CRITAD, composed by 7 resonators, in which the colored circles identifies the pair that does CRIT and then creates a channel. (b) Simulated spectral response, without considering losses, of the 4 channels in which the colors are linked to the schema of the structure. (c) Simulated spectral response, considering losses of 6 dB/cm. The parameters used are R = 6.75μm, ΔR = 5 nm, coupling coefficient 23 %.

Fig. 11
Fig. 11

(a) Schema representing a 2 × 2 router based on local method CRITAD, composed by 5 resonators, in which the colored circles identify the pair that does CRIT and then creates a channel. (b) The black (red) curve represents the simulated spectrum obtained with λ 1(2) that passes through the transparency of SCISSOR 1(2) and the resonance of SCISSOR 2(1).

Tables (3)

Tables Icon

Table 1 Optical parameters used in the transfer matrix (TMM) simulations.

Tables Icon

Table 2 Table showing the average value for channel losses and crosstalk with relative standard deviation for 3 different values of structural errors, 3, 6, 9 nm, and two ΔR, 5 and 10 nm. The parameters obtained with 0 nm of error represent the values obtained from the ideal structures. The parameters were obtained from a sample of 100 CRITAD.

Tables Icon

Table 3 Table of routing of the structure. The parameters used are R = 6.75μm, ΔR = 5 nm, coupling coefficient 23% and bend losses 6 dB/cm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R m ( n ) = R ( n ) + R ( n + 1 ) 2 ,
λ b = 2 L c n eff m b ,
τ g = d ϕ d ω ,

Metrics